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Abstract: A mathematical process of enumeration of Kekule structures of any polybenzenoïd monoradical having only 

linear assemblies of benzenoid hydrocarbons is given by using a method which consisted of the excision of the radical center 

C
•

 in order to obtain a conjugated hydrocarbon having a 12-annulene core ring appended to one or more polybenzenoïd 

fragments, the partition of the resulting conjugated hydrocarbon into smaller independent resonant circuits. Polyhex 

monoradical skeletons are obtained from a building up procedure which consists to fuse in different ways the acenaphtyl 

moiety with one or more polybenzenoïd fragments. Mathematical formulas are established for three cases of assemblies, one 

edge linear assemblies, two edges linear assemblies with two linear polybenzenoid fragments located at right angles θ = 60°, 

120° or 180° and three edges linear assemblies with three linear polybenzenoid fragments located at right angles θ = 60°, 120° 

or 180°. Results show that the number of Kekule structures of any polybenzenoïd monoradical having only linear assemblies 

of benzenoid hydrocarbons increases with the number of fused benzenoids according to results compiled in the table for h 

equal 1, 2, 3 and 4. Difficulty to represent graphs when the number of structures increases with the number of benzenoids 

cannot be neglected. 

Keywords: Polyhex, Enumeration, Kekule, Monoradicals, Linear Assemblies 

 

1. Introduction 

Polycyclic aromatic hydrocarbons are the most abundant 

class of molecules in the known universe, occurring in 

meteorites, carbon stars in interstellar space and as pyrolytic 

products in the combustion engine. The discovery and 

introduction of the concept of resonance embedding in this 

chemical compounds family has generated the problem of 

enumerating Kekule structures of polyhex molecules having 

several conjugated double bonds. Many publications dealing 

with the problem of enumeration of resonance structures 

prove that this problem is far from being exhausted. The 

enumeration of polyhex hydrocarbons dates back to 1964 [1]. 

From that day, generation and enumeration of polyhexes has 

attracted the interest of many researchers. Kekule structures 

in polyhexes, or particular classes of polyhexes such as cata-

condensed or pericondensed benzenoids, coronoids or 

helicenes have been extensively studied [2-15]. Indeed, a 

whole book by Cyvin and Gutman [14] is devoted to that 

topic. It is also discussed at length in several surveys of two 

recent volumes on Advances in the theory of benzenoid 

hydrocarbons [16, 17] and in numerous papers cited there. In 

this work, we are interested in determining the number of 

Kekule structures of any polybenzenoïd monoradical having 

only symmetrical linear assemblies of benzenoid 

hydrocarbons. To simplify the language, we will speak of 

assemblies of benzenoid hydrocarbons on the acenaphtyl 

moiety. Beyond the direct formulas of computation 

established, this work provides another insight on the 

problem of enumeration of Kekule structures of polyhexes 

monoradicals. This paper contribute to the extensive work 

done on enumerations of any polybenzenoïd monoradical 
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which still to be documented comparatively to others 

category of polyhexes such as fusene or perifusene. 

2. Generation of Polyhex Monoradical 

Skeletons 

Polyhex monoradical skeletons examined in this work are 

obtained from a building up procedure which consists to fuse 

in different ways the acenaphtyl moiety with one or more 

polybenzenoïd fragments. 

Various types of fusion or assembly may occur. The edge 

to edge fusion which may take place between one edge of A 

according to the orientations 1,2,3 or 1’,2’,3’ and one 

terminal edge of a linear polyacene B. Successive repetition 

of this process generates a monoradical having a trihex core 

assembled to two or three linear polybenzenoid fragments 

located at right angles θ = 60°, 120° or 180° (figure 1). 

 

Figure 1. Acenaphtyl moiety and orientation of linear fusion. 

3. Enumeration of Kekule Structures of a 

Polybenzenoïd Monoradical 

3.1. Mathematical Formulation 

The enumeration of Kekule structures of any 

polybenzenoïd monoradical utilizes two steps: 

(1) the deletion of the radical center C
•

 in order to obtain 

a conjugated hydrocarbon having a 12-annulene core 

ring appended to one or more polybenzenoïd fragments 

and 

(2) the partition of the resulting conjugated hydrocarbon 

into smaller independent resonant circuits. 

The computation as prescribed by the literature [15] of the 

number of Kekule structures of these independent circuits 

identified in step two aforementioned. 

The determination of the number of Kekule structure of 

the monoradical using the principle of combination and 

taking into account the possibly independent resonant 

circuits. 

The deletion of the radical center C
•

in AI and AII is 

depicted on the following diagrams: 

 

 

Where the resulting substructures 0G
+

and 0G
−

 are planar 

12-annulene rings containing six double bonds rotating in the 

clockwise (+sign) and anti clockwise (-sign) directions. 

Such a distinction between 0G
+

 and 0G
−

 generates the 

following theorems: 

Theorem 1: The number of Kekule structures of the 

unidirectional circuits 0G
+

 and 0G
−

 are respectively: 

K( 0G
+

)=K( 0G
−

)= 1                                   (1) 

Theorem 2: The number of Kekule structures of a single 

monoradical center C
•

 which exhibit an invariant electronic 

structure is K( C
•

)= 1 

If we claim that the two mesomeric forms of the trihex 

monoradical result from the interactions of 0G
+

 and 0G
− with 

C
•

therefore: 

K(AI) = K( 0G
+

)xK( C
•

) = 1                       (2) 

K(AII) = K( 0G
−

)xK( C
•

)= 1                       (3) 

The excision of ( C
•

) of a monoradical suppresses 3 

internal edges and generates a parent conjugated hydrocarbon 

contains a planar 12 annulene ring possessing a resonant 

circuit of type 0G
+

 or 0G
−

. 

The dissection of the parent conjugated circuits of type 

0G
+

 and 0G
−

 into smaller independent benzenoïd fragments is 

operated at a second step, with respect to the following 

conditions: 

a) To position the cutting lines, one may start from the 

core of the structure and move toward the terminal 

edges of each polybenzenoïd branch. 

b) The orientation of each cutting line follows adjacent 

hexagonal rings and non-adjacent single bonds inside 

each hexagonal ring. 

c) A cutting dissection line does not bissect a double bond. 

d) The benzenoïd fragment to retain during a cutting in 

any direction is one which has a maximum number of 

hexagonal rings in resonance. 

If the previous conditions are satisfied during the 

dissection of the parent conjugated circuit one may obtain the 

solution of the problem of the enumeration of Kekule 

structures of any monoradical 0G  by applying the following 
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principles. 

Now let 0G  denote any polyhex monoradical having a 

trihex core appended to one or more polybenzenoïd 

fragments. 

As previously observed the core of G0 contains two central 

resonant circuits 0G
+

 and 0G
−

’ which may induce two 

mesomeric resonant forms 0G
+

 and 0G
−

 containing a 12-

annulene ring in clockwise (+sign) and anticlockwise (-sign) 

rotation respectively. 

The mesomeric forms 0G
+

 and 0G
−

 generated the 

following instantaneous equilibria. 

0G
+

 ↔ 0G  ↔ 0G
−

                                      (4) 

Let K( 0G ), K( 0G
+

) and K( 0G
−

) denote the number of 

kekule structures of 0G , 0G
+

, 0G
−

. From (4) one way may 

deduce the following relationship: 

K( 0G ) = K( 0G
+

) + K( 0G
−

)                        (5) 

The excision and dissections processes applied to the 

resonant forms 0G
+

 and 0G
−

 of the polyhex are collected in 

the following set of dissections or partitions: 

0G
+

 = {D01, D02,…, D0i,…, D0j, C
•

, δ} 

0G
−

 = {D01’, D02’,…, D0r’,…, D0k’, C
•

, δ’} 

The elements D0i(1≤ i ≤j) and D0r’ (1≤ r ≤k) have 

polybenzenoïd classical structures, C
•

 is the radical center, 

while δ and δ’ are residual non resonance fragments 

(possessing one or more non conjugated double bonds) 

If 0G
+

and 0G
−

 contain respectively j and k independent 

polybenzenoïd substructures, therefore: 

K( 0G
+

) =∏ ������
�
�	
                            (6) 

K( 0G
−

) =∏ �����
� �


�	
                            (7) 

K( 0G ) = ∏ ������
�
�	
  + ∏ �����

� �

�	
                     (8) 

The enumeration of Kekule structures for numerous 

conjugated hydrocarbons is intensively documented in 

chemical literature. [15]. However, we recalled that the 

number of Kékulé structures of linear polybenzenoids Gi is  

K(Gi)=hi+1                                            (9) 

Where hi is the number of benzenoids. 

In equation (1)–(15), K(D0i) and K(D’0r) are the number of 

Kekule structures of the polybenzenoïd with one or many 

dissections D0i and D’0r respectively. 

We have applied the partition processes and (9)–(15) to the 

enumeration of Kekule structures for the following series of 

polyhex monoradicals having linear assemblies. 

Case 1: One edge linear assemblies 

 

We have one dissection D01 on 0G
+

 

K(G0)=K(D01)+1                             (10) 

K(G0)=h1+1+1=h1+2 

Case 2: Two edges linear assemblies 

We will distinguish here the various possible assemblies. 

These assemblies can be at 60 °, 120 °, 180 ° from each 

other. 

For assemblies of 60°: 

 

K(G0)=K(D01)+ K(D02’)                       (11) 

K(G0)=h1+1+ h2+1=h1+h2+2 

For assemblies of 180°: 

 

K(G0)=K(D01)+ K(D03’)                       (12) 

K(G0)=h1+1+ h3+1=h1+ h3+2 

For an assemblies of 120°: 

 

K(G0)=K(D01)xK(D02)+1                         (13) 

K(G0)=(h1+1)(h2+1)+1 
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Case 3: Three edges linear assemblies 

The three linear branches can be positioned in two 

different ways on the various assembly sites offered by the 

perinaphthyl. 

First way: 

 

K(G0)=K(D01)xK(D02)+ K(D03’)                  (14) 

K(G0)=(h1+1)(h2+1)+(h3+1) 

Second way: 

 

K(G0)=K(D01)xK(D02)xK(D03)+1              (15) 

K(G0)=(h1+1)(h2+1)(h3+1)+1 

3.2. Application, Results and Graphical Representations 

The application is focusing on the enumeration of Kekule 

structures of any polybenzenoïd monoradical having only 

symmetrical linear assemblies of benzenoid hydrocarbons. 

Therefore hi=h. The results of computation obtained is 

followed by graphical representations of Kekule structures. 

Case 1: One edge linear assemblies 

Series of a single linear assembly are enumerate using (10) 

where hi=h and K(G0)=h1+1+1=h1+2=h+2 

For h=0, K(G0)=2 

 

For h=1, K(G0)=3 

 

For h=2, K(G0)=4 

 

Case 2: Two edges linear assemblies 

Series of a two linear assemblies are enumerate using (11), 

(12) and (13) where hi=h. 

For 60° assemblies, we have 

K(G0)=h1+1+ h2+1=h1+h2+2=2(h+1) 

For h=1, K(G0)=4 

 

For h=1, K(G0)=6 

 

For 180° assemblies, we have 

K(G0)= K(G0)=h1+1+ h3+1=h1+ h3+2=2(h+1) 

For h=1, K(G0)=4 

 

For h=1, K(G0)=6 

 

For 120° assemblies, we have 

K(G0)=(h1+1)(h2+1)+1= (h+1)
2
+1 

For h=1, K(G0)=5 

 

For h=2, K(G0)=10 

 

Case 3: Three edges linear assemblies 

Series of a three linear assemblies are enumerate using 

(14) and (15) where hi=h. 

For the first type of assemblies, we have 

K(G0)=(h1+1)(h2+1)+(h3+1)=(h+1)(h+2) 

For h=1, K(G0)=6 
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For h=2, K(G0)=12 

 

For the second type of assemblies, we have 

K(G0)=(h1+1)(h2+1)(h3+1)+1=(h+1)
3
+1 

For h=1, K(G0)=9 

 

For h=2, K(G0)=28 

 

Table 1. Results summary of the enumeration polyhex monoradical with linear assembled polybenzenoïds. 

General graph of polyhex monoradicals Mathematical formula h K(G0) 

 
2+h  

0 2 

1 3 

2 4 

3 5 

4 6 

 

2( 1) 1+ +h  

1 5 

2 10 

3 17 

4 26 

 
2 2+h  

1 4 

2 6 

3 8 

4 10 

 

2 2+h  

1 4 

2 6 

3 8 

4 10 

 

3( 1) 1+ +h  

1 9 

2 28 

3 65 

4 126 

 

( 1)( 2)+ +h h  

1 6 

2 12 

3 20 

4 30 
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According to the above table of results, the mathematical 

formulas of the number of kekule structures of polyhexes 

monoradical having identical two edges linear 

polybenzenoids are invariant when the two linear 

polybenzenoid fragments are located at angles θ = 60° or 

180°. For h =3 and above, it is observed more than 50% gap 

between numbers kekule of the two cases of structures of 

polyhexes monoradical having identical three edges linear 

polybenzenoids with different angles. In general, the number 

of kekule structures increases with h for any cases. 

4. Conclusion 

The results summarized in this paper are expected to 

eventually lead to a better understanding of how compute the 

number of kekule structures of polyhexes monoradical 

having only identical linear polybenzenoids. We did not carry 

out the computation of cases where h1≠h2≠…≠hi because 

formulas derived can be used to obtain the number of those 

monoradical polycyclic aromatic hydrocarbons. However, 

this case is relevant to be studied in future papers with the 

involvement of combinatorial methodology combined with 

group theory approach. We noticed the difficulty to represent 

graphs when the number of structures increases with the 

number of benzenoids. This complexity challenges us to 

develop easy and appropriate methods that can generate all 

the structures without duplication whatever the size of the 

graphs. 
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