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Abstract: This study investigates the problem of robust control for a class of discrete-time singular Marovian jump systems 

with partly unknown transition rates. Linear matrix inequality (LMI)-based sufficient conditions for the stochastic stability and 

robust control are developed. Then, a static output feedback controller and a robust static output feedback controller are designed 

to make sure the closed-loop systems are piecewise regular, causal and stochastically stable. Finally, numerical examples are 

presented to demonstrate the effectiveness and advantages of the theoretical results. 
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1. Introduction 

Singular systems, which are also referred to as descriptor 

systems, differential-algebraic systems, generalized 

state-space systems and semistate-space systems, provide 

convenient and natural representations in the description of 

circuits system [1], power systems [2], economic system [3], 

singular biological systems [4] and so on. There are some 

results have been reported on stability analysis and control 

design for the singular systems [5-10], where not only the 

asymptotic stability, but the system regularity and 

free-impulse/causal problems are considered for a class for 

singular systems. 

In recent years, the study of Markovian jump systems 

problem has attracted considerable attentions of many 

researchers. Markovian jump systems are an important class 

of stochastic systems, which are popular in modelling many 

practical systems that may experience random abrupt changes 

in their structures and parameters [11-24]. More recently, there 

are some initial studies on singular systems with Markovian 

switching, for the discrete-time case, see [11], the problems of 

stability, state feedback control and static output feedback 

control for a class of discrete-time singular hybrid systems 

were investigated, and a new sufficient and necessary 

condition guaranteeing the system to be regular, causal and 

stochastically stable was proposed in terms of a set of coupled 

strict LMIs. But, the results developed in these references 

require the critical assumption on the complete knowledge of 

the transition probabilities in the jump process, see [11-25]. 

[26] proposes the less conservative stabilization conditions for 

MJSs with incomplete knowledge of transition probabilities 

and input saturation. The delay-dependent stability problem 

for neutral Markovian jump systems with generally unknown 

transition rates was investigated in [27]. In [27], each 

transition rate is completely unknown or only its estimate 

value is known. Based on the study of expectations of the 

stochastic cross-terms containing the Itoˆ integral, a new 

stability criterion is derived in terms of linear matrix 

inequalities. 

This paper considers the robust control of discrete-time 

uncertain singular Markovian jump system systems with 

partially unknown transition probabilities of this paper are as 

follows: (1). Design of a static output feedback controller for 

the systems with partially unknown transition probabilities by 

LMIs. (2). The technique of design of a static output feedback 
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controller for the systems with partially unknown transition 

probabilities is extended to the uncertain systems by LMIs. (3). 

It is shown that the solution of the matrix inequalities in this 

paper can be more easily to obtain, which use two matrices 

1
W  and 

2
W  instead of two scalars in [11] to solve the output 

feedback controller by example 1. 

Notation: The superscripts T and (-1) stand for matrix 

transposition and matrix inverse, respectively; nR  denotes 

the n-dimensional Euclidean space; Z denotes the set of 

non-negative integer numbers; the notation X>Y (X ≥  Y), 

where X, Y are symmetric matrices, means that X-Y positive 

definite (positive semidefinite). ∗  denotes the term that is 

induced by symmetry. ( )FΩ, ,Ρ  denotes a complete 

probability space, in which Ω  is the sample space, F is the 

σ  algebra of subsets of the sample space, and Ρ  is the 

probability measure on F . Matrices, if their dimensions are 

not explicitly stated, are assumed to have appropriate 

dimensions for algebraic operations. For simplicity, 

sometimes 
i

A , 
i

B , 
i

A∆ , 
i

B∆  and 
i

K  are used to denote 

( )kA r , ( )kB r , ( )kC r , ( )kA r∆ , ( )kB r∆ , and ( )kK r , 

respectively. 

2. Problem Formulation and 

Preliminaries 

Consider the following discrete-time singular Markovian 

jump systems with an interval time-varying delay in the state, 

defined on a complete probability space ( )FΩ, ,Ρ   

( ) ( ) ( )( ) ( ) ( )
( ) ( )

( ) ( ) ( )

1 (

                    + ,

,

k k u k

k

k

Ex k A r A r x k B r

B r u k

y k C r x k

 + = + ∆ +


∆
 =

     (1) 

where ( ) nx k R∈  is the system state, ( ) py k R∈  is the 

output vector, ( ) mu k R∈  is the input vector, ( ) n n

tA r R ×∈ , 

( ) n m

u tB r R ×∈ , and ( ) p m

tC r R ×∈  are known real constant 

matrices with appropriate dimensions, and ( ) p n

tC r R ×∈  are 

assumed to be of full row rank. The matrix n nE R ×∈ may be 

singular, with ; The matrices ( )kA r∆  and ( )kB r∆  are 

unknown matrices representing parameter uncertainties, and 

are assumed to be of the form  

[ ] ( )[ ]1 2  ,i i i i i iA B D F k M M∆ ∆ =          (2) 

where iD , 1iM  and 2iM  are known real constant matrices, 

and are unknown matrix functions satisfying  

( ) ( ) ,
T

i iF k F k I≤                 (3) 

{ }, 0kr k ≥  is the jumping process. { }kr  is a discrete time 

homogeneous Markovian process with right discrete 

trajectories which takes values in a finite set }{1, 2, , ,l N= …

with transition probability matrix ij
N N

π π
×

 =   , and 0ijπ ≥  

is defined as  

{ }1Pr | ,ij k kr j r iπ += = =
 

Where 1 , j 1N

j iπ=∑ = , and the Markovian process transition 

probability matrix π  is defined by  

11 12 1

21 22 2

1 2

,

N

N

N N NN

π π π
π π π

π

π π π

 
 
 =
 
  
 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯
 

In addition, the transition probabilities of the jumping 

process are considered to be all known and partially accessed 

in this paper, some elements, for the systems eq.(1) with 4 

operation modes, the transition probability matrix π  may be 

expressed three cases as following: 

11 12 13 14

24

31 33

? ? ?
,

? ?

? ? ? ?

π π π π
π

π
π π

 
 
 =
 
 
   

Where “?” represents the inaccessible elements. For 

notational clarity, i l∀ ∈  we denote i i

k ukl l l= ∪  where  

{ }:   ,i

k ijl j is knownπ=
 

{ }:   ,i

uk ijl j is unknownπ=
 

Moreover, if 
i

kl ≠ ∅ , it is further described as 

{ }1 2, , ,i i i i

k ml k k k= … , 1 m N∀ ≤ ≤ , where 
i

mk N +∈  represents 

the m th known element with index in the i th row of matrix 

π . Because 1 , 1N

j i jπ=Σ =  and 1 21 2
, , 1i i

k uk
i j i jj l j l

π π
∈ ∈

Σ + Σ = , we 

denote 

2 12 1
, ,1 ,i i

uk k
i i j i jj l j l

h π π
∈ ∈

= Σ = − Σ            (4) 

Where 1 2,  i i

k ukj l j l∈ ∈
  

Definition 1 

(1). The discrete-time singular Markovian jump systems in 

eq. (1) with ( )kA r∆ , ( )kB r∆ , ( ) 0u k =  are said to be 

regular if, for each i l∈ , ( )det izE A−  is not identically 

zero. 

(2). The discrete-time singular Markovian jump systems eq. 

(1) with ( )kA r∆ , ( )kB r∆ , ( ) 0u k =  are said to be regular if, 

for each i l∈ , 

( )( ) ( )deg det izE A rank E− =
. 

(3). The discrete-time singular Markovian jump systems eq. 
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(1) with ( )kA r∆ , ( )kB r∆ , ( ) 0u k =  are said to be 

stochastically admissible if for any 
0

nx R∈  and 
0

r l∈ , there 

exists a scalar ( )0 0,M x r  such that 

( ) ( )2

0 0 0 0

0

| , , ,
k

E x k x r M x r
∞

=

  < 
 

∑� �  

Where ( )0 0, ,x k x r  denotes the solution to the systems eq. 

(1) at time k  under the initial conditions 0x  and 0r . 

(4). The discrete-time singular Markovian jump systems eq. 

(1) with ( )kA r∆ , ( )kB r∆ , ( ) 0u k =  are said to be 

stochastically admissible if they are regular, causal and 

stochastically stable.  

Define n nR R ×∈  as the matrix with the properties of 

0T TE R =  and which are used in all the subsequent lemmas 

and theorems. 

Lemma 1: Let i
L  be nonsingular matrices with appropriate 

dimensions, for i l∈ . Then, the inequalities  

,

1

0,
N

T T T

i i j j i i

j

A P R R A E PEπ
=

 
− Φ − < 

 
∑  

Hold if for  

,

0,

T T

i i i i

T N T

i i i j l i j j i i

A L L

L A L P L Lπ∈

 Π −
< − ∑ − −  

 

Where .
i

T T T T T

i i i i i i iA L L A A R RA E PEΠ = + − Φ −   

Lemma 2: The discrete-time singular Markovian jump 

systems eq. (1) with ( )k
A r∆ , ( )k

B r∆ , ( ) 0u k =  and 

partially unknown transition probabilities are stochastically 

admissible and if and only if there exist a set of positive 

definite matrices ,
i

P  i l∈ , a symmetric and nonsingular 

matrix Φ , satisfying  

,

1

0,
N

T T T

i i j j i i

j

A P R R A E PEπ
=

 
− Φ − < 

 
∑     (5) 

Where 
1 1 21

,
,i

k
i i j j i jj l

P P h Pπ
∈

= ∑ +   

2 12 1
, ,1 ,i i

uk k
i i j i jj l j l

h π π
∈ ∈

= Σ = − Σ  

Lemma 3: Let G  be a real symmetric matrix and ,D H  

Be real matrices with appropriate dimensions. Then, 

( ) ( )( ) 0
T

G DF k H DF k H+ + <  holds for any 

( ) ( )TF k F k I≤ , if and only if there exist a constant sclar  

0ε >  satisfying 1 0T TG DD H Hε ε −+ + < . 

Remark 1: For each i
G  are of full row rank, and 0i iC C ⊥ = , 

the invertible matrices i
T  generally are not unique. A  

special i
T  can be obtained by  

( ) 1
T T

i i i i iT C C C C
− ⊥ =

  
 

Then, we have 

Consider the following static output feedback controller 

( ) ( ) ( ) ,
k

u k K r y k=                  (6) 

Where ( )k
K r  are the static output feedback gain to be  

Determined. Substituting eq. (4) into system eq. (1) yields 

the closed-loop systems: 

( ) ( )( ) ( )1 ,i i i i i iEx k A A B B K C x k+ = + ∆ + + ∆    (7) 

Theorem 1: The discrete-time singular Markovian jump 

systems eq.(7) with partially unknown transition probabilities 

are stochastically admissible if and only if there exist a set of 

positive definite matrices i
P , i l∈ , a symmetric and 

nonsingular matrix Φ , satisfying 

( ) 0,T T T T

i i i i i i
A P R R A T E PET− Φ − <          (8) 

Where 

( )( ) ,i i i i i i iA A A B B K C= + ∆ + + ∆  

2 12 1
, ,1 ,i i

uk k
i i j i jj l j l

h π π
∈ ∈

= Σ = − Σ  

1 1 21
,

.i
k

i i j j i jj l
P P h Pπ

∈
= ∑ +  

Theorem 2: For each i l∈ , let 1 2
,W W  be the given 

appropriate matrices, the corresponding closed-loop systems 

eq.(7) with partially unknown transition probabilities are 

regular, causal and stochastically stable if there exists positive 

definite matrices ,
i

Y  ,Ψ  nonsingular matrices i
G  and i

H  

satisfying the following matrix inequalities 

0

0,

T

i i

T T

i i i

i

G G M

 Ω Λ
 

∗ − − < 
 ∗ ∗ −Θ 

             (9) 

Where 

( )( ) ( )
( )( ) ( )

( )
( ) ( )

( )( )

1 1 2

2 2

2 1 1 2 2

        

        

        

        

Ω = + ∆ + + ∆

+ + ∆ + + ∆

− − − + ∆

− + ∆ − + ∆

+ ∆ + + Ψ

T
T

i i i i i i i i i

T

i i i i i i

T T T T

i i i i i i

TT T T

i i i i i

T
T T T

i i i

G A A T A A T G

B B Z B B Z

W EG G E W W R A A T G

G T A A R W W R B B

Z B B Z R W W YW W W

 

( ) ( ) ,T

i i i i i i i i i
A A T G B B Z GΛ = + ∆ + + ∆ −  

11 2, , , , ,
T

T T T T

i i i i i ij i iM G G G hGπ π π =
 

…  
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1 21 2
, , , , ,

i j j
diag Y Y Y Y Θ =  …  

[ ]0 ,i iZ H=  1
.i i iH K G=  

Proof. By applying Lemma 1 to Theorem 1 for each ,i l∈  it 

Follows that inequalities (8) holds if  

0,
T

i i i i

T T

i i i i i i

A L L

L A L P L L

 Ω −
< 

− − − 
          (10) 

Where 

( )( ) ,i i i i i i iA A A B B K C= + ∆ + + ∆  

1 2

2 1 1 2 2        ,

T T T T T T

i i i i i i i i i i

T T T T T

i i i

G A AG W EG G E W W RAG

G A R W W YW W W

Ω = + − − −

− + + Ψ
 

Let 1

i iL G− =  and pre- and post-multiplying eq. (10) by 

both [ ]T

i i iG diag G G=  and its transpose, then we have  

( )
2

0,

T T

i i i i

T T

i ki i j i i i

G A G

G P h P G G G

 ϒ −
  <

∗ + − −  

      (11) 

Where  

1 ,T T T T T T T

i i i i i i i i i i i iG A AG G A R RAG G E PEG−ϒ = + − Ψ −   

1 11
,

,i
k

ki i j jj l
P Pπ

∈
= ∑   

( )( ) ,i i i i i i iA A A B B K C= + ∆ + + ∆  

Let 1 ,i iY P− =  by using the Schur complement lemma, it is 

easy to show that  

0

0,

T T

i i i i

T T

i i i

i

G A G

G G M

 Γ −
 ∗ − − < 
 ∗ ∗ −Θ 

         (12) 

Where  

1 1 ,− −Γ = + − Ψ −T T T T T T T

i i i i i i i i i i i iG A AG G A R RAG G E Y EG  

11 2, , , , ,
T

T T T T

i i i i i ij i iM G G G hGπ π π =
 

…  

1 21 2, , , , ,i j jdiag Y Y Y Y Θ =  …  

( )( ).i i i i i i iA A A B B K C= + ∆ + + ∆  

According to Lemma 3, choose the appropriate matrices 

1 2,  ,W W  such that 

( ) ( )1

1 1

1

1 1 1 1

0

   

T T T

i i i i i

T T T T T T

i i i i i i

G E W Y Y EG Y E

G E Y EG W EG G E W W YW

−

−

≤ − −

= − − +
  (13) 

( ) ( )1

2 2

1

2

2 2 2

0

   =

      

−

−

≤ − Ψ Ψ − Ψ

Ψ −

− + Ψ

T T T T

i i i i

T T T T

i i i i i i

T T T T

i i

G A R W RA G W

G A R RA G W RA G

G A R W W W

   (14) 

It is easy to show that (13) and (14) can be rewritten as  

1

1 1 1 1

T T T T T T

i i i i i iG E Y EG W EG G E W W YW−− ≤ − − +   (15) 

1

2 2 2 2+−− Ψ ≤ − − ΨT T T T T T T T

i i i i i i i iG A R RAG W RAG G A R W W W  (16) 

From eq. (12), eq. (15) and eq. (16), we have  

0 0T T T T

i i i i i i i i

T T T T

i i i i i i

i i

G A G G A G

G G W G G W

   Γ − Ω −
   ∗ − − ≤ ∗ − −   
   ∗ ∗ −Θ ∗ ∗ −Θ   

  

Where  

1 1 ,− −Γ = + − Ψ −T T T T T T T

i i i i i i i i i i i iG A AG G A R RAG G E Y EG  

1 1 2

2 1 1 2 2       ,

T T T T T T

i i i i i i i i i

T T T T T

i i i

G A AG W EG G E W W RAG

G A R W W YW W W

Ω = + − − −

− + + Ψ
 

( )( ).i i i i i i iA A A B B K C= + ∆ + + ∆  

Considering inequalities above. The inequalities eq. (8) 

hold if  

0

0,

T T

i i i i

T T

i i i

i

G A G

G G W

 Ω −
 ∗ − − < 
 ∗ ∗ −Θ 

        (1) 

Let matrices iG  in the form of 
1

2 31

0i

i

G

G G

 
 
 

andare 

nonsingular, ( )
2

n q q

iG R
− ×∈  and ( ) ( )

3

n q n q

iG R
− × −∈ are arbitrary 

matrices, and let 1i i iK G H= , [ ]0i iZ H= , then we have eq. 

(9). This completes the proof. 

In order to design a static output feedback controller 

( ) ( ) ( )ku k K r y k=  for (1) in the form of LMIs. Theorem 2 

will be replaced by the following theorem.  

Theorem 3: For each i l∈ , let 1 2,W W  be the given 

appropriate matrices, the corresponding closed-loop systems 

eq.(7) with partially unknown transition probabilities are 

regular, causal and stochastically stable if there exists positive 

definite matrices ,iY  ,Ψ  nonsingular matrices iG  and iH  

satisfying the following matrix inequalities 
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1 2 4 5 6 7 8 9

3

1

2

3

4

5

6

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0,

0 0 0

0 0

0

Γ Γ Γ Γ Γ Γ Γ Γ 
 ∗ Γ 
 ∗ ∗ Θ
 ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗ <
 

∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗ ∗ ∗
 

∗ ∗ ∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

i i i i i i i i

T

i i

i

i

i

i

i

i

i

M

γ
γ

γ
γ

γ
γ

  (18) 

Where 

( )

( )

1

1 1 2 2

2 2 1 1 2 2

1 2 3 2 2

4 2 2

         

         

          +

         ,    

TT T T

i i i i i i i i i i i

T T T T T

i i i i i i i

TT T T T T T

i i i i i i

T T T T T T

i i i i i i i i i

T T T T

i i i

G T A AT G B Z B Z

W EG G E W W RAT G W RB Z

G T A RW B Z R W W YW W W

D D D D W RD D R W

W RD D R W

γ γ γ
γ

Γ = + + +

− − − −

− − + + Ψ

+ +

+      

 

( ) ( )2 ,
T TT

i i i i i i iG AT B Z GΓ = + −  

( )3 1 2 ,T T

i i i i i i iG G D Dγ γΓ = − − + +  

( )4 6 8 1 ,
TT

i i i i i iG M TΓ = Γ = Γ =  

( )5 7 9 2 ,
T

i i i i iM ZΓ = Γ = Γ =  

11 2, , , ,
T

T T T T

i i i i i ij i iM G G G hGπ π π =
 

… , 

1 21 2
, , , , ,

i j j
diag Y Y Y Y Θ =  … [ ]0 ,

i i
Z H=  1

,
i i i

H K G=

1 1 2 2
,  ,

i i i i
I Iγ β γ β= − = −   

3 1 4 2 5 3 6 4
,  ,  ,  .

i i i i i i i i
I I I Iγ α γ α γ α γ α= − = − = − = −   

In this case, the gains of the stabilizing static output 

feedback controller are given by 1.i i iK H G−=   

Proof. Firstly, from Theorem 2, we know that eq. (7) are 

robustly stochastically admissible if there exist positive 

definite matrices ,  
i

Y Ψ , nonsingular matrices 
i

G  and 
i

H  

and the gains of the stabilizing static output feedback 

controller 1

i i iK H G−= , eq. (9) holds for each i l∈ .  

Next, the matrices of inequalities eq. (9) can be 

decomposed as  

( ) ( )10 0  Ω Λ Ω + −
  

∗ − − = ∗ − −  
    ∗ ∗ −Θ ∗ ∗ −Θ   

T TT T

i i i i i i i i i

T T T T

i i i i i i

i i

G AT B Z G

G G M G G M  

( ) ( )

( ) ( )

( ) ( )

2

1

2

0

0 0

0

0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

T TT

i i i i i i

T TT

i i i i i i i

T T

i i i

i

T TT

i i i i i i

G AT B Z

G AT B Z G

G G M

G AT B Z

 Ω ∆ + ∆
 

+ ∗ 
  ∗ ∗
 

 Ω + −
 

= ∗ − − 
  ∗ ∗ −Θ
 

  Ω ∆ + ∆
  

+ + ∗  
         

( ) ( )1 0
T TT

i i i i i i i

T T

i i i

i

G AT B Z G

G G M

 Ω + −
 

= ∗ − − 
  ∗ ∗ −Θ
 

 

( )( )

( )( )

1
2

2

0 00 0

0 0 0 0 0

0 0 0 0 0 0

0 0

0 0 0

0 0 0

T
T

i i i iii

T

i i ii

G D F k M T

D F k M Z

 
 Ω  
   + + ∗   
    

 

 
 
 + ∗ <
 
 
 

 

Where  

( )

( )

1

1 1 2 2

2 2 1 1 2 2

        

        ,

TT T T

i i i i i i i i i i i

T T T T T

i i i i i i i

TT T T T T T T

i i i i i i

G T A AT G B Z B Z

W EG G E W W RAT G W RB Z

G T A R W B Z R W W YW W W

Ω = + + +

− − − −

− − + + Ψ

 

According to Lemma 3, eq. (9) hold if there exist scalars 

1 2 3 4 1 20,  0,  0,  0,  0,  0i i i i i iα α α α β β> > > > > >  for each 

i l∈ , such that  

( ) ( )

( )

( )

2

1 2

1

1 1 1

1

0 0 0 0 0

 0 0 0 0 0

0 0 0 0 0 0

0 0

0 0 0

0 0 0

0

−

 Ω  
   + +   
    

 Ω + −
 

∗ − −

 

 
 

+  
 
 

 
  ∗ ∗





−Θ


+

⌢

T TT

i i i i i i

i

T

i i i i
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i i i i i i i

i

T T

i i i

i

G AT B Z G

G G

D D

G M T M G

M

T

β β
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( )1

2 2 2 0 0

0 0 0 0

0 0 0

− 
 

+ < 
 
  

T

i i i i iM Z M Zβ
 

Where  

( )
( ) ( )
( )

2 1 2 3 2 2

1

4 2 2 1 1 1

1 1

2 2 2 3 1 1

1

4 2 2

ˆ

         

         +

         +

T T T T T T

i i i i i i i i i i

TT T T T T

i i i i i i i i i i

T TT

i i i i i i i i i i i i

T

i i i i

D D D D W RD D R W
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α α

α α

α

−
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By using the Schur complement lemma, we have LMIs eq. 

(18).  

This proof can be completed.  

Remark 2: If i

ukl = ∅ , then 
11

, 1i
k

i jj l
π

∈
∑ =  for every i l∈ . 

It means that the elements in every i  th row are all known. 

2 12 1
, ,1 0,i i

uk k
i i j i jj l j l

h π π
∈ ∈

= ∑ = −∑ =  

Moreover, the transition probabilities with partially 

unknown or completely known, which can still be viewed as 

accessible in the sense of this paper. Therefore, our transition 

probabilities matrix considered in the sequel is a more natural 

assumption to the singular Markovian jump systems and 

hence convers the existing ones. 

Remark 3: From the proof of Theorem 2, it is easy to see 

that matrices 
1

W  and 
2

W  can be arbitrary. So the matrix 

inequalities in eq. (9) can be viewed as a standard LMI when 

matrices 
1

W  and. Define two scalars δ  and η  satisfying: 

1 1 2 1min ,  mini i i iEG YW RA G W
δ η

δ η− ≤ − Ψ ≤� � � �  

s.t. eq. (9). We have pointed out that in order to fix the 

matrices 
1

W  and 
2

W , a matrix equality constant has to be 

involved, which forms a minimization problem.  

Based on the earlier discussion, the following algorithm is 

to be presented  

Iterative LMI Algorithm: 

Step 1: For desired decay rate 0δ ≥  and 0η ≥  give the 

initial matrices 
1

W  and 
2

W , and find a feasible solution for 

the linear matrix inequalities eq. (9). Denote the feasible 

solution as ( )0 0 0 0 0, , , ,i iG Yδ η Ψ . Take 0iG , 0i
Y  and 0Ψ  as 

the iterative initial values. 

Step 2: Given the initial values ( )0 0 0 0 0, , , ,
i i

G Yδ η Ψ , solve 

the minimization problem: 

0 0 11 0min ,i iEG Y W
δ

δ− ≤� �  

0 0 21 1 0min i iRA G W
η

η− Ψ ≤� �  

Denote the minimizing solution as ( )11 21,W W . 

Step 3: If 1 0δ δ≥ , 1 0η η≥ . Then, stop. Otherwise, go to 

step 2. 

Remark 4: In Theorem 2, appropriate matrices 1W  and can 

guarantee the matrices ( ) ( )1

1 1

T T T

i i i i iG E W Y Y EG YW
−− −  and 

( ) ( )1

2 2

T T T T

i i i iG A R W RAG W−− Ψ Ψ − Ψ  in eq. (13) and eq. (14) 

tend to zero, which has reduced the conservatism. It is not only 

easy to obtain the solutions of eq. (9) and the matrix 

inequalities of the following theorem, but also to reduce the 

conservatism compared with Theorem 13 in [11], which has 

used two scalars. Especially, when we choose 1W  and 2W  in 

terms of 1 1 1 1[ , , , ]W diag α α α= …  and 2 2 2 2[ , , , ]W diag α α α= … , it 

can be seen that matrix parameters in handing this problem by 

applying a set of matrix operations.  

Remark 5: It is noted that Theorem 2 are degenerated to 

Theorem 12 in [11], when we choose 1W  and 2
W  in terms of 

1 1 1 1[ , , , ]W diag α α α= …  and 2 2 2 2[ , , , ].W diag α α α= …   

3. Numerical Examples and Simulation 

In this section, some numerical examples will be given to 

show the validity of the develop theoretical results. 

Example 1:  

Consider the discrete-time uncertain singular Markovian  

Jump systems eq. (1) with the following parameters: 

4.1 0
,

0 0
E

 
=  
 

1

4.9 0
,

1 3.6
A

 
=  
 

 2

4.1 0.3
,

0 3.1
A

 
=  
 

  

1

2.2 0.8
,

0 0.5
B

− 
=  
 

 2

0.8 1
,

0.6 2.5
B

 
=  − 

  

[ ]1 1 0.1 ,C = −  [ ]2 1 0.1 ,C =  
0 0

,
0 1.5

R
 

=  
 

  

[ ]11 0.2 0 ,M =  [ ]12 0.1 0 ,M =   

[ ]21 0.2 1 ,M =  [ ]22 0.1 1 ,M =  

1

0.9901 0.0995
,

0.099 0.995
T

 
=  − 

 2

0.9901 0.0995
,

0.099 0.995
T

− 
=  
 

 

The transition probability matrix of form is given by. 

0.5 0.5
,

? ?
π  

=  
 

                    (19) 

Our goal is to design a static output feedback controllers 

such that the closed-loop systems are stochastically stable. 

According to Theorem 3 and Remark 3, let  

1

1.5 0.1
,

0 1
W

 
=  
 

 2

2 0.1
,

0 2
W

 
=  
 

  

Designed for control the gains of the stabilizing static 

output feedback controller: 
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1

1.7302
,

0.0691
K

− 
=  
 

 2

2.7815
,

0.6312
K

− 
=  − 

  

After applying Theorem 3, trajectory simulation for the 

closed-loop system systems shown in Fig. 1 are stochastically 

admissible with the same Markovian jump process under the 

given initial condition [ ]0 0.1, 0.9
T

x = − . 

Example 2:  

Consider the discrete-time uncertain singular Markovian 

Jump Systems eq. (1) with the parameters the same as in 

Example 1 except  

1

4.9 0
,

1 3.6
A

 
=  
 

 2

4.1 0.3
,

0 3.1
A

 
=  
 

  

[ ]11 12 21 22 0 0 ,M M M M= = = =   

The transition probability matrix of form is given by eq. (19). 

The switching of the mode used in the simulation is shown in 

Fig. 2. Our goal is to design a controller eq. (7) are 

stochastically stable. According to Theorem 2 and Remark 3, let  

1

1.5 0.1
,

0 1
W

 
=  
 

 2

2 0.1
,

0 2
W

 
=  
 

  

Designed for control the gains of the stabilizing static 

output feedback controller: 

[ ]1 6.3933 ,K = −  [ ]2 6.2710 .K = −   

Applying this controller makes the closed-loop systems eq. 

(7) stochastically stable. Fig. 4 shows that the closed-loop 

systems trajectories of the given initial condition 

[ ]0 1, 0.9
T

x = −  tend to be the zero equilibrium. That is to say, 

this number example is finally stochastically admissible. 

Remark 6: Fig. 4 shows the admissibility analysis Theorem 

2 to solve the output feedback controller with two matrices  

1

1.5 0.1
,

0 1
W

 
=  
 

 2

2 0.1
,

0 2
W

 
=  
 

  

(o) and two scalars 
1

1W =  and 
2

2 (+)W = , when the 

transition probabilities of the systems are partially unknown. 

It is shown that the solution of the matrix inequalities, which 

use matrices in Theorem 2 can be obtained easier. 

 

Figure 1. State response of the closed-loop systems eq. (7) for the robust 

static output feedback control. 

 

Figure 2. Mode evolution 
k

r . 

 

Figure 3. State response of the closed-loop systems eq. (7) for static output 

feedback control. 

 

Figure 4. Admissibility analysis with Theorem 2 use two matrices (o) and two 

scalars (+). 

4. Conclusion 

In this paper, we deal with the problem of the static output 

feedback control problem for a class of discrete-time singular 

Marovian jump systems with partly unknown transition rates. 

The considered systems are more general than the systems 

with completely known transition rates or completely 

unknown transition probabilities. In terms of linear matrix 

inequalities, based on a necessary and sufficient condition of 

the stochastic stability with partially unknown transition 

probabilities of the unforced systems, some sufficient 

conditions are obtained to design of a static output feedback 

controller and a robust static output feedback controller, which 
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guarantee that the closed-loop systems are piecewise regular, 

causal and stochastically stable by employing the linear matrix 

inequality technique. Some numerical examples have shown 

the validity and the applicability of the developed results. The 

future work will focus on the study of discrete-time 

Markovian jump singularly perturbed systems. 
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