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Abstract: In order to forecast consumption, electric power generation, transmission and distribution companies need model 

to predict short-term demand for electric power load so that they can use their electricity infrastructure efficiently, safely and 

economically. The short-term forecast of electrical energy demand is the forecast of consumption over time interval ranging 

from one hour to few days. For optimal use of electricity grid, energy production must keep pace with demand. To this end, 

prediction errors can lead to risks and shortcomings in the generation and distribution of electrical load to users. This paper is 

part of electrical charge prediction of Niamey city. Several are being carried out in this field, but prediction techniques based 

on artificial neural networks have recently been developed. This work focused on two (2) neural approaches such as the 

multilayer Perceptron (MLP) and the non-linear autoregressive network with exogenous inputs (NARX). Several 

configurations of these two models have been developed and tested on actual electrical load data. We carried out the short-term 

forecast (hourly basis) of electrical load of Niamey city. All configurations have been implemented in MATLAB software. The 

statistical indicators MAPE (Mean Absolute Average Error in Percent), R
2
 (the correlation coefficient) and RMSE (Square 

Root of Mean Square Error) were used to evaluate the performance of the models. Thus, with MAPE of 5.1765%, R
2
 of 

95.3013% and RMSE of 5.6014%, the [ABCD] configuration of NARX model converges better compared to the MLP model 

with MAPE of 7.1874%, R
2
 of 92.0622% and RMSE of 7.2199%. Where A is the data charge of the same time of the previous 

day, B is the charge data of the same time of the previous week, C is the charge data of same time of previous year and D is the 

average of last 24 charge values. So the NARX model is the most efficient and can be used for future predictions on Niamey 

city network. 

Keywords: Short-term Forecast, Artificial Neural Networks, MLP, NARX, MAPE, R
2
, RMSE 

 

1. Introduction 

Electricity is fundamental to modern economic activity. 

The regularity of its offer poses major challenge, particularly 

the acquisition of reliable prediction tool. An efficient and 

high-volume energy storage system has not yet been put in 

place. The production of energy must follow the demand for 

optimal use of an electricity grid [1]. Electric power 

companies are interested in prediction to get an idea of the 

values of the electric charge, in order to properly manage the 

supply of electric power [2]. These companies need an 

effective prediction tool to allow all actors to control their 
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load for good balance of the power system [3]. 

Predicting the value of the electrical charge is an ideal way 

to reduce load shedding and ensure good supply of electrical 

energy [4]. As result, the quality of this forecast, which is 

essential element of preparation and anticipation, helps to 

ensure that the production-consumption balance is 

maintained at all times. It therefore has direct impact on the 

operational safety of electrical system. The prediction is 

made with knowledge of users' consumption over previous 

years. Electricity consumption depends on activities of users 

and therefore on their daily, weekly or annual behavior [5]. 

Depending on this behavior, the load may increase or 

decrease from one hour to another, from one day to another 

or from one season to another [6]. 

Short-term forecasting of electricity consumption plays 

essential role in efficient management of resources allocated 

to electricity production. Forecast errors can lead to 

significant operational costs. The objective is therefore to 

provide short-term prediction (time horizon) of demand for 

electrical power. Short-term prediction helps to minimize 

errors, sources of risk and inadequacies in correct generation 

and distribution of electrical energy to users. There is a lot of 

research in this area [3].  

Artificial Neural Networks are function estimators. They 

are considered as configurable black boxes, in order to find 

link between inputs and outputs through sample of data 

during the learning phase. In this paper, Artificial Neural 

Networks are applied for two modelling approaches [7, 8]. 

For both cases, similar parameters are used. We are talking 

about the type of network, the activation function and the 

learning rule. 

2. Prediction with the Multi-Layer 

Perceptron (MLP) 

The first model developed in this project is two-layer 

Perceptron Multi-Layer (MLP) with hidden layer and output 

layer [9]. This type of network is reliable tool for problems of 

approximation of functions. The choice of inputs is made 

using the correlation between the data. The activation 

function used to activate the neurons in the hidden layer is 

sigmoid function. The function provides output values 

belonging to interval [0.1]. For the neurons in output layer, 

activation function is of linear type. The procedure used for 

learning phase is error correction procedure (Backward Error 

Propagation). The principle is easy, we proceed to 

propagation of error calculated by network from the output 

layer to the input layer [10, 11]. The algorithm used to update 

weights is the Levenberg-Marquardt one. Its principle is 

based on a minimization of function. It calculates cost 

function, on which it decides whether or not the update will 

be accepted. It continues the calculation until the network 

converges. The calculation is done using the Jacobean 

weights and biases [12-14]. 

The output of our network is given by equation (1): 

� � �� �∑ ����
	
�
�                                     (1) 

a. y is the value predicted by the neural network; 

b. n is the number of hidden units in the network; 

c. β0 the bias; 

d. βi the weighted coefficients; 

Table 1. Summarizes the different parameters of the selected MLP model. 

Model Perceptron Multilayer (MLP) 

Number of layers 2 

Number of hidden layers 1 

Function to activate the neurons in 

the hidden layer 
Sigmoid function 

Function to activate the neurons of 

the output layer 
Simple linear function 

Learning algorithm Retro propagation of error 

Algorithm for updating synaptic 

weights 
Levenberg-Marquardt 

3. Non-linear Autoregressive Network 

with Exogenous Inputs (NARX) 

The recurring network has many applications. It can be 

used for modeling complex systems. As preacher, he can 

predict the next value of the output signal. In addition to the 

same parameters as the first model it has a number of delays 

[15, 16].  

y(t)=f(y(t−1),y(t−2),…,y(t−n y), u(t−1),u(t−2),…,u(t−n u)) (2) 

Table 2. Summarizes the different parameters of the selected NARX model. 

Model 
Non-linear autoregressive network 

with exogenous inputs (NARX) 

Number of layers  2 

Number of hidden layers 1 

Number of delays  

(nombre de retards) 
2 

Function to activate the neurons in 

the hidden layer 
Sigmoid function 

Function to activate the neurons of 

the output layer 
Simple linear function 

Learning algorithm  Retro propagation of error 

Algorithm for updating synaptic 

weights 
Levenberg-Marquardt 

4. Experimental Approach to Modelling 

The neural network models we have built are two-layer 

feedforward models for MLP (Figure 1) and NARX for 

recurrent network (Figure 2). The neurons of the hidden layer 

have a sigmoid activation function and those of the output 

layer a linear function in both cases. This architecture is 

proposed in the Matlab "ntstool" library that we used. 

 

Figure 1. Synoptic diagram of the architecture MLP. 
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Figure 2. Synoptic diagram of the architecture of NARX neural network 

models with 10 neurons under the hidden layer. 

To obtain the different models, the choice and methodical 

analysis of the explanatory variables is essential. These 

variables are used to assess the influence of each input 

parameter on the output of forecast model. Indeed, it is very 

important, for accuracy of the model, to choose appropriate 

input parameters. This step is very useful because it 

eliminates some variables that provide very little or no 

information to describe the output, or eliminates redundant 

variables [1, 4].  

The variables that were chosen to model the electrical load 

of Niamey city are listed in Table 3. 

Table 3. List of explanatory variables. 

Data types Mathematical Explanations Code 

Load data from the same time of 

the previous day 
Yh-24 A 

Load data from the same time of 

the previous week 
Yh-168 B 

Load data from the same time of 

the previous year 
Yh-8760 C 

Average of the last 24 hours' 

charges 
�	�	an (∑ Yh � i	��

�
� ) D 

Y= load data 

Table 4. Summary of Simulation Cases in MATLAB. 

Case Configuration 

1 [A D] 

2 [B D] 

3 [C D] 

4 [A B C] 

5 [A C D] 

6 [B C D] 

7 [A B C D] 

It is therefore necessary to predict the electrical charge 

with various combinations of these explanatory variables in 

order to determine the most efficient configuration case on 

the basis of well-defined criterion. 

We tested different configuration cases that are 

summarized in Table 4, for total of 7 configuration cases. 

5. Results and Interpretations 

In this section, the main task is to present the results of 

research and then to choose the most appropriate model for 

predicting electrical load based on the MAPE, which is the main 

indicator chosen to evaluate the performance of these models. 

To obtain the different results, programs are designed for 

each configuration case and for each learning. 

For given configuration case and neurons number in the 

hidden layer, each model was run 10 times for the learning 

and simulation phases. 

Indeed, the synaptic weights change values with each 

execution, giving slightly different results from previous 

executions. 

Neurons number is varied as follows: 10, 20, 30, 40 and 

50. Two models, MLP and NARX, are studied. For each 

model there are seven (7) configuration cases. For each 

configuration case neurons number is varied in five steps (10, 

20, 30, 40, and 50) and for each neurons number considered, 

ten (10) learning are performed. 

In total there are 2x7x5x10 = 700 learnings, so 700 

programs on MATLAB. 

The learning time is 12 to 15 minutes for MLP and 3 to 6 

minutes for NARX. 

For each learning experience it is ensured that the results 

are automatically recorded by our program. In addition to the 

end that each learning of the curves is automatically traced 

also to graphically observe the results. 

Finally, for each model and for each number of neurons 

given, the results of the best performance on the 10 learning 

outcomes are classified in tables 5 to 14. 

5.1. Performances of Perceptron Multilayer Models (MLP) 

We have reported the minimum and maximum of 

considered performance criteria of different cases in tables. 

Table 5. MLP performances – configuration [AD]: case_1. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 8,8422 8,6798 8,6924 8,5937 88,5441 88,2617 

20 8,8319 8,6495 8,6745 8,5714 88,6073 88,3133 

30 8,7235 8,6333 8,6109 8,5584 88,6441 88,4952 

40 8,6725 8,6291 8,5803 8,5549 88,6540 88,5823 

50* 8,6701 8,6260 8,5790 8,5528 88,6599 88,5858 

Table 6. MLP performances - configuration [BD]: case_2. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 8,6068 8,5375 8,1037 8,0459 90,0370 89,8853 

20 8,5304 8,5081 8,0454 8,0268 90,0866 90,0381 

30 8,5249 8,4924 8,0365 8,0114 90,1268 90,0613 
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Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

40 8,5063 8,4678 8,0225 7,9891 90,1846 90,0979 

50* 8,4992 8,4652 8,0124 7,9856 90,1937 90,1243 

Table 7. MLP performances - configuration [CD]: case_3. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 10,2247 10,1670 9,1950 9,1481 86,9048 86,7601 

20 10,1613 10,1466 9,1424 9,1351 86,9448 86,9222 

30 10,1493 10,1136 9,1341 9,1172 86,9997 86,9480 

40 10,1332 10,0956 9,1220 9,1050 87,0371 86,9851 

50* 10,1168 10,0951 9,1202 9,0995 87,0538 86,9906 

Table 8. MLP performances - configuration [A B C]: case_4. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 8,1102 8,0042 8,1884 8,1344 89,8040 89,6605 

20 8,0493 7,9522 8,1384 8,0767 89,9564 89,7938 

30 7,9890 7,9361 8,0855 8,0519 90,0214 89,9330 

40 7,9585 7,9149 8,0757 8,0283 90,0829 89,9589 

50* 7,9651 7,9044 8,0649 8,0190 90,1071 89,9874 

Table 9. MLP performances - configuration [ACD]: case_5. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 8,4387 8,4020 8,3798 8,3257 89,2900 89,1419 

20 8,3858 8,3666 8,3411 8,3236 89,2959 89,2481 

30 8,3522 8,3232 8,3148 8,2822 89,4083 89,3197 

40 8,3714 8,3054 8,3147 8,2632 89,4598 89,3200 

50* 8,3287 8,2981 8,2900 8,2500 89,4953 89,3872 

Table 10. MLP performances - configuration [BCD]: case_6. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 8,2383 8,1431 7,8250 7,7597 90,7689 90,6046 

20 8,1280 8,0758 7,7484 7,6959 90,9275 90,7971 

30 8,0957 8,0518 7,7125 7,6821 90,9616 90,8863 

40* 8,0530 8,0036 7,6711 7,6308 91,0880 90,9888 

50 8,0630 8,0081 7,6694 7,6297 91,0905 90,9930 

Table 11. MLP performances - configuration [ABCD]: case_7. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 7,5077 7,3877 7,4916 7,4022 91,6378 91,4253 

20 7,3600 7,3121 7,3865 7,3266 91,8154 91,6749 

30 7,2905 7,2628 7,3091 7,2942 91,8908 91,8563 

40 7,2856 7,2152 7,2946 7,2430 92,0092 91,8899 

50* 7,2850 7,1874 7,3041 7,2199 92,0622 91,8678 

5.2. Performance of Non-linear Autoregressive Network Models with Exogenous Inputs (NARX) 

The results of different configurations of this model are also presented in tables. 

Table 12. NARX performances - configuration [AD]: case_1. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 5,5741 5,3569 5,9149 5,7758 94,9960 94,7454 

20 5,4585 5,2688 5,8471 5,7246 95,0888 94,8685 

30 5,4409 5,2939 5,8027 5,7161 95,1017 94,9502 

40* 5,4248 5,3123 5,7859 5,7313 95,0748 94,9831 

50 5,4725 5,2951 5,8559 5,6998 95,1304 94,8525 
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Table 13. NARX performances - configuration [BD]: case_2. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 5,5646 5,2267 5,9384 5,6575 94,9786 94,7036 

20 5,4748 5,3173 5,8953 5,7028 95,1275 94,7810 

30* 5,3557 5,2443 5,7202 5,6550 95,2107 95,0943 

40 5,4181 5,2444 5,7912 5,6428 95,2294 94,9686 

50 5,4791 5,2923 5,8346 5,6911 95,1453 94,8909 

Table 14. NARX performances - configuration [CD]: case_3. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 5,4958 5,3378 5,8494 5,7549 95,0345 94,8647 

20 5,4316 5,2654 5,8159 5,6961 95,1370 94,9264 

30 5,6953 5,3018 5,9454 5,7043 95,1230 94,6921 

40 5,4395 5,2938 5,8081 5,7269 95,0827 94,9388 

50* 5,4206 5,3438 5,7639 5,7324 95,0753 95,0176 

Table 15. NARX performances - configuration [ABC]: case_4. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 5,6630 5,6036 6,0510 6,0218 94,5495 94,4959 

20 5,7976 5,4336 6,0384 5,9215 94,7356 94,5328 

30* 5,5895 5,4949 6,0086 5,9083 94,7583 94,5734 

40 5,6012 5,4868 6,0045 5,9452 94,6903 94,5805 

50 5,6969 5,5375 6,1065 5,9559 94,6718 94,3895 

Table 16. NARX performances - configuration [ACD]: case_5. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 5,3849 5,3087 5,8100 5,7691 95,0085 94,9352 

20 5,4612 5,3056 5,8231 5,7229 95,0899 94,9130 

30* 5,4193 5,2967 5,8090 5,7090 95,1167 94,9372 

40 5,5729 5,3076 5,8784 5,7470 95,0478 94,8167 

50 5,3849 5,3087 5,8100 5,7691 95,0085 94,9352 

Table 17. NARX performances - configuration [BCD]: case_6. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 5,4221 5,2541 5,8240 5,7016 95,1270 94,9104 

20 5,4227 5,3532 5,7818 5,7477 95,0469 94,9862 

30 5,4607 5,1884 5,8188 5,6707 95,1813 94,9195 

40 5,4216 5,3029 5,8056 5,7182 95,0979 94,9431 

50* 5,3888 5,2862 5,7607 5,6784 95,1684 95,0234 

Table 18. NARX performances - configuration [ABCD]: case_7. 

Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

10 5,3803 5,3233 5,8215 5,7609 95,0232 94,9212 

20 5,4484 5,1943 5,8254 5,6472 95,2221 94,9076 

30* 5,3227 5,1765 5,7596 5,6014 95,3013 95,0255 

40 5,4562 5,2638 5,7734 5,7058 95,1199 95,0015 

50 5,4953 5,2874 5,8101 5,7544 95,0393 94,9359 

5.3. Interpretations of Model Performance 

The interpretation of the performances of different configurations of priori models has allowed us to identify for each case 

the neurons number in the hidden layer that gives better results as shown in Table 19 (* indicates the best performances). 
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Table 19. Models best performances summary. 

Model 
Number of neurons in the 

hidden layer 

MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

MLP 

1 50 8,6701 8,6260 8,5790 8,5528 88,6599 88,5858 

2 50 8,4992 8,4652 8,0124 7,9856 90,1937 90,1243 

3 50 10,1168 10,0951 9,1202 9,0995 87,0538 86,9906 

4 50 7,9651 7,9044 8,0649 8,0190 90,1071 89,9874 

5 50 8,3287 8,2981 8,2900 8,2500 89,4953 89,3872 

6 40 8,0530 8,0036 7,6711 7,6308 91,0880 90,9888 

7 50* 7,2850 7,1874 7,3041 7,2199 92,0622 91,8678 

NARX 

1 40 5,4248 5,3123 5,7859 5,7313 95,0748 94,9831 

2 30 5,3557 5,2443 5,7202 5,6550 95,2107 95,0943 

3 50 5,4206 5,3438 5,7639 5,7324 95,0753 95,0176 

4 30 5,5895 5,4949 6,0086 5,9083 94,7583 94,5734 

5 30 5,4193 5,2967 5,8090 5,7090 95,1167 94,9372 

6 50 5,3888 5,2862 5,7607 5,6784 95,1684 95,0234 

7 30* 5,3327 5,1765 5,7596 5,6014 95,3013 95,0255 

The final choice of best performance for each model is made using the MAPE indicator and the correlation coefficient R
2
. 

The results are shown in Table 20 (* refers to best performance of all models and configurations). 

Table 20. Better performance of the different models. 

Model Case Number of neurons in the hidden layer 
MAPE (%) RMSE (%) R (%) 

MAX MIN MAX MIN MAX MIN 

MLP 7 50 7,2850 7,1874 7,3041 7,2199 92,0622 91,8678 

NARX 7 30* 5,3327 5,1765 5,7596 5,6014 95,3013 95,0255 

 

In addition, the MAPE, RMSE and R
2
 values (tables 21, 

22, 23) obtained yield the curves in Figure 3, Figure 4 and 

Figure 5 as function of neurons number under the hidden 

layer. 

Table 21. MAPE values according to neurons number and case model7. 

Number of neurons 

in the hidden layer 

MAPE(%): MLP, 

CASE 7 

MAPE(%): NARX, 

CASE 7 

10 7,5077 5,3803 

20 7,36 5,4484 

30 7,2905 5,3227 

40 7,2856 5,4562 

50 7,285 5,4953 

 

Figure 3. Evolution of MAPE as function of neurons number in the case 

model7. 

Table 22. RMSE values according to neurons number and the case model7. 

Number of neurons in 

the hidden layer 

RMSE(%): MLP 

CAS 7 

RMSE(%): NARX 

CAS 7 

10 7,4916 5,8215 

20 7,3865 5,8254 

30 7,3091 5,7596 

40 7,2946 5,7734 

50 7,3041 5,8101 

 

Figure 4. Evolution of RMSE as a function of neurons number and the case 

model7. 

Table 23. R2 values according to neurons number and the case model7. 

Number of neurons in 

the hidden layer 
R2 (%): MLP CAS 7 R2 (%): NARX CAS 7 

10 91,6378 95,0232 

20 91,8154 95,2221 

30 91,8908 95,3013 

40 92,0092 95,1199 

50 92,0622 95,0393 
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Figure 5. Evolution of R2 as function of neurons number and the case 

model7. 

It has been shown that layer networks offer poor results for 

neurons number in the hidden layer that are insufficient or 

too large. Thus, figures 3, 4 and 5 analysis shows that 

neurons number in hidden layer of each model influences 

results. Indeed, for each case, the best results are obtained for 

models with 30, 40 or 50 neurons. Beyond 50 neurons, 

MAPE errors increase and the simulation time is very long, 

which forces us to limit the number of neurons for our tests. 

6. Conclusion 

Objective of this work is to develop a model for predicting 

electrical charge of Niamey city using artificial neural 

networks. To achieve this goal, two prediction models were 

tested: MLP and NARX. Several configurations of the two 

major models mentioned above have been developed and 

tested by varying the different explanatory variables. All 

configurations have been implemented on MATLAB. The 

statistical indicators MAPE (Absolute mean error in percent), 

R
2
 (correlation coefficient) and RMSE (square root of mean 

square error) were used to evaluate performance of models. 

Thus with MAPE of 5.1765%, R
2
 of 95.3013% and RMSE of 

5.6014%, the [ABCD] configuration of the NARX model is 

chosen ahead of MLP with MAPE of 7.1874%, R
2
 of 

92.0622% and RMSE of 7.2199%. So the NARX model is 

the most efficient and can be used for future predictions on 

the Niamey city network. 
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