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Abstract: Statistical properties of the error sequences produced by fading channels with memory have a strong influence 

over the performance of high layer protocols and error control codes. Finite State Markov Channel (FSMC) models can 

represent the temporal correlations of these sequences efficiently and accurately. This paper proposes a simple genetic 

algorithm (GA) based search for the optimum state transition matrix for a block diagonal Markov model. The burst error 

statistics of the GA based FSMC model with respect to Autocorrelation Function and error free interval distribution of the 

original error sequence are presented to validate the proposed method. The superiority of the GA approach over the 

semi-hidden Markov model (SHMM) based Fritchman model is exhibited in significant improvement of closeness of match 

and in the usage of shorter length of error sequences. Another Baum-Welch algorithm (BWA) based GA search method has 

been proposed and compared with the BWA and SHMM methods for the same error sequence. Again the superiority of GA 

approaches is recognized, especially for the smaller error lengths. 

Keywords: Genetic Algorithm, Finite State Markov Channel, Semi-Hidden Markov Model, Baum-Welch Algorithm, 

Autocorrelation Functions, Error-Free Interval Distributions 

 

1. Introduction 

The current generation networking and communication 

technology which has to cater to high speed multimedia 

traffic is strongly dependent on the identification and 

availability of accurate and tractable models for the 

mobile/wireless radio fading channels. Fading affects the 

overall network performance in the physical or media access 

control layers, and also the designing of efficient and 

reliable transceivers. The radio link is highly variable due to 

the statistical distribution of the environmental propagation 

parameters. Reliable and efficient channel modeling can 

thus be effective to develop network protocols that mitigate 

or exploit fading. There are two main approaches to capture 

the inherent memory in fading channels: the physical 

(analog) or waveform level and the digital or discrete 

channel modeling. Physical channel modeling is based on 

parameters such as received signal strength, 

noise/interference power, speed of mobile etc. They are 

more appropriate for design and testing of 

transmitter-receiver applications and parameter optimization. 

Discrete Channel Modeling on the other hand places 

emphasis on the statistical properties of the bursty error 

sequence and without modeling the physical functionality of 

the channel, they can characterize the temporal correlation. 

The correlated error sequence of fading channels with 

memory is reproduced by representing the channel with a 

finite number of states: this is more commonly referred to as 

Finite State Markov Channel or FSMC modeling [1]. These 

models have a wide application in the design and 

performance evaluation of error control coding schemes and 

higher level wireless communication protocols. In this 

model, fading is approximated as a discrete-time Markov 

process with time discretized to a given interval, typically 

the symbol period. Specifically, the set of all possible fading 

gains is related to the received signal to noise ratio (SNR) 

and by partitioning the SNR into a finite number of levels, 

each interval is associated with a state of a Markov process. 

The channel varies over these states at each symbol period 

duration, according to a set of Markov transition 

probabilities. The FSMC model has evolved from the two 

states Gilbert Elliot channel [2, 3] representing a time 

varying binary symmetric channel. The crossover 

probabilities of the channel are determined by the current 

state of a discrete time stationary binary Markov process. 
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The source has two states: good or no errors and bad or burst 

errors. Fritchman [4] studied the Markov chains where the 

outputs are a deterministic function of the states based on the 

principle of semi-hidden Markov models. As an extension of 

the Hidden Markov Model (HMM), a hidden semi-Markov 

model (HSMM) is traditionally defined by allowing the 

underlying process to be a semi-Markov chain. Each state 

has a variable duration, which is associated with the number 

of observations produced while in the state [5]. Fritchman’s 

model has received considerable attention in recent years 

because it is relatively easy to estimate the parameters of this 

model from burst error distributions. FSMC and other error 

modelling approaches and its features such as computational 

efficiency, etc have been excellently reviewed and discussed 

in literature [6-10].  HMMs are an important category of 

generative error models that can accurately represent the 

statistical patterns of bursty error data in fading channels 

[11]. The most important and difficult problem in HMMs is 

to estimate the model parameters that best explains the 

observations and training is usually performed by an 

iterative procedure following the Maximum likelihood 

criteria. Genetic Algorithms, on the other hand, are a 

powerful computational model having optimization 

capabilities that can encode a solution on a simple 

chromosome like data structure using techniques inspired by 

natural evolution such as inheritance, crossover, mutation 

and selection. GA’s ability of global searching of better 

maxima without getting trapped into local maxima can offer 

better and computationally efficient solutions [12-16]. In 

this context, Genetic Algorithms (GA) for HMM training in 

general has already been identified to be a promising area 

mostly in applications related to automatic speech 

recognition [17], text/web information extraction [18-19], 

etc. Most of the GA and HMM related papers have used the 

chromosome structure as the complete set of { }, ,A BΓ = Π , 

and the chromosomes have been evaluated for the objective 

function of log likelihood ratio. In the area of Discrete 

Channel Modeling, however, not much work has been 

reported on the applicability of Genetic Algorithms for 

reproducing error sequences following certain statistical 

characteristics.  Zhao Zhi-Jin et al [20] have proposed a 

hybrid method of using (GA) and simulated annealing (SA) 

to train HMM for discrete channel modeling. A GA based 

equalization technique has been proposed [21] with much 

lower computational complexity for direct sequence 

ultra-wideband (DS-UWB) wireless communications. The 

Genetic Algorithm is associated with the RAKE receiver to 

combat the inter-symbol interference (ISI) due to the 

frequency selective nature of UWB channels. Another GA 

based novel technique has been developed to train a hidden 

Markov model (HMM) with for the cognitive radio channel 

[22]. This paper has used the idea of HMM and SHMM in 

proposing new GA based FSMC model which is slightly 

different from the papers encountered in the literature. The 

mean square error of the statistical properties of the error 

sequences has primarily been used as the fitness function in 

the GA for the search based estimation of the parameters of 

the Markov model. Upon comparison of the validation with 

the analytical HMM/SHMM approach, the proposed GA 

methods are observed to have some significant improvement 

towards the closeness of match as well as in the length of 

training sequences required for a given accuracy.  

The rest of the paper is organized as follows. Section 2 

discusses the finite state channel model for discrete channel 

modeling. The GA based FSMC models have been proposed 

in section3. The proposed models are based on BWA and 

SHMM approaches. The simulation results for these two 

proposed technique have been provided in section 4. The 

results are compared with the BWA and SHMM methods for 

the same error sequence. The superiority of GA approaches 

is recognized, especially for the smaller error lengths and 

finally conclusions are summarized in Section 5. 

2. Finite State Channel Model 

Discrete or Finite State Channel models are characterized 

generally by conducting waveform level simulations and/or 

from measurement data. The output of waveform level 

simulation is a time series of bit errors that are long enough 

to represent the statistical properties of the discrete channel. 

Once a DCM is developed, it eliminates the necessity of 

further waveform level simulations at high sampling rates. 

From the modulator input at the transmitter to the output at 

the receiver, the blocks can be clubbed as a sequence of 

discrete symbols as shown in Figure 1. 

 

Figure 1: Basic Communication system with the Discrete Channel Model. 

The relation between the output of the channel encoder at 

the transmitter and the input of the channel decoder at the 

receiver in the wireless fading propagation medium can be 

captured efficiently by using discrete-time Markov sequence 

to model the errors in the channel. In the sequence, the 

channel contains several different states and a set of 

transition probabilities and error probability matrix defining 

the inter-relationship between the states. Usually, we only 

know or can observe the input and output of a channel and 

therefore the error sequence, but the state sequence is not 

easily observed in a state channel and it is therefore called 
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“hidden” and the Markov model is called a hidden Markov 

model (HMM). Both Gilbert and Fritchman are types of 

hidden Markov models that for large data sets need the 

powerful Baum Welch algorithm for computation of the 

HMM parameters [23]. Long error sequences of millions of 

symbols may be required for accurately estimating the small 

values of the state transition matrix. The variables in the 

algorithm are computed for each symbol in the given error 

sequence, resulting in slow convergence and high 

computational burden. To improve the efficiency and speed 

of estimation, several approaches have been adopted. A 

common one is based on the fact that for a general Markov 

model there is a statistically equivalent Fritchman like 

model with k good states and N-k bad states [24]. These 

models also referred as block diagonal Markov models are 

computationally more efficient as the variables in the 

estimation algorithms are computed at the beginning of each 

burst of errors rather than once every symbol. The 

motivation in this work was to work towards improving the 

efficiency of estimation of the HMM parameters still further 

with respect to better characterization of the original error 

vector and training with shorter length of error sequence. 

3. The Proposed GA Based FSMC 

Model 

Inspired from biology and based on natural genetics law 

of the survival of the fittest, GA has already proved to be 

very capable in many research areas and NP problems. The 

algorithm can evolve new and better solutions in the 

expectation of which an implementation of GA based FSMC 

models are being proposed here to search for the best model 

parameters for a block-diagonal Markov model. A three state 

Fritchman model with two good states and one bad state is 

considered, so that a known error observation matrix, say 

1 1 0

0 0 1
B

 
=  
 

 denotes the third state to be the ‘bad’ error 

producing state. This model is semi hidden in the sense that 

if an error is produced, it is known that it has been generated 

by the third state. If however, no error is generated, the state 

cannot be identified. The implementation of this estimation 

algorithm based on block equivalent Markov model has 

been named as SHMM (semi-hidden Markov model) in the 

results of the current work. The state transition probability 

matrix ijB , of the 3-state channel model

11 12 13

21 22 23

31 32 33

A A A

A A A

A A A

 
 
 
  

, 

thus has basically six independent variables ( 1%)
m

P =  to be 

estimated, as the sum of the rows of the ijA  matrix is unity. 

A master error sequence ME  was made available from a 

waveform level simulation of an OFDM system. Another 

GA search method based on Baum-Welch algorithm has 

been proposed for 3-state channel model, with nine 

independent 

variables 11 12 22 23 31 33 11 12 13, , , , , , , ,A A A A A A B B B , with the 

sum of rows of state transition matrix ijA  is unity and the 

sum of columns of error generation matrix ijB  is also unity.  

 

Figure 2: Block diagram of the proposed GA model 

The overall block diagram of the proposed GA based model 

has been illustrated in Figure 2. The GA was initialized with 

a suitable population size, wherein the independent variables 

were encoded into a string of real numbers ranging from 0 to 

1 on each chromosome. Each chromosome was used to 

generate an error sequence and the Autocorrelation Function 

(ACF) comparisons of the original EM sequence and the GA 

generated sequence are used to evaluate the fitness function 

of the chromosomes. ACF comparison is one of the most 

popular techniques for performance evaluation of HMM and 

other FSCM for finding the closeness between the original 

and DCM generated data. The MSE (Mean Square Error) of 

the ACFs of the two error sequences are used as a measure of 

the fitness function of the chromosomes in the proposed GA 

based FSCM.  
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where,  

N = total number of elements of Autocorrelation 

function, 

OiA = elements of ACFs of the original error sequences, 

GiA = elements of ACFs of the GA-generated error 

sequences. 

The GA is made to minimize this error with a targeted 

value of 75 10−× . This approach seems to be quite promising 

as seen from the results of the extensive simulations carried 

out. The distribution of error-free intervals is also a popular 

metric for validating the accuracy of DCMs.  It is 

commonly denoted as, ( )Pr 0 |1m , where, m is the length of 

intervals and ( )0 |1m  denotes the event of observing m or 

more consecutive errors-free transmission followed by an 

error. Here both ACF and ( )Pr 0 |1m  have been used for 

validating the performance of our proposed GA method with 

the SHMM method. The roulette wheel selection method is 

capable of effectively eliminating the weaker chromosomes 

in preference to fitter solutions. The standard genetic 

operators of cross-over (two point crossovers have been 

used) and mutation has been applied.  The Elite count 

denoting the number of individuals that are assured to 

survive to the next generation is taken as four. 

4. Results and Discussions 

In this section the SHMM and BWA based GA approaches 

are discussed for channel modeling. Waveform level 

simulations of three different lengths, 50000, 10000, and 

1000 bits of error have been used to estimate the transition 

probability matrix by the proposed GA approach and then 

the same has been compared with the popular SHMM 

technique for discrete channel modelling. The proposed GA 

algorithm was experimented upon to give a reasonably good 

match using a crossover fraction of 0.85 and an optimal 

population size of 30 for the different length of error 

sequences used. We can consider the smaller population size, 

but this may lead to missing of global fitness value. While 

larger population size, will results in increased simulation 

time. The variations in the values of MSE of ACFs with 

different population size, and with different crossover 

probabilities have been shown in Table 1 for N = 1000 and 

10000. From the table, it is clear that population size of 30 

and crossover fraction of 0.85 is most suitable for 

implementation of Genetic Algorithm for different length of 

error sequences.  

Table 1: Variations of MSE of ACFs with the population size, for a particular value of crossover fraction, for N (length of error sequence) = 1000, and 

10000. 

Crossover 

Fraction   
N = 1000 N = 10000 

Population  0.75 0.80 0.85 0.90 0.75 0.80 0.85 0.90 

10 0.0016 0.0014 0.0008 0.0021 0.0440 0.0018 0.0010 0.0018 

20 0.0013 0.0012 0.0014 0.0007 0.0341 0.0001 0.0330 0.0001 

30 0.0015 0.0017 0.0012 0.0021 0.0023 0.0001 0.0001 0.0095 

40 0.0013 0.0013 0.0014 0.0013 0.0214 0.0007 0.0246 0.0002 

50 0.0009 0.0013 0.0009 0.0011 0.0026 0.0002 0.0001 0.0003 

60 0.0014 0.0012 0.0007 0.0007 0.0271 0.0001 0.0002 0.0001 

70 0.0011 0.0012 0.0005 0.0012 0.0001 0.0001 0.0379 0.0001 

 

Figure 3 shows the ACF comparison of original training 

sequence error data along with that of the GA generated and 

SHMM generated error data, using a training sequence of 

length 50,000. Figure 4 presents the similar ACF 

comparisons for much shorter error sequences of length 

10,000. From the figure, the superiority of the GA method 

over the SHMM method is clearly established as the former 

is seen to have better matching capability even in the face of 

a short length error sequence. This is indeed a significant 

result in context to discrete channel modeling. The statistical 

parameter ( )Pr 0 |1m , is also used to judge the performance 

comparison of GA over SHMM. Figure 5 shows the 

error-free interval distribution comparisons and again it is 

conclusively observed that for lower length of error 

sequence, GA indeed has better performance in comparison 

to SHMM. The GA experimentation was repeated with 

several other error sequences of length 1000, generated 

arbitrarily from different state transition matrices and when 

compared to the SHMM method, in general it was found that 

for shorter sequences GA is capable of producing better 

match especially with respect to the error free interval 

distribution. Figure 5 shows one of the simulation results 

establishing this fact. 



100  Rakesh Ranjan et al.:  Genetic Algorithm Based Finite State Markov Channel Modeling 

 

0 5 10 15 20 25 30
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lag

S
a

m
p

le
 A

u
to

co
rr

el
at

io
n

N = 50000

 

 

Original

GA

SHMM

 

Figure 3: ACF comparisons of GA-generated error data and 

SHMM-generated error sequence with the original channel error statistics 

for N = 50000. 
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Figure 4: ACF comparison of GA and SHMM methods for N = 10000. 
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Figure 5: Comparison of error-free interval distribution of the original 

error data with error-free interval distributions of GA-generated and 

SHMM-generated error sequences, for N = 10000 and 1000. 
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Figure 6: ACFs and error-free interval distribution comparison for 

arbitrary error sequences with length of error sequence = 1000. 

The values of best fitness and mean fitness obtained 

during the GA experimentations for several generations have 

been plotted in the Figure 7 to depict the nature of the 

convergence in successive generations as the algorithm 

progresses towards the terminating criteria. 
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Figure 7:  A typical nature of the GA performance for a 1000 length error 

sequence. 

The MSE of the autocorrelation functions for different 

lengths of error sequences have been plotted in Figure 8 to 

compare the performance of the GA and SHMM methods. It 

shows clearly that GA performs better in comparison to 

SHMM for lower lengths of error sequences up to about 

30,000 while for larger length of error sequences both 

approaches have almost similar performance. Table 2 shows 

the values of MSEs of ACFs and probability of distribution 

of error-free intervals in testing the superiority of GA 

method over the SHMM method for different lengths of 

sequence. 
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Figure 8:  MSE of ACF with the Length of error sequences (N) for GA and 

SHMM approaches. 
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Table 2:  MSEs of ACFs and Error-free interval distributions for different 

length sequences. 

Pr(0 |1)mMSE of ACF and  

Length of  

error  

sequence 

 

50,000 

 

10,000 

 

1000 

 
 

GA 

 

SHMM 

 

GA 

 

SHMM 

 

GA 

 

SHMM 

ACFMSE  0.000057 0.000063 

 

0.00012 

 

0.0011 0.0010 0.0020 

 

Pr(0 |1)mMSE

 

0.0000081 0.000019 0.000088 

 

0.00015 

 
0.00034 

 

0.0014 

 

Another BWA based GA approach for the same error 

statistics has been provided next. The experiments show that 

GA formulations with the previous values of crossover 

fraction, population size, elite count, etc. can provide 

reasonably good fitting. Figure 9 shows the ACF 

comparison of original error data with the GA-generated and 

BWA-generated error data of lengths 50000 and 10000. The 

closeness of the curves establishes the superiority of GA 

approach over BWA method, especially for smaller lengths 

of error sequence.  
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Figure 9: Comparison of Autocorrelation function of original error 

sequence with autocorrelation functions of GA-generated and 

SHMM-generated error sequences, for the same error data with lengths of 

50000 and 10000.  

Now the performances of both the proposed GA 

techniques have been compared with the BWA and SHMM 

techniques for the smaller lengths of error statistics (N = 

1000).  The autocorrelation function of the original error 

data has been compared with the ACFs of the 

BWA-generated, SHMM-generated and GA-generated error 

data in Figure 10. It illustrates that error sequences generated 

by both the proposed GA approaches have very close match 

with the original error data in comparison to the regenerated 

error data by the existing BWA and SHMM techniques. 

Figure 11 shows the similar performance comparison in 

terms of error-free interval distribution and again the 

advantage of proposed GA approach for discrete channel 

modeling has been recognized. Therefore, for the shorter 

lengths of error data the proposed GA search techniques 

have significantly improved performance over the BWA and 

SHMM approaches. 
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Figure 10: Comparison of ACF of original error data with ACFs of 

GA-generated and SHMM-generated, and BWA-generated error sequences, 

for length of error data = 1000. 
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Figure 11: Comparison of  of original error data with  

of the error data regenerated by proposed GAs, SHMM and BWA for length 

of error data = 1000. 

5. Conclusion  

Research studies have shown that the performance 

evaluation of high layer protocols, error control codes, 

interleavers, voice coders, actually become computationally 

very expensive using waveform level simulations. 

Efficiently designed accurate FSCMs that can reproduce the 

statistical properties of an error sequence can eliminate the 

necessity of further waveform level simulations at high 

sampling rates. This paper has proposed new GA based 

FSMC models for estimating the parameters of the state 

transition matrix of a block diagonal Markov model. Upon 

comparison of the validation with SHMM and BWA 

approach, the proposed method is observed to have some 

significant improvement towards the closeness of match. 
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Also, GA performs better in comparison to SHMM and 

BWA for lower lengths of error sequences, which is a 

significant result in context to discrete channel modeling. 

With HMM training, the variance of several random 

variables or estimated values of DCM is increased by 

decreasing the length of error sequence, while with the 

proposed GA method, these variations are very less. The 

training with shorter sequence is important for DCM, as it 

reduces the simulation run-time as well as computational 

burden of a particular training algorithm. Also in order to 

model the channel error-statistics dynamically/online, one 

cannot wait for the entire error sequence to be received at 

receiver and in that case small trace of error sequence plays a 

significant role in analysis and modeling of channel 

error-bursts. 
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