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Abstract: In mining operation, blasts are used to fracture the in-situ rock mass and prepare it for excavation, crushing and 

grinding. The High-energy blasting, which uses increased amount of explosive material per tonne of rock, is considered to be one 

of most effective ways to reduce the consumption of energy in the milling process, resulting production saving as well as 

reduction in dust (PM5) and tailing. In this article, the main focus is to investigate the electrical intensity of the five grinding 

lines in the mill, as they accounted for the majority of site electricity consumption, in relations to other operational procedures, 

in particular the high-energy blasting. Several regression models were established, the data points were fitted within 10% of the 

actual values, and the majority within 5%. The models provide management better ways to predict and target electrical 

consumption and environmental impact. 

Keywords: Key Performance Indicator (KPI), Energy Conservation, Electricity Intensity, Open-Pit Mining,  

High-Energy Blasting, Powder Factor 

 

1. Introduction 

In the open-pit mining industry, blasts are used to fracture 

the in-situ rock mass and prepare it for excavation, crushing 

and grinding. High-energy blasting uses increased amount of 

explosive material per tonne of rock to increase fragmentation 

and reduce particle size. Reduced particle sizes require less 

time in the grinding process to be reduced to the necessary size 

for processing resulting in an increased rate of throughput and 

a decrease in the energy consumption of production. The 

High-energy blasting is considered to be one of most effective 

ways to reduce the consumption of energy in the milling 

process, resulting production saving as well as reduction in 

dust (PM5) and tailing. Highland Valley Copper (HVC) is an 

operation within the Teck Copper Business Unit that 

produces copper and molybdenum concentrates. To better 

understand its energy performance, the investigation focuses 

on developing a set of Key Performance Indicators (KPIs) 

suitable to the needs and priorities of HVC in supporting 

decision making of efficient operations, and providing 

benchmarks and monitor tools for energy conservation. 

Key Performance Indicator (KPI) is a crucial tool to 

measure one’s progress towards pre-defined objectives. KPIs 

have been widely used by organizations to measure financial 

or operational performance, as well as sustainability, 

conservation, environment, and health or safety issues from 

times to times [1, 2, 4, 5, 6, 8, 9, 12]. 

The primary focus of the study was on the electrical 

intensity of the five grinding lines in the mill as they 

accounted for the majority of site electricity consumption. A 

relationship between electrical intensity and mill throughput 

was initially established. It was then determined that the 

previous throughput model used in planning was inadequate 

to accurately account for recent adoption of blasting 

technique, high energy blasting. 

In order to produce a more accurate model of mill 

throughput, several key variables were used: the rock 

hardness, the powder factor used in blasting, the percentage 

of high energy, and trim & buffer (wall control) blasting. A 

series of models focus on the viability of using powder factor, 
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hardness, blasting rates as independent variables with weekly 

or daily data. A polynomial model for throughput using 

weekly data for the hardness, high energy blasting rate, and 

trim & buffer blasting rate was found to perform best. In this 

model, all data points from the model were within 10% of the 

actual values, and the majority within 5%. The model 

performed considerably better than the previous prediction 

and has also been shown to work with relative accuracy for 

2012 data where no high energy blasting was carried out. 

While the use of the model in the prediction and targeting 

of electrical consumption are clear, it will also be of use in 

many other areas. The more understanding of throughput 

provided by the model has many uses such as more accurate 

planning, the identification of energy savings through 

blasting practices, and as a performance indicator in itself. 

This work can be taken further and used as the basis for 

developing more comprehensive models such as one 

including recovery rate of mill operation. 

Blasting as an important mine-to-mill strategy was 

investigated in relation with other processes by several 

researchers. For example, Rorke [10] considered the blasting 

to improve the free flow to loader and to increase loading rate. 

Burger et al. [3] considered the correlation of blasting and 

mill throughput. Valery, Jankovic and Sonmez [11] used 

Process Integration and Optimization methodology to 

increase mine efficiency and mill throughput by considering 

rock characterization and blasting patterns. 

2. Model Development 

HVC is committed to the efficient use of energy and the 

reduction of greenhouse gas emissions. Central to the HVC 

Energy Policy is the inclusion of energy efficiency and GHG 

considerations into its process designs and operating 

decisions. Currently, HVC uses a collection of complex 

spreadsheets to monitor the site’s energy consumption and 

produce energy-specific targets. The fundamental challenge 

behind this study was to determine how to extract 

energy-related information that is informative, concise, and 

useful to a wide range of users at the mine. 

Operations at HVC follow a standard process of drilling, 

blasting, excavation, hauling, crushing, conveying, grinding, 

flotation, and molybdenum leaching. The Mill itself is 

comprised of 5 grinding lines, with three Semi-Autogenous 

(SAG) mills (A, B and C) and two Autogenous (AG) mills (D 

and E). Just over half of all energy consumed on site is 

electrical, with much of the remainder being diesel; however, 

electrical consumption is tracked at a much higher resolution. 

As more than half of all electrical consumption is in the 

grinding process, the study primarily focuses on the effect of 

different blasting techniques to the throughput of the five 

grinding lines in the mill. 

Key Variables 

In order to understand the electrical performance of the 

grinding process, several key variables were identified. An 

important factor in selecting these variables was that data 

related to the variables was tracked and recorded on a regular 

basis and are therefore readily available. 

� Electrical Intensity: The electrical intensity refers to the 

electrical consumption in the grinding lines per dry 

metric tonne of ore milled (kWh/DMT). 

� Hardness: When blast holes are drilled, the drills record 

a ‘drilling resistance’ indicator (the “Aquilla” or “Leica” 

number) which reflects relative variations in rock 

strength, and is consequently used as an indicator of the 

hardness of the material to be blasted. 

� Mill Throughput Rate: Throughput rate is measured by 

tonnes of ore processed in mill per operating hour 

(often referred as mill TPOH). For individual lines, 

such as A-line throughput, this is simply the total tonnes 

through A-line in a given time period divided by the 

total operating hours within that same period. 

� Powder Factor: The powder factor is simply the 

kilograms of explosive used per tonne of rock blasted. 

There are three categories of rock hardness, and three 

different blast designs alongside a standard production 

blast design, there is also one for high energy blasting 

and trim and buffer blasting (T&B), corresponding to 

higher and lower powder factors. The principal behind 

high energy blasting is that using a greater powder 

factor results in greater fragmentation of the rock, 

reducing the amount of work that the mill has to do, and 

thus increasing throughput. T&B blasting is used for 

wall control where a lower powder factor is necessary 

to avoid destabilizing or damaging the pit walls. 

� Blasting Rates: Blasting rates are used to quantify the 

amount of high energy and T&B blasting performed. 

The blasting rate is a percentage of the total rock 

blasted that was done using each of the blast patterns. 

Only high energy and T&B blasting rates are used as 

the production blasting rate is naturally included as the 

remainder.  

3. Data Analysis 

The electricity intensity is affected by mill throughput rate. 

Higher throughput usually means softer ore and the ore 

requires less electricity to be ground, and results a lower 

electricity intensity. At first, we build a model to determine 

whether A-line is suitable to be a representative of other four 

lines. The model reveals that all five lines are significantly 

related and each line can be represented by A-line 

equivalence with an appropriate weight. 

At HVC, the ore from different pits gets mixed before they 

reach the stockpile. The ore are intentionally blended so that 

it is roughly uniformly mixed going into different lines, 

which justifies the strong correlation between different lines. 

3.1. Model for Electricity Intensity 

Monthly data for A-line electricity intensity (kWh/DMT) 

and A-line throughput is available. So in this model, we use 

the A-line electricity intensity as the dependent variable and 

A-line throughput as the independent variable. The plot of the 

data is given in Figure 1, where the line is the fitted linear 
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regression. The linear model seems fitted fairly well. After 

deleting one outlier, the summary of the model is given in 

Table 1. 

The R-squared represents the percentage of the variation of 

the dependent variable, which is close to 0.5, that indicates 

that the model fits very well. The Pr(> |t|) is the P-value (i.e., 

the probability that the corresponding independent variable is 

0). So a small P-value means the independent variable has a 

significant impact on the dependent variable, and usually the 

threshold is 0.05. Here the P-value for Throughput is much 

smaller than 0.05 indicating that the throughput has a very 

significant effect on the electricity intensity. We can also see 

the estimated coefficient for Throughput is negative. So when 

the throughput increases, the electricity intensity decreases, 

which is in line with our expectation. 

 

Figure 1. Linear regression of mill throughput and electricity intensity. 

Table 1. Summary of electricity intensity model (Electricity Intensity ~ 

Throughput). 

Residuals:     

Min 1Q Median 3Q Max  

-2.14711 -0.40336 0.02349 0.38944 1.42350  

Coefficients:     

 Estimate Std.  Error  t value Pr(>|t|) 

(Intercept)  23.061887 1.779022 12.963 6.61e-16 *** 

ALineTPOH  -0.009225 0.001638 -5.632 1.56e-06 *** 

---     

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.6707 on 40 degrees of freedom 

Multiple R-squared: 0.4423, Adjusted R-squared: 0.4283 

F-statistic: 31.72 on 1 and 40 DF, p-value: 1.555e-06 

3.2. Models for Mill Throughput Rate 

We found the strong relation between the electricity 

intensity and the throughput in the mill. Next we attempt to 

find the key input metrics that affects the throughput, so that 

we could link the electricity intensity with these key input 

metrics. There have been several studies done by other 

researchers (e.g., [3], [11]) to determine key inputs. It was 

indicated that hardness and blasting have impact on mill 

throughput rate. 

 

Figure 2. Weekly actual throughput versus prediction. 

Consulting with the geologists at HVC leads us to other 

mining techniques which have the potential impact to 

throughput: high energy blasting, and trim and buffer (T&B). 

High energy blasting rate and T&B rate are the percentages 

of ore blasted in high energy blasting design and ore blasted 

in T&B design, respectively. These two metrics are recorded 
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when the ore get removed from the ground. It has less time 

delay before the ore reaches the mill, generally less than 12 

hours. Meanwhile, these two rates link to powder factor 

because of different powder factor are used in each blasting 

design. The high energy blasting, which results greater 

fragmentation of the rock and therefore reduce the energy in 

grinding, is a new practice introduced recently. We build a 

model by choosing the calculated throughput as the 

dependent variable, hardness, high energy blasting rate and 

T&B rate as the independent variables. The testing shows 

that the model has a much better R-square value, and all 

independent variables are significant. The estimated 

coefficient for high energy blasting rate is positive, which is 

what we expected. But the estimated coefficient for T&B rate 

is also positive, which is a surprise. We expect that the 

coefficient is negative because it uses less explosives and 

reduces the mill throughput rate due to less fragmentation. 

The explanation is that there is a fault line that runs parallel 

to the main wall being mined in a pit. This may cause an 

increased grindability of the ore blasted in T&B design and 

thus yield a positive coefficient for T&B. Additionally, with 

finer material entering the mills as a result of high energy 

blasting, the larger chunks of ore from the trim and buffer 

section may actually serve the function of crushing ball to 

improve the grinding rate– particularly in the two AG mills 

where the process is reliant on the ore breaking itself up. 

To reduce the impact of 12-hour delay from crushers to 

stockpiles and to consider the stability of data sets, the data 

with finer resolution (e.g., daily data) may not be the most 

appropriate and so we choose to build a weekly model of 

throughput. 

Table 2. Summary of linear weekly model (Throughput ~ TandB + High 

Energy +Hardness). 

Residuals:     

Min 1Q Median 3Q Max 

-101.883 -31.613 -7.516 27.981 122.576 

Coefficients:     

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 351.1834 230.8155 1.521 0.137384 

TandB 160.8893 61.4587 2.618 * 0.013116 

High Energy 216.9825 55.1700 3.933 0.000392 *** 

MineTPOH 0.6657 0.1949 3.415 0.001666 ** 

---     

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 50.65 on 34 degrees of freedom 

Multiple R-squared: 0.4263, Adjusted R-squared: 0.3757 

F-statistic: 8.422 on 3 and 34 DF, p-value: 0.0002539 

In this model, the R-square is 0.4263 and the estimated 

coefficient for T&B is 160.8893. Figure 2 shows the actual 

mill throughput and the prediction generated by the weekly 

model. 

Figure 3 shows the performance of the weekly model. 

Here, closer to the central line the data points are, the better 

the model is. The two parallel dotted lines are ±10% range, 

i.e., the data points inside this range are within 10% 

difference to the prediction. We can see that only one data 

point lies outside this range. 

 

Figure 3. Accuracy of the prediction. 

3.3. Polynomial Models for Mill Throughput Rate 

We confirm that hardness, T&B rate, high energy blasting 

rate are strongly related to the throughput and built a linear 

model for them. To improve the accuracy of the model, we 

introduce the polynomial terms (including interaction terms) 

into the weekly model. 

At below, we present the relative importance of the 

independent variables, hardness, high energy blasting rate, 

T&B rate, in the weekly linear model. 
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Figure 4. Four methods to test the importance of independent variables. 

Figure 4 shows the importance of test results by four 

different methods, and all of them indicate that high energy 

blasting rate (High) and hardness (Hard) are relatively more 

important than T&B rate (TandB). It means high energy 

blasting rate and hardness can explain more about the 

variation of the dependent variable (i.e., mill throughput rate). 

So in the polynomial model, we add the following terms: 

HM = High · Hard 

H1M2 = High · Hard^2 

H2M1 = High^2 · Hard 

H1M3 = High · Hard^3 

H2M2 = High^2 · Hard^2 

H3M1 = High^3 · Hard 

H1M4 = High · Hard^4 

H2M3 = High^2 · Hard^3 

H3M2 = High^3 · Hard^2 

H4M1 = High^4 · Hard 

H2 = High^2 

M2 = Hard^2 

H3 = High^3 

M3 = Hard^3 

H4 = High^4 

M4 = Hard^4 

H5 = High^5 

M5 = Hard^5 

At first, we use stepwise method to select the model based 

on Akaike Information Criterion (AIC). The stepwise method 

first includes all the independent variables in the model. Then 

it calculates all the AIC values for each model without one of 

the independent variables and choose the model with the 

smallest AIC value. Iteratively, we do the same for this 

chosen model, and pick up the model with the smallest AIC 

by adding or deleting another independent variable. Table 3 

shows the summary of the model after selection. 

Table 3. Summary of polynomial model after AIC selection (Throughput ~ 

TandB +High + Hard + other interaction terms). 

Residuals:     

Min 1Q Median 3Q Max 

-60.546 -16.620 -1.089 11.588 63.088 

Coefficients:     

 Estimate Std. Error  t value  Pr(>|t|) 

(Intercept) -1.259e+08 9.049e+07 -1.391 0.1822 

High Energy -6.643e+07 5.156e+07 -1.288 0.2149 

MineTPOH 5.683e+05 3.908e+05 1.454 0.1640 

HM 2.312e+05 1.783e+05 1.297 0.2121 

M2 -1.024e+03 6.756e+02 -1.516 0.1478 

H3 -3.844e+06 2.419e+06 -1.589 0.1305 

M3 9.214e-01 5.846e-01 1.576 0.1334 

H4 -1.486e+06 7.344e+05 -2.023 0.0591. 

M4 -4.137e-04 2.532e-04 -1.634 0.1207 

H5 2.099e+05 9.353e+04 2.244 0.0384 * 

M5 7.417e-08 4.390e-08 1.689 0.1094 

H1M2 -3.022e+02 2.310e+02 -1.308 0.2082 

H2M1 2.806e+03 1.874e+03 1.497 0.1527 

H2M2 -5.411e+00 3.203e+00 -1.689 0.1094 

H1M3 1.759e-01 1.328e-01 1.324 0.2030 

H3M1 8.262e+03 4.141e+03 1.995 0.0623. 

H1M4 -3.847e-05 2.863e-05 -1.344 0.1967 

H2M3 2.533e-03 1.377e-03 1.839 0.0835. 

H3M2 -4.085e+00 1.826e+00 -2.238 0.0389 * 

H4M1 9.613e+02 5.768e+02 1.667 0.1139 

TandB 6.466e+01 6.595e+01 0.980 0.3406 

---     

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 41.65 on 17 degrees of freedom 

Multiple R-squared: 0.8061, Adjusted R-squared: 0.5779 

F-statistic: 3.533 on 20 and 17 DF, p-value: 0.005593 
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The R-square 0.8061 is good. But there are too many terms 

in the model, and it usually performs badly outside the range 

of independent variables and results in relatively large 

deviations. 

Next, we experiment another criterion, BIC, which is a 

similar criterion to AIC. It usually chooses a model with 

fewer independent variables because it penalizes more when 

there are more independent variables in the model. We still 

use the stepwise selection method to choose the model. The 

chosen model by BIC ends up being the same as the one 

selected by AIC. 

Thirdly, we turn to Cp criterion. This is a well-known 

selection criterion, which suggests the appropriate number of 

independent variables to be included in the model: 

/ ( 2 )p p allC SSE M SE n p= − −  

where MSEall is the mean squared error for the model 

including all the available independent variables, and SSEp is 

the sum of squared error of the model with p independent 

variables. 

We use the forward method to select the model. It adds 

parameters to the model and choose the best one for each 

model with different number of parameters. For each best 

model we can calculate Cp and choose the one that has the 

smallest difference between Cp and the number of parameters 

which is p. The model with eight parameters including the 

intercept turned out to be the best one. Table 4 shows the 

summary of this model. 

Table 4. Summary of polynomial model after Cp selection (Throughput ~ 

Hard + TandB + HM + H2 + H4 + H5 + H1M2). 

Residuals:     

Min 1Q Median 3Q Max 

-75.98 -35.23 -1.90 23.27 100.06 

Coefficients:     

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.929e+02 4.475e+02 0.655 0.5177 

MineTPOH 7.331e-01 3.953e-01 1.854 0.0735. 

HM -9.320e-01 1.251e+00 -0.745 0.4622 

H2 4.900e+03 2.527e+03 1.939 0.0619. 

H4 -2.808e+04 1.164e+04 -2.413 0.0221 * 

H5 3.031e+04 1.219e+04 2.487 0.0187 * 

H1M2 2.756e-04 9.954e-04 0.277 0.7838 

TandB 1.450e+02 5.650e+01 2.567 0.0155 * 

---     

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 45.15 on 30 degrees of freedom 

Multiple R-squared: 0.5977, Adjusted R-squared: 0.5039 

F-statistic: 6.368 on 7 and 30 DF, p-value: 0.0001237 

We see that the R-square is smaller now but the adjusted 

R-square doesn’t drop too much. The adjusted R-square is 

another indicator that balances the number of independent 

variables and the fit of the model. Figure 5 is the plot of 

comparison among the prediction currently used in HVC, 

actual throughput and the prediction by the new polynomial 

model. 

The current model used at HVC for predicting throughput 

consistently undervalue the actual throughput, partly because 

the high energy blasting stared in 2013 was not accounted for. 

The new polynomial model includes both the high energy 

blasting rate and T&B rate, and results a much better fitting, 

and all the data points fall within the 10% error range (see 

Figure 6). 

 

Figure 5. Model performance comparison. 

 

Figure 6. 10% error range. 

4. Conclusions 

In this project, we attempt to determine the key 

performance indicators in the mining process which have 

significant impact on mill throughput. Taking advantage of 

the high-resolution data collected at HVC, we use statistical 

techniques to analyze the relation among mill throughput, 

energy consumption and key operational factors. Linear 

regression models and polynomial models are deployed for 

the purposes. Based on the statistical analysis of the models 

given in the Section 3, we obtain the following findings: 

� There is strong correlation between mill throughput and 

electricity intensity. By improving the performance of 

mill throughput, it will significantly reduce the 

electricity consumption in the mill. 

� High energy blasting, hardness and T&B are confirmed 

to have a significant impact on mill throughput. 

� The polynomial model presented in Section 3 provides a 

better prediction of the mill throughput than the model 

currently in use. 
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The more accurate prediction from the new model will be 

helpful to the management to improve production efficiency 

by controlling the high energy blasting and useful in its 

operation management and production planning. In the 

investigation, we determined the key performance indicators 

in relation to mill production and proposed several regression 

models for mill throughput. For the further investigation, we 

suggest the following refinements and directions: 

� Develop a model to link electrical consumption and mill 

production directly, and use the model to monitor 

energy consumption targets. 

� The polynomial model fits the current data set well. 

However, it is necessary to conduct the sensitivity 

analysis to determine how the model reacts to the high 

energy blasting rate beyond the range of current 

practice so that the model is suitable for spectrum of all 

possible blasting design and avoid the over-fitting and 

dependency to the current data set. In the meantime, 

conduct cross-validation to verify the fitness of the 

polynomial model to other deviations, which is an 

important step to take in order to replace the existing 

prediction model and to implement the new model in 

strategic planning at HVC. 

� Identify energy savings contributed to high energy 

blasting using polynomial model to quantify the impact 

of blasting designs on mill throughput. 
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