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Abstract: Background: Since the invention of Chua’s circuit, numerous generalizations based on substitution of the nonlinear 

function have been reported. One of the generalizations is obtained by replacing the piecewise-linear with the cubic and/or 

quadratic polynomial. These nonlinearities are used to be implement using analog multipliers which are relatively expensive. In 

this realization we propose a different approach to synthetize both cubic and quadratic nonlinearities of empirical Chua’s circuit. 

Methods: The idea is to use diodes, Opamps and resistors to derive a PWL approximation of the cubic and quadratic functions. To 

demonstrate some complex phenomena observed in the system using the fourth order Runge-Kutta numerical integration method 

with a very small integration step. The bifurcation diagram which is the plot of local maxima of the temporal trace of a system’s 

coordinate as a function of the control parameter also constitutes an excellent tool for the study of dynamic systems. Results: The 

above mentioned standard nonlinear analysis tools have been exploited and it is found that the system with adjustable symmetry 

experiences a plethora of symmetric and asymmetric coexisting attractors. A particular feature of the system is related to the 

simplicity of the corresponding electronic analog circuit (no analog multiplier chip used to implement the cubic and quadratic 

nonlinearities). Conclusions: It is observed that the proposed Chua’s circuit system is more flexible (both symmetric and 

asymmetric) and displays complex dynamics behaviors of symmetric and asymmetric coexisting attractors. Note that this 

striking dynamic can be exploited in encryption algorithms. 

Keywords: Chua’s Circuit System, Adjustable Symmetry, Coexisting Bifurcations, Coexisting Attractors,  

Pspice Circuit Simulations 

 

1. Introduction 

Multistability of a dynamical system is usually taken to 

mean that there are coexisting attractors, each with a basin of 

attraction that depends crucially on the system’s initial values. 

The coexisting attractors can be stable equilibria, periodic 

cycles or strange attractors. There are even examples where all 

the three types of attractors coexist in phase space [1]. This 

striking dynamics has been previously observed in various 

dynamical systems including the Chua’s circuit [2-9]. Chua’s 

circuit is among the simplest electronic circuits characterized 

by chaos and many well-known nonlinear dynamic 

phenomena [10-16]. It was invented in 1983 by L. O. Chua 

from the quest to prove that the Lorenz attractor is chaotic in a 

rigorous mathematical sense [17]. Let us recall that an 

autonomous circuit made from resistor, capacitor and inductor 

must satisfy the following conditions to displays chaos: one or 

more nonlinear elements, one or more locally active resistors, 

three or more energy-storage elements [17]. Chua’s circuit is 

one of the simplest circuits that meet these criteria; it consist 

of four standard off-the-shelf linear passive electrical 

components namely an inductor, a resistor, and two capacitors. 

In addition to these four elements, Chua’s circuit contains a 

nonlinear element characterized by a nonlinear current voltage 
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function. Such an element is called the Chua’s diode. Note that 

the nonlinear function of the original Chua’s system is a 

continuous piecewise-linear function [18]. Since the invention 

of Chua’s circuit, numerous generalizations based on 

substitution of the nonlinear function have been reported 

[19-25]. One of the generalizations is obtained by replacing 

the piecewise-linear by the cubic and/or quadratic polynomial 

[24, 25]. In 1994, Zhong reported an implementation of 

Chua’s circuit with a smooth nonlinearity described by a cubic 

polynomial [25]. Note that this implementation is based on the 

utilization of three analog multipliers which are relatively 

expensive. Yang and coworkers investigated a modified 

Chua’s circuit system with both cubic and quadratic 

polynomials [24]. They focused on the chaos control by a 

delayed feedback method. The nonlinear function hyperbolic 

nonlinearity obtained from an active diode pair can be used to 

replace the Chua’s diode. For instance, Chen and collaborators 

reported hidden dynamics and multi-stability in an improved 

third order Chua’s circuit [26]. From the results of Chen, Bao 

and coworkers further investigated the coexistence of multiple 

attractors in Chua’s circuit and a plethora of point attractors, 

limit cycle attractors and strange attractors were found to 

coexist in phase space depending solely on the initial system’s 

values [1]. Memristor can also be used to replace the Chua’s 

diode in the original Chua’s circuit [27-29].
 
Cheng et al. 

reported a memristive bridge-based canonical Chua’s circuit 

by replacing the Chua’s diode with a first order memristive 

bridge diode [29]. They reported the complex nonlinear 

phenomena of coexisting bifurcations and coexisting 

attractors though the number of coexisting attractors depend 

crucially on the symmetry of the system. Symmetry always 

plays an important role in physical system. This property is 

found in a variety of system including nonlinear and chaotic 

systems [30-40]. Symmetric chaotic systems provide the 

possibility to observe coexisting attractors. Based on the 

nonlinear part of a symmetric system, the symmetry can be 

destroyed. A question can then be asked: what is the effect of 

an asymmetric nonlinearity on the multi-stable behavior of a 

system in general and on a Chua’s system in particular? In 

other word what are the mechanisms that occur when the 

Chua’s system loses its symmetry property in the multi-stable 

region? This question is very important since the answer lead 

to the generalization of multistability in the Chua’s system by 

adjusting its nonlinear part and hence its symmetry property. 

In the present paper we investigated the coexisting 

bifurcations and coexisting attractors in a Chua’s system 

with adjustable symmetry and adjustable nonlinearity. The 

system is characterized by both cubic and quadratic 

nonlinear terms. Let us note that the quadratic nonlinearity is 

used to tune the symmetry of the whole system. A plethora of 

coexisting symmetric and asymmetric attractors can be 

found in the system’s parameter space. More important, the 

electronic analog circuit corresponding to the system under 

investigation is very simple. This is due to the fact that no 

analog multiplier is used to build the quadratic and the cubic 

polynomials. 

2. Methods 

2.1. Mathematical Formulation 

Recently, Zhong investigated the implementation of Chua’s 

circuit with a cubic nonlinearity [25]. The circuit was modeled 

by: 

3
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The method of practical implementation used to realize the 

cubic polynomial is interesting and can also be applied to 

implement Chua’s diodes with almost any smooth nonlinearity. 

However the main limitation is the presence of analog 

multipliers in the realization circuit of the cubic polynomial. 

In this paper we further investigate the dynamics of Chua’s 

system with both quadratic and cubic nonlinearities. The 

problem can be formulated as follows: 
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Where 2 3
1 1 1 1( )bf x ax bx cx= + +  is a nonlinear polynomial 

containing cubic and quadratic nonlinearities which are 

implemented without any analog multiplier. More interesting, 

multistability in the symmetry boundary is discussed by 

switching the control parameter b given that the system is 

symmetric for 0b = and becomes asymmetric for 0b ≠ . A 

plethora of coexisting attractors are found in the systems 

parameters space. Throughout this work, unless otherwise 

mentioned, we assumed 6.6 ;β = 1.16 ;a = − 0.06c = . α  

serves as the main bifurcation control parameter and b is used 

to tune the symmetry of the whole system as mention above. 

2.2. Symmetry of the Model, Fixed Points and Stabilities 

From system (2) it is obvious that by switching parameter b 

the symmetry of the model under investigation can be 

modified. Figure 1 is the representation of the nonlinear 

function ( )bf x where system’s symmetry breaks with the 

variation of parameter b. The curve in black is related to the 

particular case b=0. For this case the nonlinear function is 

symmetric and the system is invariant under the coordinate 

transformation 1 2 3 1 2 3( , , ) ( , , )x x x x x x⇔ − − −  leading to 

symmetric attractors, but in the general case this condition can 

only be achieved by switching parameter b related to the 

nonlinearity. 

The fixed points of the proposed model (2) can be found by 

solving the following nonlinear system: 
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From (3) it is obvious that system (2) has three equilibriums 

including one zero equilibrium point and two nonzero ones: 

0 (0,0,0)

( ,0, ) (i 1,2)i i

E

E γ γ± − =
             (4) 

 

Figure 1. The nonlinear function 1( )bf x for various values of the parameter k. 

Notice that for b=0 the system displays two symmetric fixe points, but for 

0b ≠  the later are no more symmetric. 

Where iγ  are the solutions of the following third order 

equation: 2 3(a 1) 0b cγ γ+ + + = . The nonzero equilibrium 

points E± are symmetrical with respect to the origin 0E  for 

the particular case 0b = . This symmetry is destroyed when 

0b ≠  The Jacobian matrix at any equilibrium can be 

calculated as: 

2( a 1 2 3 0

1 1 1

0 0

b c

J

α µ µ α

β
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         (5) 

With 0µ = for the zero fixed point; iµ γ= for the 

non-zero equilibrium points. The Eigen values related to the 

above matrix can be calculated for the particular case b=0 as 

follows: 

0 1(0,0,0): 1.5307,E λ→ = +

2,3 0.8654 1.6433jλ = − ±  

1

2,3

( 1.633,0, 1.633) : 2.5464,

0.1001 1.8652

E

j

λ
λ

±→ ± = −
= + ±

m

       (6) 

Given that the real parts of these eigen values are positive 

and negative, the origin can be classified as unstable saddle 

point whereas the nonzero fixe points are unstable node-foci. 

Consequently the system displays self-excited strange 

attractors with the possibility of multistability in system (3). 

Similar calculations can be carried out in order to investigate 

the stability of the equilibrium points systems symmetry 

breaks ( 0)b ≠ . 

2.3. Numerical Methods 

Numerical simulation plays a crucial role in predetermining 

the system’s parameters for its practical realization. To 

demonstrate the different phenomena observed in the system, 

the fourth order Runge-Kutta numerical integration method is 

used with an integration step 3 2 10τ −= × . The solutions are 

stored after the transient phase is discarded. The main 

indicator used to demonstrate the phenomenon of 

multistability is the coexisting bifurcation diagrams. Note 

these diagrams are obtained by plotting the local maximums 

of the variable 3x versus a given control parameter. Phase 

space trajectory plots are also used to illustrate the symmetric 

and asymmetric coexistence of attractors. 

 

 

Figure 2. Systems dynamics for 0b = ; illustrating the coexisting bifurcation 

diagrams obtained by switching parameter α when 

6.6 ; 1.16 ; 0.06a cβ = = − =  under three different initial conditions 

(a) ( 1, 0 , 0) ; ( ) (20, 0 , 0)b± . 

3. Results 

3.1. Coexisting Bifurcations and Coexisting Attractors in the 

Particular Case (b=0) 

To explore the coexisting behaviors with multistability in 

system (2) for the particular case 0b = , we fixed 

6.6 ; 1.16 ; 0.06a cβ = = − =  and varied α in the range

4.8 5.35α< < . The system is solved under three different 

initial conditions (a) ( 1,0 ,0) ; ( ) (20,0,0)b± leading to 

coexisting bifurcations (Figure 2). 

From the bifurcations graphs in blue and red colors two 

different routes coexist where periodic attractors coexist at the 

same point and chaotic attractors coexist at the same point. 

These diagrams are obtained from the initial states ( 1; 0; 0)± . 

Under these conditions, it is obvious that the system moves 

from periodic to chaotic attractors with period doubling 

bifurcation. A limit cycle is obtained by solving the system 
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with the initial value (1; 0; 0) . The corresponding bifurcation 

diagram is represented in black color. Various phase portraits 

are plotted for different values of the parameter α to illustrate 

the coexistence of point attractors, limit cycles and chaotic 

attractors (see Figure 5). Cross sections of the basin of 

attraction (Figure 3) with ( )1 0 0;x = ( )2 0 0x =  and ( )3 0 0x =

corresponding to the coexisting attractors are presented in 

Figure 5 (d). 

To explore the different dynamic behaviors that 

characterize system (2), we have also plotted the stability 

diagrams based on the Lyapunov exponent [41, 42]. These 

diagrams (Figure 4) highlight the different behavior zones 

according to the degree of stability (given by the maximal 

exponent of Lyapunov). Thus, Lyapunov exponents are unable 

to discriminate individual oscillatory phases. These graphs are 

of capital importance from a practical standpoint in that they 

give an overall idea of the dynamics under the effect of the 

parameters of the system. 

 

Figure 3. Cross sections of the basin of attraction with ( )1 0 0;x = ( )2 0 0x =  and ( )3 0 0x = corresponding to the coexisting attractors presented in Figure 5. 

(d). 

3.2. Coexisting Bifurcations and Coexisting Attractors in the 

Particular Case (b≠0) 

To investigate the multistability of system (2) in the symmetry 

boundary, We first fixe system’s parameters as 0.015b =  

(respectively 0.015b = ) 6.6 ; 1.16 ; 0.06a cβ = = − = and 

vary the control parameter α  in the range 4.8 5.35α< < . With 

these parameters the system is solved with various initial 

conditions and coexisting bifurcations illustrated in Figure 6 are 

achieved. From these diagrams it is obvious that the coexisting 

attractors are no more symmetric. In light of Figure 6, a period-1 

limit cycle can coexist with a period-2 one; a spiral chaotic 

attractor can coexist with a limit cycle and so on. Beside we have 

period doubling bifurcation (graph in blue and red colors) leading 

to different spiral chaotic attractor which are of different volumes. 

Several periodic windows intersect the chaotic region. 

 

Figure 4. Lyapunov stability diagram in the ( , bα ), ( ,bβ ), ( ,α β ) planes illustrating the regions of periodic oscillations ( max 0λ ≤ ) and the regions of chaotic 

dynamics ( max 0λ > ). 
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Figure 5. Coexisting attractors in the 1 2x x− plane when 0 ;b =  6.6 ; 1.16 ; 0.06a cβ = = − =  (a) 4.8α = , (b) 4.85α = , (c) 4.921α = , (d) 4.967α = , (e)

4.915α = , (f) 5.23α = . Three different initial conditions are used (red ) ( 1, 0 , 0) ; ( ) (20, 0 , 0)blue black− ± . 

 

 

Figure 6. Systems dynamics for 0.015b = ; illustrating the coexisting 

bifurcation diagrams obtained by decreasing parameter α when 

6.6 ; 1.16 ; 0.06a cβ = = − =  under three different initial conditions 

(a) ( 1, 0 , 0) ; ( ) (20, 0 , 0)b± . 

For this set of parameter system (2) experiences the striking 

dynamics of coexisting bifurcations (see Figure 8) and thus 

coexisting attractors (see Figure 9). To the best author’s 

knowledge, multistability in the symmetry boundary has not 

yet been discussed in Chua’s system. Thus this work 

represents an enriching contribution to the understanding of 

the nonlinear dynamics of Chua’s oscillators. However, this 

striking phenomenon of disconnected coexisting attractors is 

also reported in other nonlinear dynamic systems such as 

Chua’s circuit [1-4], lazer system [43], chemical reaction [44], 

and the radio physical system [45], A special case where 

infinitely many attractors coexist, also referred to as extreme 

multistability is discussed by Hens and Wei [46-47]. 

 

 

Figure 7. Systems dynamics for 0.015b = − ; illustrating the coexisting 

bifurcation diagrams obtained by decreasing parameter α when 

6.6 ; 1.16 ; 0.06a cβ = = − =  under three different initial conditions 

(a) ( 1, 0 , 0) ; ( ) (20, 0 , 0)b± . 

The multiplicity of attractors represents an additional type 

of randomness [48]. That is exploited in real applications such 

as chaos based secret communication, image encryption, and 

random signal generation as well. However, this type of 

behavior is not desirable in general, thus the need for control. 

Detailed analysis on this line is out of the scope of this paper. 

Also, we suggest the excellent work on control of 

multistability to interested readers [49]. 
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Figure 8. Coexisting attractors in the 1 2x x− plane when 0.015b =  6.6 ; 1.16 ; 0.06a cβ = = − =  (a) 4.8α = , (b) 4.83α = , (c) 4.91α = , (d) 4.937α = , (e)

4.964α = , (f) 5.1α = . Three different initial conditions are used (red green)( 1, 0 , 0) ; ( ) (20, 0 , 0)blue− ± . 

 

 

Figure 9. Coexisting attractors in the 1 2x x− plane when 0.015b = −  6.6 ; 1.16 ; 0.06a cβ = = − =  (a) 4.8α = , (b) 4.83α = , (c) 4.91α = , (d) 4.937α = , (e)

4.964α = , (f) 5.1α = . Three different initial conditions are used (red ) ( 1, 0 , 0) ; (black) (20, 0 , 0)blue− ± . 

3.3. Circuit Design and Spice Simulations 

The aim of this section is to design and implement an 

analog computer for the experimental analysis of system (2). 

Note that system (2) contains both cubic and quadratic 

polynomials. These nonlinearities are used to be implemented 

using analog multipliers which are relatively expensive. In 

this realization we propose the use of an approach based on 

piecewise linear (PWL) functions [50-51]. In fact the idea is to 

use diodes, Operational amplifiers and resistors to derive a 

PWL approximation of the cubic and quadratic functions (see 

Figure 10). 

A circuit whose output is the square of the input signal is 

reported in Figure 10; while Figure 11 implements a PWL 

approximation of a circuit whose output is the cube of the 

input signal. Their transfer functions are represented in Figure 

12 (a) and (b) respectively. 

 

Figure 10. Transfer function of the cube function (a) and the square function 

(b). 
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These circuits are more convenient for low cost realization 

and have been used to the Chua’s analog simulator presented 

in Figure 13 where the state variables x1, x2 and x3 of system (2) 

are associated with the voltages v1, v2 and v3 across the 

capacitors C1, C2 and C3 respectively. 

 

Figure 11. Circuital implementation of the cube function. Component values are the following: 1 200 ;R k= Ω 2 100 ;R k= Ω 3 12 ;R k= Ω 4 2 ;R k= Ω

5 15 ;R k= Ω 6 10 .R k= Ω . 

 

Figure 12. Transfer function of the cube function (a) and the square function (b). 

By applying Kirchhoff’s laws to the circuit of Figure 13, its nonlinear equations are derived in the following form: 

2 31
1 2 1 1 1 1

2
2 1 2 3

3
3 2

1 1 1 1 1 1 1
( ) ( )

1
( )

1
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Figure 13. Electrical scheme of the analog calculator implementing the chaotic Chua’s system with asymmetric nonlinearity. The following Component values 

have been used to solve the circuit: 10 ;R k= Ω 10 ;C Fη= 2 ;R kα = Ω 1.52 ;R kβ = Ω 62.5 ;aR k= Ω 66.66 ;bR k= Ω 1.66 .cR k= Ω  

 

 

 

Figure 14. PSpice simulation results showing the coexistence of limit cycles 

for 2.10 ;R kα = Ω 1.52 ;R kβ = Ω 62.50 ;aR k= Ω 66.66 ;bR k= Ω

1.66cR k= Ω : The initial conditions are 1 2 3( (0), (0), (0)) ( 2,0,0)C C Cυ υ υ = ±

and 1 2 3( (0), (0), (0)) (10,0,0)C C Cυ υ υ = . 
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Figure 15. PSpice simulation results showing the coexistence of two chaotic 

spiral attractors and limit cycles for 2.03 ;R kα = Ω 1.52 ;R kβ = Ω

62.50 ;aR k= Ω 66.66 ;bR k= Ω 1.66cR k= Ω : The initial conditions are 

1 2 3( (0), (0), (0)) ( 2,0,0)C C Cυ υ υ = ± and 1 2 3( (0), (0), (0)) (10,0,0)C C Cυ υ υ = . 

Adopting the following rescale of time and variables: 

; ( 1, 2,3)e i i Tt tRC x nV iυ= = =  system (7) is identical to 

system (2) with the following definition of parameters: 

; ; ; ;
a b c

R R R R R
a b c

R R R R Rα β
α β= = = = =       (8) 

With the aim to confirm the theoretical results of section 3, 

i.e. the multistability in system (2), the circuit of Figure 14 is 

simulated using Pspice. Rα is used as the main control 

resistor and the rest of circuit components are fixed as: 

1.52 ;R kβ = Ω 62.50 ;aR k= Ω  66.66 ;bR k= Ω 1.66cR k= Ω . 

The agreement between the theoretical results (Figure 5) and 

Pspice simulations (see Figures 14, 15) shows the feasibility 

of the suggested chaotic system. 

4. Conclusion 

This paper has investigated the systematic analysis of a 

Chua’s circuit system. The adjustable symmetry of the system 

is composed of both cubic and quadratic polynomials which 

have been implemented using PWL functions instead of 

analog multipliers. The stability analysis shows that the 

system has two stable nonzero fixed points. In addition the 

system is symmetric for the particular case ( 0)b = . In this 

case the system displays complex nonlinear phenomena such 

as the symmetry breaking in which a symmetric pair of 

attractors coexists and merges into one symmetric attractor 

through an attractor-merging bifurcation. When 0b ≠ the 

symmetry breaks down but its complex dynamics of 

multistability is revealed with the coexistence of limit cycles, 

chaotic spiral attractors and double scroll chaotic attractors. In 

contrast to the particular case ( 0)b = , two asymmetric chaotic 

spiral attractors coexist and merge into one asymmetric double 

scroll chaotic attractor. For a kind of coexisting attractors the 

cross section of the basins of attraction of the various 

coexisting attractors has been plotted. More importantly, 

multistability in the symmetry boundary is discussed. Pspice 

simulation results support the numerical simulations. An 

experimental exploration of the parameter space of system (2) 

with application to image encryption deserves further studies. 
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