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Abstract: Statistical analyses involving count data may take several forms depending on the context of use, that is; simple 

counts such as the number of plants in a particular field and categorical data in which counts represent the number of items 

falling in each of the several categories. The mostly adapted model for analyzing count data is the Poisson model. Other 

models that can be considered for modeling count data are the negative binomial and the hurdle models. It is of great 

importance that these models are systematically considered and compared before choosing one at the expense of others to 

handle count data. In real world situations count data sets may have zero counts which have an importance attached to them. In 

this work, statistical simulation technique was used to compare the performance of these count data models. Count data sets 

with different proportions of zero were simulated. Akaike Information Criterion (AIC) was used in the simulation study to 

compare how well several count data models fit the simulated datasets. From the results of the study it was concluded that 

negative binomial model fits better to over-dispersed data which has below 0.3 proportion of zeros and that hurdle model 

performs better in data with 0.3 and above proportion of zero. 
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1. Introduction 

Count data is encountered on daily basis and dealings. 

More understanding of such data and extraction of important 

information about the data needs some statistical analysis or 

modeling. Different count data may possess different 

characteristics and therefore cannot be used with particular 

count data models. Poisson regression model provides a basis 

for the analysis of count data. Many practitioners choose to 

use Poisson model when faced with data analysis involving 

count data even without ensuring that all assumptions of this 

model are met. The systematic way for choosing a model for 

fitting a particular data is that one should test whether the 

model's assumptions are met rather than just going the naive 

way of fitting a model. Cases arise when these assumptions 

are violated and therefore a need to go for an alternative 

model. 

Some of the alternative models that can be considered for 

modeling count data are negative binomial and hurdle models 

[1, 2] A hurdle model is mixed by a binary outcome of the 

count being below or above the hurdle (the selection 

variable), with a truncated model for outcomes above the 

hurdle. One of the common assumptions has been that all 

count data follows Poisson distribution and therefore the 

mean and the variance are equal. However, this is not the 

case as the data may show some deviation from this 

assumption in having greater variance than the mean. 

Another case is whereby particular count data models can 

handle data with a particular amount of zeros and therefore 

cannot handle data with excess zeros. In some cases these 

zeros cannot be ignored because they are of great importance 

as they are meaningful. 

Oftenly, in dealing with count data the mean is not equal to 

variance as assumed by Poisson. Over-dispersion may be 

caused by occurrence of many zero counts than a Poisson 

model would predict. These zeros cannot be deemed 

meaningless as they frequently have special status. For 

instance, in counting the number of plants affected by a 

particular disease in the field, a plant may not have the 

symptoms of the disease because it is resistant to the disease 

or simply because the disease causing micro-organism has 

not landed on it. The hurdle models are based on Poisson 
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regression and negative binomial regression respectively but 

is used for modeling excess zeros. 

With these statistical models for handling count data, it is 

difficult to know which one to choose by just someone's 

intuitive feelings. Reference [3] proposed a comparative 

approach for handling count data by comparing five 

regression models on how they fitted their count data using 

the Akaike Information Criterion (AIC). They concluded that 

a specific model is not preferable to the other, but that one 

needs to choose model critically. With respect to how 

important it is to choose the best model and how many 

models and model specifications that exist one could 

presume that there are many comparisons of models in 

literature, but this is not the case [4]. Traditionally, the linear 

regression model, ordinary least squares (OLS) was used in 

modeling count data with the underlying assumption that the 

outcome of interest was normally distributed [5]. However, 

this assumption may not hold for some cases of count data 

even after applying some data transformation techniques. 

Researchers and other practitioners may wish to study one 

or more sets of count data which have diverse characteristics 

to make important decisions or conclusions. In this case there 

could be difficulties in choosing one among the different 

models for handling count data. The main objective of this 

study was to investigate the performance of several count 

data models and inform their choice. Specifically, the study 

aimed at doing a review of models for count data and 

comparing them using simulated data of different 

characteristics. 

2. Count Data Models Review 

Counts are non-negative integers. They represent the 

number of occurrences of an event within a fixed period of 

time. In many economic and scientific contexts the 

dependent or the response variable of interest (y) is a count 

which we wish to analyze in terms of a set of covariates (x). 

Unlike in the case of a classical regression model, the 

response variable is a discrete with a distribution that places 

the probability mass at non-negative integer values only. 

Regression models for counts, like other limited or discrete 

variable models are nonlinear with many properties and 

special features intimately connected to discrete-ness and 

non-linearity [6]. Despite the fact that count data regression 

modeling techniques have rather recent origin, the statistical 

analysis of count data has a long history. Most of the early 

statistical count analyses concerned univariate independent 

and identically distributed random variables within the 

framework of discrete parametric distributions [7]. 

2.1. Basis for Count Data Models 

The foundation for the development of count data models 

is the Poisson distribution. Most of the count data models 

belong to Generalized Linear Models. 

Nearly all of count models have a basic structure as 

described by [8] in the equation: 

0 1 1 2 2ln( ) ... p pX X Xµ β β β β= + + + +  

To isolate the predicted mean count on the left side of the 

above equation, we take exponential on both sides of the 

equation, giving 

0 1 1 2 2 ... p pX X X
e

β β β βµ + + + +=  

Both of the above expressions are important in defining 

the terms in the count data models as it shall be discussed 

later. Reference [8] stated that an important feature of using 

the natural log link in the count data linear relationship model 

is that it guarantees that the predicted values will be positive, 

that is, µ > 0. The several models for handling count data 

which are Poisson model, negative binomial model and 

hurdle models are as discussed in the following sections. 

2.2. Poisson Model 

The Poisson distribution is usually used as a standard 

model for count data and was derived as a limiting case of 

the binomial distribution by Poisson. It was the first model 

specifically used to model counts and it still stands at the 

base of many types of count models available to analysts. In 

Poisson modeling, it is assumed that the mean and the 

variance are equal. This makes it unsatisfactory to use 

Poisson model on real study data. A Poisson random variable 

has the probability distribution function (pdf) 

( )
!

i iy

i

i

i

e
f y

y

µ µ−

=                                 (1) 

for yi = 0, 1, 2,… 

The mean and the variance are 

( ) var( )
i i i

E y y µ= =  

The expected value i
µ  is a linear function of p  predictors 

that take the values 1,...,( )i i ipx x′ =X  for the ith case so that 

µ i= ′
i

X β  

Where β  is a vector of parameters to be estimated. 

In this case, we define the link function as ( )
i i

gη µ=  so 

that it is assumed that the transformed mean follows a linear 

model and we write 

i
η  = ′

i
X β  

Where i
η  is known as the linear predictor. 

From equation (1), it can be seen that the Poisson 

distribution belongs to the exponential family since it can be 

expressed in the probability density function form 

����� = 	exp	��
�
����
��
��� + �	��� , ���            (2) 

Where �� 	  and �  are location and scale parameters and �����, ����� and �	��� , �� are known functions. Moreover, if 
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yi has a distribution in the exponential family then its 

variance and mean are 

( )
i i

E y µ=  = ( )
i

b θ′                        (3)  

var (yi) = 
2

iσ = ( ) /
i i

b pθ′′                       (4) 

Where ( )
i

b θ′  and ( )
i

b θ′′  are the first and second 

derivatives of ( )
i

b θ  respectively and pi is a known prior 

weight, usually 1. The relationship in equations (3) and (4) 

can be proved for Poisson distribution. 

Poisson Parameter estimation 

The parameters of Poisson model are estimated by 

maximum likelihood approach using an iteratively re-

weighted least squares algorithm. From equation (2) the log-

likelihood for the sample y1,…yn is 

� = 	∑ ��
�
����
��
��� + ���� , �� !�"#                  (5)  

The maximum likelihood estimates are then obtained by 

solving the score equations  

$�%&� = '(
')	* = ∑ � �
+,


�
-	�,
� ×
/
*

01	�,
�� = 0!�"#          (6) 

For parameters %	&, where V (3�) is a variance function. 

By assuming that 

�� = �
�
                                  (7) 

Where �  is a single dispersion parameter and ��  are 

known prior weights, the estimating equations can then be 

written as 

'(
')	* = ∑ ��
	��
+,
�-	�,
� × /
*

01	�,
�� = 0!�"#              (8) 

The score equation above is then solved by using Fisher's 

scoring iterative algorithm whereby in the rth iteration, the 

new estimate %(r+1) is obtained from the previous estimate % 

(r) by using the equation 

% (r+1)=	% (r) +s (% (r) ) 
( ) 1( ( ))rE H β −

                (9) 

Where H is the Hessian matrix (matrix of second 

derivatives of the log-likelihood). equation (9) can be 

rewritten as: 

%(r+1)=
( ) 1 ( ) ( )( )T r T r rX W X X W z−

               (10) 

Where 
( ) ( )r

iW diag w= , 

The working dependent variable 

( ) ( ) ( ) ( )( ) ( )r r r r

i i i i iz y gη µ µ′= + −  and 4�	�5� = �

-�,
	�6���01	�,
	�7��

8 
The procedure is usually repeated until successive 

estimates converge (that is, change by less than a specified 

small amount) 

For Poisson regression model we consider the link 

i
η  = log( )

i
µ                              (11) 

The derivative of the link is 

1i

i i

d

d

η
µ µ

=                                (12) 

The working dependent variable is therefore 

i i

i i

i

y
z

µη
µ
−

= +                           (13) 

By assuming that the prior weight i
a  is 1 then the iterative 

weight is 

4� = 1
:�3���;′	�3��= =	 1

>3� 13�=?
 

which gives 

4� = 3�                                 (14) 

The parameters are then estimated using equation (10). 

2.3. Negative Binomial Model 

Negative binomial distribution is used for modeling over-

dispersed count data and is a standard generalization of the 

Poisson. Of the two types of negative binomial discussed in 

the literature, we shall consider NB2 because of the 

advantages associated with it. 

Let ( 1,2,..., )
i

y i n=  be a non-negative integer valued 

random variable rep-resenting the ith outcome and yi be the 

associated outcome of interest. The unconditional negative 

binomial distribution of yi is expressed as: 

( ) 1
( ) , 0,1, 2,...

( ) ! 1 1

iy

i

i i

i

y
p y y

y

αα β
α β β

Γ +    = =   Γ + +   
    (15) 

The above distribution has mean 

( )
i

E y αβ=                                 (16)  

and variance 

2var( )iy αβ αβ= +                             (17) 

For building a regression model, the negative binomial 

distribution can be expressed in terms of parameters µ αβ=  

and 1k α=  so that E (yi) = µ  and 
2var( )iy kµ µ= +  

The model can be expressed in terms of log link as 

follows: 

0 1 1 2 2ln( ) ... p pX X Xµ β β β β= + + + +         (18) 

For p  covariates and the regression coefficients 

0 1 2, , ,..., pβ β β β  are to be estimated. 

We typically assume that ( , )
i i

y Negbin kµ∼  and taking 
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exponential on equation (18), then distribution (15) can be 

written as: 

1/1 .

1 . .
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Where, µ αβ= , 1k α= , 0,
i

µ >  for 1,2,...,i n=  and α is 

the negative binomial over-dispersion parameter. 

Parameter estimation 

We estimate α and β using Maximum likelihood 

estimation. The likelihood function is 

1
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and the log-likelihood function is 
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∑∏         (21) 

The values of α and β that maximizes ln ( , )L α β  will be 

the maximum likelihood estimates. The MLE’s can be 

obtained using the fishers’ scoring algorithm. 

2.4. Hurdle Models 

The idea of hurdle comes from considering the data as 

being generated by a process that commences generating 

positive counts only after crossing a zero barrier or hurdle 

and therefore until the hurdle is crossed, the process 

generates zeros. This implies that the hurdle is crossed if a 

count is greater than zero. However, for the binary 

component, values below the hurdle are given the value of 0 

and above the hurdle point they are given the value of 1. 

Starting with the binomial process, suppose that is the 

probability value when the value for response variable is zero 

and that 1 is a probability value when the response variable is 

a positive integer. The probability mass function is given by: 

0,
Pr( )

1 1,2,...

y
Y y

y

π
π

== =  − =
                (22) 

The zero-truncated poisson has the probability mass 

function 
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otherwise

λ
== ≠ = −




        (23) 

Thus the unconditional probability mass function for Y is 

0
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and the log likelihood for the i
th observation assuming the 

observations are independent and identically distributed is 

ln 0
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So that if we model i
π  using the complementary log-log 

link and i
λ  using the log link, we have 
1xie

i
e

β
π −=  and 2ix

i e
βλ =  

Thus the log likelihood can be written 
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Where { } { }0 1| 0 , | 0i ii y i yΩ = = Ω = ≠  and 

{ }0 1 1,2,..., NΩ ∪ Ω = . 

The log likelihood above describes the sum of a log log 

likelihood for the binary outcome model, 1 1( )L β , and a log 

likelihood for a truncated-at-zero Poisson model, 1 1( )L β . The 

same explanatory variables i
x  are used in both cases but the 

fitted parameters 1
β  and 1

β  are separate and must not equal 

each other. 

3. Methodology 

This study utilized a simulation technique in R to generate 

data that was used for comparing the count data models. 

The following pseudo code was used for simulation 

purpose: 

1. Define the sample size for the data to be simulated. 

2. Set the number of simulations. In this case the data 

sets were simulated 2000 times.  

3. Generate random numbers with different proportion of 
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zeros in the sample for the purpose of defining 

characteristics of different datasets.  

i. Sample command was used in order to generate count 

datasets  

ii. The range for the count data was declared. In this case 

random integers in the range 0 to 20 were considered  

iii. Specify the proportions of zeros using the probability 

command as an argument for the sample function. For 

the first dataset set the probability of zeros in the 

sample was 5%.  

iv. Repeat the simulation of the datasets with 10%, 25%, 

50%, 75%, and 90% zero proportions.  

1. Simulate the covariates to be used in modeling. This 

was achieved by assuming that the covariates followed 

uniform distribution.  

2. Retrieve each of the simulated datasets which 

represent data of different characteristics as defined by 

the pre-specified proportion of zeros.  

3. Obtain the summary of the different datasets using 

each of the three count data models.  

4. Note the average AIC's of the different count data 

models under each data set.  

5. Compare the AIC's to determine which model fits 

better to each of the simulated data sets.  

3.1. The Pre-Specified Zero Proportions 

In this study, we simulated count data with particular 

proportions of zero so as to get sets of count data with 

diverse characteristics. For this study, the concern was 

goodness-of-fit for different count data models by comparing 

their average AIC's. 

3.2. Random Number Generation 

By definition, a random number is one in which there is no 

way possible to a priori determine its value. Most statistical 

analysis software packages include random number generators. 

However, these generated random numbers are not truly 

random. Usually, one specifies a seed; when replications are 

performed using the same seed, the generated numbers are 

identical to the first. Hence, the values are pseudo-random [9]. 

However, this limitation is actually an advantage in that the 

researcher can check for errors in model programming and run 

the analysis again with the same generated sample [10]. 

Another feature of Monte Carlo random sampling pertains 

to the desired distributions. Typically, the random numbers 

are drawn from a uniform distribution, which is then 

followed by a transformation to the desired distribution. This 

is because the U (0, 1) distribution with its 0 1x≤ ≤  range, 

can be used to simulate a set of random probabilities, which 

are used to generate other distribution functions through the 

inverse transformation and acceptance-rejection methods 

[10]. The random number generation was performed using R 

via a generic sample command. 

3.3. Sample and Simulation Size 

It is important to determine the appropriate sample size for 

each simulate. This is because too small sample size is not 

sufficient enough to assume that estimates are asymptotically 

normal. On the other hand, as the sample size increases to 

infinity the computer time also increases. The sample size 

was set at 100. 

Determining the number of simulations was also an 

important concern since too few replications may result in 

inaccurate estimates and too many replications may 

unnecessarily overburden computer time and performance 

[9]. Reference [11] were able to sufficiently compare the 

goodness of fit for several competing models using 1,000 

simulations. Likewise, [12] selected 1,000 simulations when 

researching misspecification in negative binomial ZIP 

models. Reference [13] set the number of simulations at 

2,000 when researching the asymptotic properties of the ZIP 

model. 

Most simulations published recently report upward from 

1,000 trials, and simulations of 10,000 and 25,000 trials are 

common [10]. Given the previously noted problems with 

convergence for the negative binomial ZIP model, it seems 

prudent to minimize the number of simulations as much as 

possible. However, it is also important to simulate under 

conditions already found to produce asymptotic results. 

Hence, similar to [14] comparison study, the number of 

simulations was set at 2,000 for each condition. 

3.4. Comparison of the Models Goodness-of- Fit 

The goodness of fit of a statistical model describes how 

well it fits into a set of observations. Suppose we are 

interested in model selection for a set of N observations 

where we have say, q model parameters to be estimated. 

Furthermore, let L denote the log-likelihood, then the two 

commonly used goodness-of-fit statistics for model selection 

are Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) calculated as follows:  

2 2AIC L q= − +  

2 ln( )BIC L q N= − +                           (27) 

In this study, each simulated dataset was analyzed with 

each of the three count data models to obtain the model's 

summary. AIC was used to compare how different models fit 

to different sets of the simulated count data. AIC is a linear 

transformation of the log-likelihood statistic with a result that 

is positive in sign and is interpreted in a lower-is-better 

fashion [14]. The advantage is that the AIC can be used to 

descriptively compare all models regardless of whether one is 

nested or not within another. 

4. Results and Discussion 

Simulation Results and Discussion 

It is important to note that the results of this work were 

limited to the assumptions that the count data has at least 

some zero count and that the zeros have an importance 

attached to them. 
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A sample of 100 count data points composed of different 

proportions of zeros was simulated. This was based on the 

covariates which had been simulated assuming a uniform 

distribution. The count data was simulated with 5%, 10%, 

25%, 50%, 75% and 90% proportions of zero count 

respectively. At each level of zeros, the simulation was 

performed 1000 times. A regression was performed for each 

of the simulated data set with the same covariates. The 

average AIC based on each of the three models (Poisson, 

Negative binomial and Hurdle) was obtained. The mean and 

the variance of the simulated response variable were also 

noted. 

From table 1, for 0.05 proportion of zeros in the simulated 

count data set, the average AIC for Poisson model (850.44) 

was the highest while that for negative binomial (678.63) was 

the least. AIC is usually interpreted in the lower is better 

fashion. The mean of the response variable was 11.39 while 

the variance was found to be 40.97. These results are 

interpreted to mean that if the response variable is made of 

about 5% zeros and it is also over-dispersed (variance > 

mean), then the best model to use is the negative binomial as 

opposed to the Poisson and the hurdle models. 

When the count data had 0.10 proportion of zeros, the 

average AICs for Poisson, negative binomial and hurdle 

models were found to be 882.27, 670.72, 737.12 respectively. 

The mean and the variance of response variable was 10.21 

and 41.46. The implication of these results is that in 

modeling over-dispersed count data, if the response variable 

is composed of approximately 10% zero count, then the 

negative binomial is the best model to use as it fits well to the 

data as explained by its average AIC value. 

Poisson model fits badly to over-dispersed count data with 

about 25% proportion of zeros. Negative binomial and hurdle 

models are better compared to Poisson as depicted by their 

lower AICs of 627.88 and 684.52 respectively. Of all the 

models under consideration, negative binomial scores the 

best in terms of AIC values at this level (0.25) of zero 

proportions in the count data. 

Table 1. Summary of results of data simulation. 

  AICs  Response variable 

Zero 

proportion 
Poisson 

Negative 

binomial 
Hurdle Mean Variance 

0.05 850.44 678.63 794.57 11.39 40.97 

0.10 882.27 670.72 737.12 10.21 41.46 

0.25 1007.33 627.88 684.52 7.88 47.30 

0.50 1055.86 1057.82 501.48 5.00 39.76 

0.75 847.05 849.00 308.19 2.37 24.84 

0.90 566.77 568.72 134.25 1.10 13.10 

For the count data with about 50% zeros, the obtained 

average AICs for Poisson, negative binomial and hurdle 

models were 1055.86, 1057.82 and 501.48 respectively. The 

interpretation of these results were that when approximately 

half of the count data has a zero count and the data is over-

dispersed then the best model to use is the hurdle model as 

opposed to the Poisson and negative binomial models which 

have relatively higher AICs at this level. For 0.75 and 0.90 

proportion of zero in the count data, the AIC for hurdle 

model remains the least amongst the three count data models. 

These results are further explained by graph for AICs 

versus zero proportion in figure 1. The graph shows that the 

negative binomial dominates the other models up to a point 

when the count data has about 30% zeros after which the 

hurdle model dominates and becomes better and better as the 

proportion of zeros increase. The implication of these is that 

the hurdle model can be used to handle over-dispersed count 

data with excess zeros. 

 

Figure 1. A comparative graph of AICs for different count data models. 
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5. Conclusions and Recommendations 

From the results of simulation, it can be concluded that for 

over-dispersed count data in which the proportion of zero is 

about 5% and that of non-zero count is about 95%, then the 

best model to use is negative binomial. The model still 

performs the best for 0.10 and 0.25 proportions of zero in the 

count data. In short, negative binomial fits well to count data 

composed of up to below 30% proportions of zero. It was 

also concluded that for 0.50, 0.75 and 0.90 proportions of 

zero the hurdle model fits the best as compared to Poisson 

and negative binomial models. Hurdle model gets better and 

better as the proportion of zero increases from 0.30 to 0.90 

and therefore it can be used when the count data has the over-

dispersion property and excess zeros. 

Based on the results of this work, we recommend that in 

modeling count data, apart from considering whether the 

model’s assumptions are met, the researcher or any other 

practitioner should also consider the zero proportion in the 

dataset. If the proportion of zero in the count data is below 

0.30 and the data is also over-dispersed, then negative 

binomial model should be used. Otherwise, if the zero 

proportion is about 0.30 or more then hurdle model could be 

a better choice. 
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