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Abstract: Through extensive study on hydrodynamics and heat transfer, calculation correlations of heat transfer for laminar 

free/forced mixed convection on a vertical flat plate is obtained. It contains the following three research investigations: (i) 

local-similarity analysis and transformation based on our developed new similarity analysis method replacing the traditional 

Falkner-Skan type transformation; (ii) New governing local-similarity mathematical model, which is first applied in study of 

laminar free/forced mixed convection. It is more conveniently obtained and applied compared with that based on the Falkner-

Skan type transformation for investigation of free/forced mixed convection; and (iii) New correlations on heat transfer of 

laminar free/forced mixed convection. They have wide coverage of Prandtl number and mixed convection parameter, and are 

suitable for all gases and important liquids including water for laminar free/forced mixed convection. The reported heat 

transfer correlations are so reliably because they are produced based on combination of theoretical analysis equations with the 

correlations formulated rigorously according to system of groups on accurate numerical solutions. 

Keywords: Hydrodynamics, Heat transfer, Local-similarity transformation, Laminar mixed convection, Heat transfer 
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1. Introduction 

Free/forced mixed convective (for simplicity, hereinafter 

referred to as mixed convection）is a coupled phenomenon 

of free and forced convections, having even much 

challenging and wide practical application background. So 

far, the history of its study has over a half century. In the 

books of Gebhart et al. [1], Bejan [2] and Pop and Ingham [3] 

the detailed reviews were done for concerning the boundary 

layer equations on mixed convective flow. Meanwhile, 

numerous academic papers were published for investigation 

of mixed convection, and only some of them, such as refs. [4 

-24], are listed here for saving space. In these investigations, 

the combined  convection in a boundary layer flow was 

analysed. The studies, such as those of Acrivos [4], Sparrow 

et al. [5], Szewcyk [6], Chen [15]
 
, Merkin et al. [18], Ali 

[21], and Aydin el al. [22] investigated the effect of the 

parameter Grx/Rex
2
 on mixed convection.  In most of these 

analyses, the stream function was induced based on the 

Falkner-Skan type transformation for obtaining the 

governing partial differential equations. Additionally, in 

some of the studies, the finite difference method such as in 

works of Oosthuizen  [7], Chen [15], Hossain [17], Sami [20] 

and Anilkumar [24], the perturbation method such as in 

work of Yao [12] and Hossain [17], and the finite element 

method such as in work of Rana [23] were applied.  The 

studies are also often found for free-forced mixed boundary 

layer flow in a porous medium, such as those presented by 

Cheng [8], Hsieh et al. [13] and  Harris et al.[16], which 

broadened the range of application of mixed convection.  

Raju [10], Chen [11], Harris et al. [16], and Merkin et al. [18] 

studied the boundary-layer flow of mixed convection with 

the buoyancy forces either adding (positive flow) or 

opposing (negative flow) type to the bulk flow.  Some of 

studies, such as those by Raju [10], Chen [11],   and Aydin el 

al. [22] developed the expressions correlating Nusselt 

number in terms of the related parameters for further 

application of heat transfer.  

For obtaining the correlations for heat transfer application 

of mixed convection, this present work will use three new 

approached. They are (i) local-similarity analysis and 

transformation based on our developed new similarity 
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analysis method replacing the traditional Falkner-Skan type 

transformation; (ii) New governing local-similarity 

mathematical model, which is first applied in study of 

laminar free/forced mixed convection. It is more 

conveniently obtained and applied compared with that based 

on the Falkner-Skan type transformation for investigation of 

free/forced mixed convection; and (iii) New correlations on 

heat transfer of laminar free/forced mixed convection. They 

have wide coverage of Prandtl number and mixed 

convection parameter, and are suitable for all gases and 

important liquids including water for laminar free/forced 

mixed convection. We expect these developments will be in 

favor of meeting the challenges encountered for deep 

investigation of free/forced mixed convection.  

2. Basic Conservation Equations 

2.1. Governing Partial Differential Equations 

In Fig.1 the physical model and co-ordinate system of 

boundary layer with two-dimensional mixed  convection are 

shown schematically. A flat plate is vertically located in 

parallel fluid flow with its main stream velocity ∞,xw . The 

plate surface temperature is wt  and the fluid bulk 

temperature is ∞t . Then, a coupled velocity boundary layer 

is produced near the plate. If the value of wt  is different 

from that of ∞t , a temperature boundary layer will occur 

near the plate. Then, Eqs. (1) to (3) can be taken as follows 

for governing partial differential equations of the laminar 

free/forced mixed convection boundary layer without 

consideration of variable physical properties and viscous 

thermal dissipation: 

 

Fig. 1. Physical model and coordinate system of boundary layer for laminar 

free/forced convection on a vertical flat plate 
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with the boundary condition equations  

y = 0: 0=xw , w y = 0 ,  
wtt =                (4) 

y → ∞:  ∞= ,xx ww  (constant),  ∞= tt          (5) 

where Eqs. (1) to (3) are continuity, momentum, and energy 

equations respectively, and the subscript f of the physical 

property variables denotes that the related reference 

temperature is the average temperature
2

∞+= tt
t w

f
.  

3. Supposed Similarity Variables for 

Local-Similarity Transformation 

For laminar mixed convection, full similarity 

transformation of the governing partial differential equations 

can not be achieved, and the local-similarity transformation 

should be done. The next work is further analysis for 

supposed similarity variables. We find that there are two key 

issues for mixed convection. They are: (i) The governing 

equations are attributed to free convection form; (ii)   The 

boundary conditions belong to forced convection form. In 

this case, we select the core similarity variables with forced 

convection form for coincidence to the boundary conditions. 

Consulting our new similarity analysis method reported in 

refs. [25], the following equations with the core similarity 

variables are given for the similarity transformation of the 

velocity field:  

),(, xWww xxx η∞=                           (6) 

),()Re
2
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( 2/1
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∞
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−
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tt

tt
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),(ηθ                           (8) 

Here, ),( xWx η  and ),( xWy η are the core similarity 

variables for similarity transformation of the velocity field 

respectively in x and y directions, and ),( xηθ is supposed as 

the dimensionless temperature variable. While, the 

dimensionless coordinate variable η  and the local Reynolds 

number 
fx,Re  are respectively described as 

f

x

fx

xw

ν
∞= ,

,Re                            (9) 
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In addition, for the local-similarity analysis of the 

buoyancy term, the local Grashof number will be set as 

follow: 

2,
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It is indicated that the independent coordinate variableη  

and x related to the supposed similarity variables ),( xWx η , 

),( xWy η , and ),( xηθ  are taken to express the localn-

similarity issue, and the subscript f denotes the reference 

temperature is average temperature 
2

∞+= tt
t w

f
. 

4. Local-Similarity Transformation of 

the Governing Equations 

For local-similarity analysis on the supposed 

dimensionless coordinate variable η  for the governing 

partial differential equations (1) to (3) of laminar free/forced 

mixed convection, the following transformation will be done:  
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Therefore, Eq. (1) is transformed to 
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4.2. Transformation of Eq. (2) 

With Eqs. (6) and (10) we have 
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where 
2

,, Re
−= fxfxGrMc  is Richardson number or called mixed 

convection parameter. It demonstrates the effective rate of 

the free convection in the mixed convection. Theoretically, 

the value for the mixed convection parameter Mc can be in a 

large range +∞<<∞− Mc . The free/forced mixed 

convection is divided to two types, respectively for positive 

(adding) and negative (opposing) flows. The former flow is 

corresponding to 0>Mc , and the latter flow is 

corresponding to 0<Mc . Obviously, 0=Mc  and 

±∞→Mc are corresponding to net forced convection and 

free convection respectively. 

4.3. Transformation of Eq. (3) 
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Then, Eq.(3) is changed to  
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Then, with the local-summary transformation, Eqs. (1) to 

(3) are transformed to the following equivalent governing 

ordinary differential equations:  
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with the following dimensionless equations on the boundary 

layer conditions:  

0=η :  0),( =xWx η ,  0),( =xWy η , 1),( =xηθ       (15) 
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∞→η : 1),( =xWx η ,  0),( =xηθ               (16) 

5. Rewriting the Second Independent 

Coordinate Variable 

From the defined equation of the mixed convection 

parameter Mc, it is seen that the independent coordinate 

variable x is included in the mixed convection parameter Mc. 

From the transformed governing equations (12) to (14), it is 

found that the supposed second coordinate variable x exists 

in the transformed governing equations only in form of the 

mixed convection parameter Mc. Then, the mixed parameter 

Mc is reasonably taken as the second independent coordinate 

variable to replace the independent coordinate variable x. In 

this case, the transformed dimensionless governing Eqs.(12) 

to (14) are equivalent to the following ones respectively 

0
),(

2
),( =

∂
∂

+
∂

∂−
η
η

η
ηη

McWMcW yx            (12)* 

x
x y

2

x

2

W ( ,Mc)
[ W ( ,Mc) 2W ( ,Mc)] ]

W ( ,Mc)
2 ( ,Mc) Mc

∂ η−η η + η
∂η

∂ η= + θ η ⋅
∂η

     (13)* 

2

2 ),(

Pr

1),(
)],(2),([

η
ηθ

η
ηθηηη

∂
∂=

∂
∂+− McMc

McWMcW
f

yx   (14)* 

with the following equivalent dimensionless equations on 

the boundary conditions 

0=η :  0),( =McWx η , 0),( =McWy η , 1),( =Mcηθ   (15)* 

∞→η : 1),( =McWx η ,  0),( =Mcηθ               (16)* 

and the corresponding equivalent similarity variables 

),( xWx η , ),( xWy η  and ),( xηθ  with the following relations: 

),(, McWww xxx η∞=                              (9)* 

),()Re
2

1
( 2/1

, McWww yxxy η−
∞=              (10)* 

ww tt

tt
Mc

−
−= ∞),(ηθ                              (11)* 

6. Numerical Results 

The governing dimensionless local-similarity equations 

(12)* to (14)* with their boundary condition equations (15)* 

and (16)* are solved by a shooting method with fifth-order 

Runge-Kutta integration. For solving the nonlinear problem, 

a variable mesh approach is applied to the numerical 

calculation programs. It can be seen that for ignoring the 

variable physical properties, the solutions of the 

dimensionless velocity components 

),( McWx η and ),( McWy η  and the dimensionless temperature  

),( Mcηθ are dependent on Prandtl number 
fPr  and mixed 

convection parameter Mc. The accurate numerical results of 

the velocity and temperature fields are obtained in the wide 

ranges of Prandtl number 
fPr  ( 20Pr3.0 ≤≤ f

) and mixed 

parameter Mc ( 10Mc0 ≤≤ ). Some of the selected 

numerical results for the dimensionless velocity component 

),( McWx η and temperature ),( Mcηθ  fields are plotted in 

Figs. 2 to 7 with variation of the dimensionless coordinate 

variableη .  

It is seen that with increasing the Prandtl number, the 

velocity will decrease monotonically, and the velocity and 

temperature boundary layer thickness will decrease 

monotonically, too. In addition, with increasing the mixed 

convection parameter Mc, the velocity will increase 

monotonically. However, the velocity and temperature 

boundary layer thickness will not obviously change with 

variation of the mixed convection parameter Mc. 
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Fig. 2. Numerical results of (a) velocity component Wx(η, Mc) and (b) 

temperature θ (η, Mc) profiles for laminar fixed convection with fluid for 

Pr=0.3 on a vertical flat plate 
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Fig. 3. Numerical results of (a) velocity component Wx(η, Mc) and (b) 

temperature θ (η, Mc) profiles for laminar fixed convection with fluid for 

Pr=0.6 on a vertical flat plate 
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Note: Lines 1 to 8 denote Mc = 0, 0.1, 0.3, 0.6, 1, 3, 6 and 10 respectively 

Fig. 4. Numerical results of (a) velocity component Wx(η, Mc) and (b) 

temperature θ (η, Mc) profiles for laminar fixed convection with fluid for 

Pr=1.0 on a vertical flat plate 
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Fig. 5. Numerical results of (a) velocity component Wx(η, Mc) and (b) 

temperature θ (η, Mc) profiles for laminar fixed convection with fluid for 

Pr=2.0 on a vertical flat plate 
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Fig. 6. Numerical results of (a) velocity component Wx(η, Mc) and (b) 

temperature θ (η, Mc) profiles for laminar fixed convection with fluid for 

Pr=5.0 on a vertical flat plate 
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Fig. 7. Numerical results of (a) velocity component Wx(η, Mc) and (b) 

temperature θ (η, Mc) profiles for laminar fixed convection with fluid for 

Pr=10.0 on a vertical flat plate 

7. Skin-Friction Coefficient 

So far, the skin friction coefficient has been analyzed by 

means of Falkner-Skan type transformation for free/forced 

mixed convection. In the present work, we will analyze it 

based on the present new similarity analysis procedure. For 

this analysis, the velocity gradient at the wall is important 

characteristic of the solution, and the local skin-friction 

coefficient fxC ,  is a dimensionless measure of the shear 

stress at the wall, i.e. 
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According to the related derivation in section 3, we have 
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A system of the rigorous numerical solutions on the wall 

velocity gradient 
0)

),(
( =∂
∂

ηη
η McWx  has been obtained 

numerically. The selected solutions of them are plotted in 

Fig. 8 with variation of Prandtl number fPr  and mixed 

convection parameter Mc. Then, it is seen that the velocity 

gradient on the wall, 
0)

),(
( =∂
∂

ηη
η McWx  increases with 

increasing the mixed convection parameter Mc, and 

decreases with increasing the Prandtl number fPr . In 

addition, with increasing the mixed convection parameter 

Mc, the velocity gradient on the wall,  
0)

),(
( =∂
∂

ηη
η McWx  will 

decrease in an accelerative pace. 

From Eq. (18) it is seen that the wall velocity gradient 

0)
),(

( =∂
∂

ηη
η McWx  is the only one unknown variable for 

evaluation of the skin-friction coefficient.  
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Fig. 8. Numerical results of velocity gradient on the plate surface, 

0)
),(

( =∂
∂

ηη
η McWx  varying with Prandtl number, Pr and mixed 

convection parameter Mc (Lines 1 to 8 denote  
fPr  = 0.3, 0.6, 1, 2, 5, 10, 15 

and 20 respectively). 

8. Heat Transfer 

8.1. Theoretical Equations of heat transfer 

The local heat transfer rate 
fxq ,
 at position x per unit area 

from the surface of the plate without consideration of 
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variable physical properties can be calculated by Fourier’s 

law as 
0, )( =−= yffx

y

t
q

∂
∂λ . The subscript f denotes the case 

that the boundary layer average temperature 
2

∞+
=

tt
t w

f  is 

taken as the reference temperature with ignoring the variable 

physical properties. 

With Eqs. (8) and (10) we have 
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The local heat transfer coefficient 
fx,α , defined as 

)(,, ∞−= ttq wfxfx α , will be given by 
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The local Nusselt number, defined by 
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Here, Equation on local Nusselt number(19 is heat transfer  

theoretical equation. 

8.2. Formulization of Dimensionless Wall Temperature 

Gradient 
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Fig. 9. Numerical results of wall temperature gradient  on the plate surface, 

0)
),(

( =∂
∂− ηη

ηθ Mc varying with Prandtl number Pr and mixed convection 

parameter Mc (Lines 1 to 8 denote Pr = 0.3, 0.6, 1, 2, 5, 10, 15 and 20 
respectively) 

It is seen from the heat transfer theoretical equation (19) 

that the dimensionless temperature gradient  

0)
),(

( =∂
∂− ηη

ηθ Mc  as the only one unknown variable 

dominates the prediction of mixed convection heat transfer. 

In this present work, a system of rigorous solutions on the 

dimensionless temperature gradient 
0)

),(
( =∂

∂− ηη
ηθ Mc  have 

been obtained numerically, and their selected values are 

plotted in Fig. 9. It is seen that the wall temperature gradient  

0)
),(

( =∂
∂− ηη

ηθ Mc  increases with increasing the mixed 

parameter Mc, and increases with increasing the Prandtl 

number 
fPr . 

The system of rigorous numerical solutions of the wall 

temperature gradient 
0)

),(
( =∂

∂− ηη
ηθ Mc  are formulated by 

means of a curve-fitting approach, and the obtained 

formulated correlations are shown as follows with the wide 

ranges of Prandtl number between 0.3 and 20 and the mixed 

convection parameter Mc between 0 and 10:  

b
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Here, Eqs.(19) to (22) are heat transfer correlations of 

laminar mixed convection on a vertical flat plate. 

  

If Mc = 0, Eqs. (21) to (23) will be attributed to the forced 

convection issue as follows: 

3433.0
0 Pr4699.0)

),(
( f

Mc =
∂

∂− =ηη
ηθ         (20)* 

It is seen that Eq. (20)* is equivalent to Eq. (5.12) derived 

in [26] for laminar forced convection, and obviously is 

corresponding to well-known Pohlhausen equation [26]. 

Obviously, forced convection is only a special case of mixed 

convection. 

9. Conclusions 

In this work, the heat transfer correlations of laminar 

mixed convection on a vertical flat plate are obtained by 

combination of the theoretical heat transfer equations with 

the formulization correlations based on the system of 
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accurate numerical solutions of dimensionless temperature 

gradient, which contains the following three novel 

approaches: 

First, a new local-similarity analysis method is provided 

for extensive studies on laminar mixed convection to replace 

the traditional Falkner-Skan type transformation. 

Second, a novel governing local-similarity model is 

derived based the above local-similarity analysis method for 

extensive study on laminar mixed convection. This model is 

easier to be derived and can be more conveniently applied 

than that based on the Falkner-Skan type transformation. 

Third, the novel correlations of heat transfer are devoted 

for heat transfer application of laminar mixed convection. 

The correlations have so wide coverage berceuse with the 

ranges of Prandtl number from 0.3 to 20 and mixed 

convection parameter from 0 to 10 they are suitable for 

prediction of heat transfer of mixed convection of all gases 

and some important liquids including water. In additions, the 

heat transfer correlations are produced rigorously because 

they are based on combination of heat transfer theoretical 

equation with formulization correlations created according 

to a system of reliable numerical solutions of dimensionless 

temperature gradient. 

The present work provides a foundation on theoretical 

methodology and governing mathematical model for our 

further investigation of challenge issue on mixed convection 

heat transfer with consideration of coupled effect of variable 

physical properties. 

Nomenclature 

b  exponent in equation  

xfC ,
 local skin-friction coefficient 

  

g Gravity acceleration, 2/ sm  

fxGr ,
 local Grashof number, 

fxGr ,
 

Mc 
Mixed convection parameter, 

2
,, Re

−= fxfxGrMc  

fxNu ,
 local Nusselt number 

  

Pr Prandtl number 

fx,Re  local Reynolds number  

s width, m 

t temperature, C
o  

wt  wall temperature, Co  

∞t  bulk temperature, C
o  

ft  mean temperature, ℃ 

x, y coordinate variables, m 

xw , 
yw  velocity components in x and y 

directions, respectively, m/s 

xw , 
yw  

dimensionless similarity variables on 

velocity components
xw , 

yw , 

respectively    

∞,xw  velocity of bulk flow, m/s 

η  dimensionless coordinate variable 

β  expansion coefficient, 1/K 

ν  kinetic viscosity, sm /2  

θ  dimensionless temperature variable 

xw,τ  local wall skin shear force, 2/ mN  

0)
),(

( =∂
∂− ηη

ηθ Mc  dimensionless temperature gradient 

on the wall 

Subscript  

f average value       

w wall surface 

∞  far from the wall surface 
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