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Abstract: In this paper, an approach of determining analytical solutions of the mono-kinetic multiregion neutron diffusion 

equation from two-dimensional Cartesian geometry is presented. The technical approach is based on the Lie symmetry group 

for partial differential equation. The local symmetry groups to the one-parameter transformation are obtained. The invariant 

solutions spanned of an expansion of neutron fluxes with respect to the space, time and material regions are reported. 
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1. Introduction 

The mathematical description of neutron diffusion 

for	�	regions is depended on time	�, space	��	and media. This 

description is provided by the neutron diffusion theory 

(Fick's law), necessary to the comprehension of many 

properties of the nuclear reactor physics.  

Neutron diffusion is performed on a region towards other 

regions. Indeed, the diffusion theory is used to define the 

neutron's behavior. The neutron flux is then a combination of 

time, space and media.  

The flux and the current are continuous through the system 

conditions after the change of region. The flux and the 

current are continuous through the system conditions after 

the change of region. The fluctuation varies along the 

direction	��	and this one can be applied by coupling flux and 

homogeneous regions 	� � 1,2, …�. A region is considered 

by the material which it is composed (fuel, control rod,...). 

The homogeneous mono-kinetic multiregion neutron 

diffusion equation (MNDE) for multiplying media is, 

assumed without delayed neutrons, external source and 

feedback mechanisms and other influences, written as 

�

�

�
�������, �� � ���������, �� � ������ � ���������, ��,	                                                   (1) 

where 	�  0, 	�����, ��	�".�$�. %$��, 	&� 	��. %$��, 	�����, 	Σ����$��,	Σ����$��	and	���". ()%%)*"$��	are denoted the 

neutron flux, neutron speed, diffusion coefficient, 

macroscopic absorption cross section, macroscopic fission 

cross section and the fraction of neutrons emitted by fission, 

respectively [1-5], [14]. The model of analytic solutions to 

the diffusion equation is appropriated for the conditions of 

prompt neutron behavior.  

The Lie symmetry group is established to the variable 

(dependent or independent) transformations leaving partial 

differential equation (PDE) invariant [6-8], [11]. The key to 

find symmetry groups is the group related to the 

parameter 	+ ≪ 1 . Using Lie symmetry group allow to 

determine also the invariant solutions to the mono-kinetic 

MNDE. 

The objective of the paper is to obtain symmetry groups 

and invariant solutions for the MNDE using the Lie 

symmetry group. The outline is as follows. The Section 2 

considers the material. The section 3 presents the Lie 

symmetry analysis of the MNDE. The Section 4 may obtain 

invariant solutions of the equation. Finally, in Section 5, 

conclusions are made. 

2. Material 

In this section, the Eq. (1) is given from Cartesian 

geometry	�-, .�	related to the expression of the mono-kinetic 

neutron flux [12, 13]. Each coefficient is constant within a 

homogeneous region. In two-dimensional, the equation is 

presented, extending over the interval 	-�$� / - / -��-0 �
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0),	.�$� < . < .�(.0 = 0)	for	� = 1,2, …�, as 

��,� = 1����,22 + ��,33� 	+ 4���(-, ., �),	       (2) 

with 

&��� = 1� 

and 

&����Σ�� − Σ��� = 4�. 
The 2D BIBLIS benchmark is used as a 2D representative 

problem to the parametrical statement of neutron coefficients 

[9, 10], [12, 13]. The BIBLIS core uses a checkerboard 

pattern, formed by fuel elements and control bar. Fuel 

assemblies have widths of	-� = .� = 23.1226	7�. 
The seven different compositions of material regions are 

presented in the core and surrounded by reflector of 

width	-� = .� = 23.1226	7�. 

The solutions of diffusion equation will be illustrated from 

physical parameters relating 	� = 8	 to regions of BIBLIS 

benchmark. 

Table 1. BIBLIS 2D-Benchmark of macroscopic cross sections for the group 

of fast neutron. 

9 :9(9) ;<9(9$=) ;>9(9$=) 
1 1.4360 × 10−2 0.95042 0.58708 

2 1.4366 × 10−2 0.96785 0.61908 

3 1.3200 × 10−2 0.26562 0.00000 

4 1.4389 × 10−2 1.03630 0.74527 

5 1.4381 × 10−2 1.00030 0.61908 

6 1.4385 × 10−2 1.01320 0.64285 

7 1.4389 × 10−2 1.01650 0.61908 

8 1.4393 × 10−2 1.02940 0.64285 

The fraction of neutrons emitted by fission is	�� = 2.47. 

The neutron speed is assumed to 	&� = 3 × 10B�. %$�	and 

the initial flux	��0 = 10C".�$�%$�	[5]. 

The coefficients	1� 	and	4�	of system are: 

Table 2. The values of the coefficients	1�	and	4�. 

Region <9	(9D. E$=) F9(E$=) 1	 4.3060	 ×	10C	 −1.09002	 ×	10B	2	 4.3098	 ×	10C	 −1.04631	 ×	10B	3	 3.9600	 × 10C	 −0.79686	 ×	10B	4	 4.3167	 ×	10C	 −0.87309	 ×	10B	5	 4.3143	 ×	10C	 −1.14366	 ×	10B	6	 4.3155	 ×	10C	 −1.11105	 ×	10B	7	 4.3167	 ×	10C	 −1.19226	 ×	10B	8	 4.3179	 ×	10C	 −1.15965	 × 10B	
The boundary conditions at the surface, the continuity 

conditions within each interface and the initial condition for 

time-dependent problem are defined to the diffusion equation 

resolution with the geometrical description and physical 

environments.  

Within time-dependent situation, spatial distribution of 

neutron at 	� =	0 is: 

	�� 	(-, ., 0) = ��0 ,	                         (3)	
so that the initial flux is constant within each region and 

considered as the initial state. 

The interface flux continuity condition is 

	�� 	(-, ., �) 	= 	��I�	(-, ., �),	                  (4)	
while that for the current is 

−�� �J�(2,3,�)�(2,3) K2L2�
3L3� = −��I� �J�MN(2,3,�)�(2,3) K2L2�

3L3� 	    (5) 

for	� = 1,2…� − 1. 

At the surface, a variety of conditions can be imposed 

depending on the application. The boundary conditions are 

	lim(2,3)⟶IS ��(-, ., �) = lim(2,3)⟶0��(-, ., �) = 0,	  (6) 

	lim(2,3)⟶IS �J�(2,3,�)�(2,3) = lim(2,3)⟶0 �J�(2,3,�)�(2,3) = 0.	    (7) 

These conditions materialize the limit of absorbent 

material at the core edge, including reflector. 

3. Lie Symmetry Analysis 

The system is described as 

T��, -, ., ��, ��,� , ��,22 , ��,33� = 0.	             (8) 

Let us consider one-parameter Lie group of 

transformations: 

	�̃ 	= 	�	 + 	+V(�, -, ., ��) + W(+�),	               (9)	
	-X 	= 	-	 + 	+Y(�, -, ., ��) + W(+�),	             (10)	
	.X 	= 	.	 + 	+Z(�, -, ., ��) + W(+�),	             (11)	
	�[� 	= 	�� + +\(�, -, ., ��) + W(+�),	          (12)	

where 	+	 is a parameter of group 	]	 [6-8]. The 

components 	V(�, -, ., ��) , 	Y(�, -, ., ��) , 	Z(�, -, ., ��)	 and	\(�, -, ., ��)	are the coefficient functions. The vector field 

associated with the above group of transformations is 

^ = V(�, -, ., ��) ��� 	+ Y(�, -, ., ��) ��2 + Z(�, -, ., ��) ��3 + \(�, -, ., ��) �
�J�.	                          (13) 

The second prolongation	^(�)	formula gives 

	_�(�)^(T)`	aL0 = 	0 ⟶	^(�)(T) = 0,	              (14) 

^(�) = ^ + \� �
�J�,b 	+ \22 �

�J�,cc + \33 �
�J�,dd,	         (15) 

where the components 	\� , 	\22 	 and 	\33	 are the coefficient 

functions of	^(�). The relation (14) gives  

^(�)���,� − 1�(��,22 +��,33) 	− 4��� = 0�,	     (16) 

therefore, the determining function is 

	\� − 1��\22 + \33� − 4�\ = 0,	                     (17)	
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with 

\� =	��\ − ��,���V − ��,2	��Y − ��,3��Z,		      (18)	
\22 = �2�\ − ��,2�2�Y − ��,3�2�Z − ��,��2�V		
	−2��,22�2Y − 2��,23�2 	Z	 − 2��,2��2V	     (19) 

\33 = �3�\ − ��,2	�3�Y	 − ��,3�3�Z	 − ��,��3�V	 
	−2��,32�3Y	 − 2��,33	�3Z	 − 2��,3��3V,      (20)	

where 	�2 , 	�3 , 	�� 	 are the total derivatives with respect 

to	-, .	and	�: 

�� 	= �
�� + ��,� �

�J� + ��,�2 �
�J�,c +	��,�3 �

�J�,d + ��,�� �
�J�,b+. . .,	                                   (21)	

�2 	= �
�2 + ��,2 �

�J� + ��,22 �
�J�,c +	��,23 �

�J�,d + ��,2� �
�J�,b+. . .,	                                   (22) 

�3 	= �
�3 + ��,3 �

�J� + ��,32 �
�J�,c +	��,33 �

�J�,d + ��,3� �
�J�,b+. . ..	                                   (23)	

Substituting relations (18)-(20) into the relation (17) by 

replacing all	��,� 	term by	1�(��,22 +��,33) + 4��� . By 

equating the coefficients of the various monomials, the 

partial derivative orders and various powers of	�� 	to zero, 

the calculation gives the determining equations of MNDE to 

the form of the coefficient functions: 

Ve� =	 V2 	= V3 = 0,	
VJ�J� = V22 = V33 = V2J� = V3J� = 0,	
YJ� = ZJ� = 0	 ⇒ 	 YJ�J� =	ZJ�J� = 0,	

−V� + 2Y2 = 0,−V� + 2Z3 = 0	 ⇒ Y3 + Z2 = 0,	
Y2 − Z3 = 0,	

\J�J� = 0,	
1�(Y33 − Y22 − 2\2J�) − Y� = 0,	
1�(Z22 − Z33 − 2\3J�) − Z� = 0,	

\� −	1�(\22 + \33) − 4�\ + 4���(\J� − V�) = 0.	
As a result, the coefficient functions are 

V(�, -, ., ��) = �g
� hi + 	�hj + h�,                 (24)	

Y(�, -, ., ��) = �2
� hi + 2

�hj + �hk + .hl + h�,      (25)	
Z(�, -, ., ��) = �3

� hi + 3
� hj + �hm − -hl + hC,	       (26)	

\(�, -, ., ��) = no4� �g
� − �

�− �2gI3g�
j�� p	hi − 2

��� hk − 3
��� hm 	+ 4��hj +	hBq�� +r.	                        (27)	

where 	h�, h�, hC, hl, hB, hk, hm, hj	 and 	hi	 are arbitrary 

constants and	r(-, ., �)	satisfies the following PDE 

	r� − 1��r22 +r33� 	− 4�r = 0.                  (28) 

The infinitesimal generators is spanned by the vector field 

�̂ = ss� ,	
^� = ss- ,	
^C = ss. ,	

^l = . ss- − - ss. ,	
^B = �� ss�� ,	

^k = � ss- − -21���
ss�� ,	

^m = � ss. − .21���
ss�� ,	

^j = � ss� + -2 ss- + .2 ss. + 4���� ss�� ,	

^i = �� ss� + 	�- ss- + 	�. ss. + t4��� − � − n-
� + .�41� qu�� ss�� ,	

and 

^v = r(-, ., �) ss�� ,	
where	r(-, ., �)	is an arbitrary solution of Eq. (2). The	 �̂, . . . , ^i	is closed under the Lie bracket. The commutation relations 

are shown in following table: 



28 Rakotondravanona Jean Eric and Raboanary Roland:  Lie symmetry Analysis and Invariant Solutions for   

Multiregion Neutron Diffusion Equation 

Table 3. Commutation table. 

 w= wD wx wy wz w{ w| w} w~ 

�̂ 0 0 0 0 0 ^� ^C �̂ + 4�^C ^j − l ^B2  
^� 0 0 0 −^C 0 − ^B21�

 0 ^�2  ^k 
^C 0 0 0 ^� 0 0 − ^B21�

 ^C2  ^m 
^l 0 ^C −^� 0 0 ^m −^k 0 0 ^B 0 0 0 0 0 0 0 0 0 
^k −^� ^B21�

 0 −^m 0 0 0 − ^k2  0 
^m −^C 0 ^B21�

 ^k 0 0 0 − ^m2  0 
^j 

− �̂− 4�^C − ^�2  − ^C2  0 0 ^k2  ^m2  0 ^i 
^i −^j + ^B2  −^k −^m 0 0 0 0 −^i 0 

 

The symmetry groups corresponding to the infinitesimal 

generators are found by solving the Lie equations 

 ���
�� =  V��̃, -X, .X, �[� �, �̃(+ = 0) = �;                  (29) 

 �2X
�� =  Y��̃, -X, .X, �[� �, -X(+ = 0) =  -;                  (30) 

 �3X
�� =  Z��̃, -X, .X, �[� �, .X(+ = 0) =  .;                  (31) 

 �J[ �
�� =  \��̃, -X, .X, �[�  �, �[�(+ = 0)  = ��.            (32) 

The one-parameter symmetry groups  ]�  generated by 

the �̂  () = 1, . . . , 9, r) are: 

- Translation group 

 ]�: � +  +, -, ., �� ,                    (33) 
 ]�: �, - +  +, ., �� ,                    (34) 
 ]C: �, -, . +  +, ��,                    (35) 

- Rotation group 
]l: �, - cos(+) +  . sin(+), . cos(+) −  - sin(+), ��,  (36) 

- Scaling group 

 ]B: �, -, ., ���� ,                       (37) 
 ]j: ���� , -��, .�� , �� exp�4��(���$�)�,      (38) 

- Classical Galilean group 

 ]k: �, - + �+, ., �� exp o− ��g I �2�
l�� p,            (39) 

 ]m: �, -, . +  �+, �� exp o− ��g I �3�
l�� p,            (40) 

- Projection group 

]i: �
1 − �+ , -

1 − �+ , .
1 − �+ , ��(1 −  �+) 

 exp n− ��
�$�� o4�� − 2gI3g

l��� pq ,                 (41) 

- and the infinite-dimensional system group 

 ]v: �, -, ., ��  +  r(-, ., �)+.                  (42) 
4. Invariant Solutions 

In the previous section, the symmetry groups are obtained. 

Now, this section considers the invariant solutions of the 

MNDE based on the symmetry analysis. Since each ]�() = 1, . . . , 9) is a symmetry group, it implies that  �� =((-, ., �) is a solution of Eq. (2) [6-8]. As a result, the 

infinitesimal generator ^ exists with an invariant function ( 

 ^( = 0 ⟹ V ��
�� + Y ��

�2 + Z ��
�3 +  \ ��

�J� =  0.        (43) 
The invariant function is obtained by integrating the 

characteristic equation: 

 ��
� = �2

� = �3
� = �J�

� .                           (44) 
Indeed, all invariant solutions are invariant under the 

action of the Lie group. 

1. The characteristic equations corresponding to the 

translation group are: 

- For the generator �̂,  

��
1 = �-

0 = �.
0 = ���0 . 

- For the generator ^�,  

��
0 = �-

1 = �.
0 = ���0 . 

- For the generator ^C,  

��
0 = �-

0 = �.
1 = ���0 . 

The similarity variables are 

� = �;  ((.) = ��, 
� = -;  ((-) = �� , 



 World Journal of Applied Physics 2018; 3(2): 25-33 29 

 

� = .; 	((�) = ��.	
The case of	�� � (�.�	or	�� � (�-�	reduces the Eq. (2) 

to the ordinary differential equation (ODE) 

	(�� � ���� ( � 0,                              (45) 

with 	(′ � �(/�.	and	(′ � �(/�-.  

By solving the ODE, the invariant solution is 

���-, ., �� � 7� sin ������ .� 	� 7�� cos ������ .�,      (46) 

���-, ., �� � 7� sin ������ -� 	� 7�� cos ������ -�,      (47) 

where	7�,	7�� 	7�	and	7�� 	are the integration constants. 

 

Figure 1. Neutron fluxes from time translation, with	7� � 7� � ��0 /4	and	7�� � 7�� � 	0. 

 

Figure 2. Neutron fluxes from space translation, with	7C 	� ��0 . 

The solutions (46) and (47) correspond to the first type of 

steady-state solution of Eq. (2). The plot of each region has 

the same shape evolving in space. It means that as the width 

of each region is reached, then the fluxes with respect 

to	-� 	and	.�	increase their descriptive values. 

The case of	�� � (���	reduces the Eq. (2) to the following 

ODE 

	(� � 4�( � 0,	                               (48)	
with	(′ � �(/��.  

By solving the ODE, the invariant solution is 

���-, ., �� � 	 7C exp�4���,	                     (49)	
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where	7C	is the integration constant. 

The solution (49) presents the property of the kinetic 

model without delayed neutrons and external source. The 

plot shows the evolution of fluxes by regions with respect to 

time. The fluxes decrease as soon as the time increases in 

value and become null in every point of the regions. 

If	4�	takes a positive value, the output of the neutron flux 

will be greater than the value of the initial flux	��0 	average, 

so there will be a bifurcation at the level of the concerned 

region. 

2. The characteristic equation of the 

generator	^l	corresponding to the rotation group is: 

��0 � �-. � �.�- � �Φ�0 .	 
The similarity variable is 

� � �-� � .�; 	(��� � �� . 
The Eq. (2) is reduced to the ODE in the form of Bessel’s 

equation 

	(�� � �
� (� � ���� ( � 0,	                       (50) 

with	(� � �(/��.  

By solving the Bessel’s equation, the invariant solution is 

���-, ., �� � 7l�0 ������ 	�-� � .�� � 7l��0 ������ 	�-� � .��,	                                        (51) 

where	7l	and	7l� 	are the integration constants. 

 

Figure 3. Neutron fluxes from rotation group, with	7l � ��0 /2 C	and	7l� �0. 

�0	  and 	�0	 are Bessel functions [11]. This result 

corresponds to the second type of steady-state of Eq. (2), for 

the higher value of the flux by the term	�4�/1�	�-� � .�. 

The plot of these fluxes is characteristic of rotation in the 

plane. 

The neutron fluxes are therefore distributed throughout the 

plane of the regions with maximum value. 

3. The characteristic equations corresponding to the 

classical Galilean group are: 

- For the generator	^k,  

��0 � �-� � �.0 � �21����-�� .	 
- For the generator	^m,  

��0 � �-0 � �.� � �21����.�� .	 
The similarity variables are 

� � �; 	(��� � �� exp n -�41��q,	 

� � �; 	(��� � �� exp n .�41��q,	 
� � �; 	(��� � �� exp n-� � .�41�� q.	 

The case of 	�� � �$ cg¡¢�b(���	 or 	�� �
�$ dg¡¢�b(���	reduces the Eq. (2) to the following ODE 

	(� � o ��� � 4�p ( � 	0,		                       (52) 

with	(′ � �(/��.  
By solving the ODE, the invariant solutions are 

���	-, ., �� � 	 7k	�$Ng exp o4��	 � 2g
l���p,	            (53) 

���	-, ., �� � 	 7m	�$Ng exp o4��	 � 3g
l���p,	            (54) 

where	7k	and	7m	are the integration constants. 

 

Figure 4. Neutron fluxes from classical Galilean group with respect 

to	-�	or	.�, with	7k � 7m � ��0 	/�4 1�. 

The solutions (53) and (54) represent at first the kinetic 
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model part 

��0 exp(4��)	 
and the diffusion by random walk distribution with respect 

to	(-, .� 
��0

�4 1�� exp n�
-�41��q,	 

��0
�4 1�� exp n�

.�41��q,	 
on the interval	£�-�/2, �-�/2¤	and	£�.�/2, �.�/2¤. This 

part of solutions characterizes the random collision of 

neutrons with the fuel material. 

The case of	�� � �$cgMdg¡¢�b (���	reduces the Eq. (2) to the 

following ODE 

	(� � o�� � 4�p ( � 0,	                       (55) 

with	(� � �(��.  
By solving the first order ODE, the invariant solution is 

���-, ., �� � 	 7km�$� exp o4��	 � 2gI3g
l��� p,	           (56) 

where	7km	is the integration constant. 

 

Figure 5. Neutron fluxes from classical Galilean group with respect 

to	-�	and	.�, with	7km � ��0 /4 1�. 

Excluding the kinetic model, the two-dimensional random 

walk diffusion term is 

��04 1�� exp n�
-� � .�41�� q 

on the surface of regions 	£�-�/2, �-�/2¤ 	A 	£�.�/2, �.�/2¤ . The neutron fluxes move in the plane of the 

regions, regardless of the nature of the material compositions. 

The probability of locating neutrons is more precise in the 

same plane 	�-, .�	 at the instant 	�	whatever and that the 

existence of collisions is more probably. 

4. The characteristic equation for generator 	^j	 from 

scaling group is 

��� � 2�-- � 2�.. � ���4���� . 
The similarity variables are 

� � -
√� ; 	(��� � �� exp��4���, 

� � .
√� ; 	(��� � �� exp��4���, 

� � -� � .�� ; 	(��� � �� exp��4���. 
The case of 	�� � (�-/√������ 	 or 	�� � (�./√������ 	reduces the Eq. (2) to the following ODE 

	(� � �
��� ( � 0,	                          (57) 

with	(� � �(/��. 

By solving the ODE, the invariant solutions are 

���-, ., �� � �erf � 2
������ 7j � 7j�� exp�4���,	      (58) 

���-, ., �� � �erf � 3
������¨j � ¨j� � exp�4	���,	    (59) 

where	7j,	7j� ,	¨j	and	¨j� 	are the integration constants. 

 

Figure 6. Neutron fluxes from scaling group, with 	7j � 7j� � ¨j= 	¨j� ���0 /2. 

The solutions (58) and (59) represent the kinetic model 

and the functions 

��02 n1 � erf n -
2�1��q	q, 

��02 n1 � erf n .
2�1��q	q. 

The function	erf	�.�/2�1���	or	erf�-�/2�1���	related 
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to the cumulative distribution 	��(-, ., ��	 expresses the 

normal distribution of neutron fluxes for the variable 	./2�1��	or	-/2�1��	of the diffusion equation and favorable 

to a fission reaction condition. 

The case of 	�� � (��-� � .��/��	���� 	 reduces the Eq. 

(2) to the following ODE 

	(�� � o �
l�� � �

�p (� � 0,	            (60) 

With 	(′ � �(/��. 
By solving the second-order of ODE, the invariant solution 

is 

���-, ., �� � o©� o2gI3gl��� p ªj � ªj�p exp�4���.	    (61) 

Where 	ªj	 and 	ªj� 	 are the integration constants. 

 

Figure 7. Neutron fluxes from scaling group, with	ªj � ªj� � ��0 /2. 

©�	represents first order integral exponential function of �-� � .��/41�� . Excluding the kinetic model, the 

solution (61) has the function 

��02 t1 � ©� n-
� � .�41�� qu 

that represents the uncollided neutron fluxes with the fuel 

material [1], in opposition of the solutions (53), (54) and 

(56). 

5. The characteristic equation of generator 	^i	 from 

projection group is 

���� � �-�- � �.�. � ���
�4��� � � � -� � .�41� ���. 

The similarity variable is 

� � -� � .��� ; 	(��� � ��� exp n�4��	 � -� � .�41�� q. 
The case of	�� � (����$�����$�2�I3��/l��� 	reduces the 

Eq. (2) to the following ODE 

(�� � �
� (′ � 0,	                               (62) 

with	(� � �(/��.	
By solving the ODE, the invariant solution is 

���-, ., �� � «¬� � «¬­� ln o2gI3g�g p exp o4�� � 2gI3g
l��� p,	   (63) 

where	7i	and	7i� 	are the integration constants. 

 

Figure 8. Neutron fluxes from projection group, with	7i �	7i′ � ��0 /4 1�. 

The solution (59) represents the kinetic model and the 

projection of solution (56) for the random walk on the 

plan	�-, .� 
��04 1�� n1 � ln n

-� � .��� qq exp n4�� � -� � .�41�� q. 
The term 

Φ®04 1�� ln n
-� � .��� q exp n4�� � -� � .�41�� q. 

represents the projected part of the solution. 

To the steady-state solution, the case for	� � 7	where the 

neutrons flux is more remarkable having a higher value than 

the other regions. Whereas for	� � 3, the value of the flux is 

small compared to the other regions, so has a neutron flux 

easily absorbed, well 

� � 3 / 4 / 1 / 2 / 6 / 5 / 8 / 7.	
To the kinetic model and its influence,	� � 3	represents 

the maximum value per region, the regional flux 

corresponding to the fast decay of reactor relative to other 

regions. There is no possibility of fission but only absorption. 

The value decreases by region and beyond this period 

(� � 10$l%) the flux tends to 0. The linear plots become flat. 

On the other hand, the region	� � 7	has a slow decay having 

a lower value than the other. In this case, a large possibility 

of fission reaction and a weak absorption rate are remarked. 

Intermediate regions in both regions (� � 3,7) retain the 

appearance of Figure 2 
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� = 3 > 4 > 1 > 2 > 6 > 5 > 8 > 7. 
The distribution of neutrons produced by collisions occurs 

in the media. Its dependence on space is determined by the 

properties of the media, except for the normal distribution, 

and its dependence on time shows the evolution. The system 

therefore represents a situation in which the collisional state 

exists. 

On the other part, the distribution gives the departure of 

the collisional state flux caused by the fissile material. As a 

result, the material and the properties of the media affect the 

flux. 

5. Conclusions 

The symmetry groups related to one-parameter are 

obtained and the MNDE are solved from Lie symmetry 

group in order to have several invariant solutions 

representing each of them the sense of diffusion. These 

explicit solutions for Cartesian geometry are examined that 

are given for the first time in this work and had 

characteristics that might be important for the nuclear reactor 

physics. 

However, the case of the generator  ^B gives a trivial 

solution at � = 0 

��(-, ., �)  =  7B  = ��0 , 
which illustrates the initiator flux of the chain reaction. 

The neutron coefficients of the 2D BIBLIS Benchmark 

have been used in order to illustrate behavior of the system 

that occur significant branch.  

The 2D BIBLIS benchmark has demonstrated the ability of 

solutions to multiple regions. The neutron’s behavior is 

affected by the diffusion effects, boundary conditions and 

surface to determine the integration constants. The neutron 

flux profiles are plotted through several graphs for various 

values of the emerging parameters. Each plot has shown the 

integrated system fluxes of the 8 regions. In most of 

solutions, we found that the kinetic model is a very important 

part for any form of solutions generated by symmetries 

groups. The solutions were averaged at times  � =10$m%, 10$k%, 10$B% and 10$l%. 

The observations concerning the validity of the 

multiregion solution in relation to the relevance of diffusion 

in the characterization of neutron fluxes behavior for reactor 

conditions lead to contributions to mentioned solutions. 

The two-dimensional mono-kinetic MNDE has been used 

to explore the neutron behavior in Cartesian model. 
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