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Abstract: In this paper, we derive the implicit exponentially fitted RKNd methods for solving oscillatory ODEs. The new 

methods integrate exactly differential systems whose solutions can be expressed as linear combinations of functions from the 

set {exp(λt), exp(−λt)}, λ ∈ C, or equivalently {sin( ),cos( )}wt wt  when λ = iω, ω ∈ R. Numerical experiments are 

accompanied to show the efficiency and competence of the implicit exponentially fitted RKNd methods compared with 

implicit RKNd methods. 
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1. Introduction 

A large number of problems arising in physical fields such 

as elastics, celestial mechanics, quantum differential 

equations 

0 0y = f ( x, y ), y( x )= y′ ,        (1) 

In the begining, we use Euler method to solve these 

problems. But since Runge (1895) and Kutta (1905) derived 

the Runge-Kutta(RK) methods, we have constructed many 

RK methods of different orders (see Ref. [6, 7]) to solve 

these problems. Bing-Zhen Chen and Xiong You gave a new 

class of method based on the analysis of the internal stage’s 

order of the RK method in [4]. The new method is denoted as 

RKNd and when it comes to the initial value problem (1), it 

is a scheme of the form 
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where 0 0 0( ) ( ) ( ) ( ) ( )x yy  = f x , y , g x, y  = f x, y + f x, y  f x, y  .′  

Compared with the RK method, the RKNd method has two 

merits: (i) when they have the same stage number, RKNd 

method is able to achieve higher algebraic order than RK 

method; (ii) the internal stages ki of RKNd method have the 

same coefficients of h
2
 with 

0
( + )

i
y x c h . In addition, this 

scheme requires the function ( )f x,y  of (1) has derivative of 

x. This restraint can’t be a problem in practice, because in 

most of the application problems the function has derivative 

or even higher derivative. 

The RKNd method (2) can also solve the second order 

differential equations 

0 0 0 0( ) , ( ) = , ( ) =y  =f x, y  y x y y x y .′′ ′ ′        (3) 

If a new variable z is introduced to represent the first 

derivative y′, then it is turned into the partitioned system of 

first order equations 

0 0 0 0, ( ) , ( ) = , ( ) = ,y  =z z =f x, y  y x y z x y′ ′ ′  

So, we can use the RKNd method (2) to solve second order 

differential equations. 

In the last decade, a great interest in the research of new 
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methods for the numerical integration of initial value 

problems having oscillatory or periodic solutions has arisen. 

A problem is called oscillatory if the solution of the problem 

is oscillatory. When it comes to the second order initial value 

problems of the form 

0 0 0 0( ) ( ) = ( ) =y +Ky=f x, y  ,y x y ,y x y ,′′ ′ ′     (4) 

where K is a symmetric positive semi-definite matrix 

(stiffness matrix) that contains implicitly the main 

frequencies of the problem, if the magnitude of the matrix K 

satisfies K ≤ , then the solutions of the initial value 

problem (4) are in general oscillatory or highly oscillatory. 

These initial value problems are of great interest in many 

problems of molecular dynamics, orbital mechanics, 

electronics, and so on, and they need efficient numerical 

methods because of the high accuracy demands. 

Since Gautschi (see Ref. [8]) and Lyche (see Ref. [9]) gave 

the theoretical analysis of exponential fitting technic, many 

researchers have been working on the exponential fitting 

methods. A method is called exponentially fitted, that is to 

say, it integrates exactly differential systems whose solutions 

can be expressed as linear combinations of functions from 

the set{exp(λt), exp(−λt), λ ∈ C}, or equivalently {sin(ωt), 

cos(ωt)} when λ=iω, ω ∈ R. The construction of 

exponentially fitted RK(N) methods is originally due to B. 

Paternoster (see Ref. [10]), and a detailed exposition of 

exponentially fitted methods with an extensive bibliography 

on this subject can be found in Ixaru and Vanden Berghe [12]. 

And a lot of exponential fitting RK and RKN methods can be 

found in [3, 5, 11-14, 16]. When we solve oscillatory 

problems, if we can give a good estimate of oscillatory 

frequency, the exponential fitting method has an advantage 

over other methods. Therefore, it has become an 

indispensable tool for solving oscillatory problems. 

Recently, Zhai Wenjuan and Chen Bingzhen has 

considered explicit EFRKNd methods in [21]. In this paper, 

we construct the implicit exponentially fitted RKNd 

(IEFRKNd) methods based on the implicit RKNd methods 

derived in [4]. The paper is organized as follows: In Section 

1, we present the modified form of the RKNd method. 

Section 2 is concerned with the exponential fitting conditions 

of the modified RKNd method presented in Section 1. 

Section 3 is devoted to the algebraic order conditions of the 

modified EFRKNd method. In Section 4, we derive three 

two-stage implicit exponentially fitted RKNd methods of 

orders two, three and four respectively. In Section 5, we 

analyze the stability properties of the new methods, obtaining 

the stability regions. In Section 6, we present some numerical 

experiments to show the efficiency of the new methods 

compared with implicit RKNd methods given in [4]. 

2. Implicit Modified RKNd Methods 

In this paper, we present a class of implicit modified 

RKNd methods which integrate exactly differential systems 

whose solutions can be expressed as linear combinations of 

the set of functions {exp(λt), exp(−λt)} or equivalently 

{sin(ωt), cos(ωt)} when λ = iω, ω ∈ R. This means that the 

internal stage equations and the final step equation have to 

integrate exactly these sets of functions. So, we introduce a 

modification of the algorithm of implicit RKNd method (s ≥ 

2), given by 
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which can be expressed in the Butcher tableau form as 
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We note that the algorithm (5) coincides with the algorithm 

of RKNd method (2) when 
2

1 1 ( 1, , )
i

g  = ,  = , i =  sγ ⋯ , and 

the remaining coefficients are constant. So, the coefficients 

( 1, , )
i
 , i =  sγ ⋯  and 

2
g  are introduced in the algorithm 

definition so that the family of functions exp{±iωt}, can be 

integrated exactly by the method. 

3. Exponentially Fitted Conditions 

Following Albrecht’s approach (see Refs. [1, 2]), the each 

stage of algorithm can associate a linear functional as 

follows. 

� for the internal stage 

2
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� for the final stage 

2
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Requiring that (6) and (7) will vanish for the functions 

from the set exp{±iωt}, we obtain the following equations: 
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Having in mind the relations cosh(z) = (e
z
 + e

−z
)/2 and 

sinh(z) = (e
z
 − e

−z
)/2, Eqs. (8) can be expressed in the form 

cosh( )
( )cosh( )

sinh( ) ( )
( )sinh( )
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The conditions defined by Eqs. (9) and (10) characterize 

when an implicit RKNd method (5) is exponentially fitted, 

and therefore they will be denominated as exponential fitting 

conditions (EF conditions). 

4. Algebraic Order Conditions 

Now, we make a study of the local truncation error for the 

IEFRKNd methods in order to obtain the order conditions for 

the algorithm (5). 

As discussed in [21], we consider the following 

assumptions 

(2) (4) (0) (2) (4)
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 (11) 

Using the assumptions mentioned above and following the 

way given in Hairer [6, pp.143-148] for obtaining the terms 

of the local truncation error, the order conditions for 

IEFRKNd methods (up to fifth order) are the following ones: 

Order 2 requires: 
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Order 3 requires in addition: 
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Order 4 requires in addition: 
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Order 5 requires in addition: 
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5. Construction of Implicit EFRKNd 

Methods 

In this section, we analyze the construction of implicit 

two-stage EFRKNd methods (up to order 4) with the help of 

the order conditions obtained in the previous section. 

In order to derive IEFRKNd methods corresponding to 

IRKNd methods obtained in [4], we assume the coefficients 

satisfy 
1 2 12 22

b 5b , a a 0.= = =  So the EF conditions (9) and 

(10) reduce to 
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From (16) and (17), we have 
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The taylor expansions of these coefficients are 
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We can verify that the coefficients are satisfied the second 

order condition (12). So the IEFRKNd method has algebraic 

order at least two. 

As we can see, when z → 0, the method (18) reduces to 

IRKNd method in [4]. We can choose different values of 

1 2c , c to obtain different order methods. As discussed in [4], 

we can obtain the following different order methods. 

First, we choose 1 2

1 3 1 3
c , c ,

2 6 2 6
= − = + then (18) 

becomes 
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We denote this method as IEFRKNd2s2. When z → 0, it 

reduces to the method IRKNd2s2. We can verify that the 

method IEFRKNd2s2 is of order 2. 

Second, by choosing 1 2

1 3
c , c ,

4 4
= =  (18) becomes 
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We denote this method as IEFRKNd2s3. When z → 0, it 

reduces to the method IRKNd2s3. We can verify that the 

method IEFRKNd2s3 is of order 3. 

Now we derive the fourth order method. From the order 

conditions (13) and (14), we obtain 

2 2

1 2 1 25c c 2, 5c c 1.+ = + =  

So, 
1 2

10 10 10 5 10
c , c ,

30 30

− += = and we obtain the 

fourth order method also obtain a fourth order IRKNd 

method 
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We denote this method as IEFRKNd2s4. Here, we also 

obtain a fourth order IRKNd method 

10 10 11 2 10
0

30 180

2+ 10 7+2 10
0

6 36

5 / 12 1 / 12

− −

. 

6. Stability Properties and Phase 

Analysis 

Before we put a method into application, we must analysis 

its stability or it will be dangerous. Roughly speaking, the 

stability of a numerical method is that the numerical solution 

has a small change when the initial value has a small 

perturbation. Since the coefficients of exponentially fitted 

method depend on z = λh, we consider its imaginary stability 

region (see Ref. [18]). 

Applying the method (5) to the test equation 

y i y,µ′ =  

we obtain 
1 0

y R( i ; z )yθ= , where 
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+

−
，

 

θ = µh, i
2
= −1, and R(iθ; z) is called the stability function. 

The region of imaginary stability is a region in the θ − z plane 

(θ > 0, z > 0), throughout which | R(iθ; z) |≤ 1. In Fig. 1, (a)- 

(e) show the stability regions for IEFRKNd2s2, IRKNd2s2, 

IEFRKNd2s3, IRKNd2s3 and IEFRKNd2s4 respectively. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Fig. 1. Stability regions for the methods IEFRKNd2s2 (a), IRKNd2s2(b), 

IEFRKNd2s3 (c), IRKNd2s3(d), IEFRKNd2s4 (e). 

From Fig. 1, we can see our IEFRKNd methods have 

larger stability regions than IRKNd methods. 

7. Numerical Experiments 

To test the numerical performance of the implicit EFRKNd 

methods, we carry out experiments on three oscillatory or 

periodic problems to illustrate the effectiveness and 

efficiency. The codes used in the comparisons are: 

� IEFRKNd2s2: two-stage IEFRKNd method of order 2 

derived in this paper; 

� IEFRKNd2s3: two-stage IEFRKNd method of order 3 

derived in this paper; 

� IEFRKNd2s4: two-stage IEFRKNd method of order 4 

derived in this paper; 

� IRKNd2s2: two-stage IRKNd method of order 2 given 

in [3]; 

� IRKNd2s3: two-stage IRKNd method of order 3 given 

in [3]; 

The criterion used in the numerical comparisons is the 

decimal logarithm of the maximum global error (log10(GE)) 

versus the computational effort measured in the number of 

function evaluations required by each method. 

Problem 1. Consider the second order ODE 

[ ]
( ) ( )

endy'' 30 sin( 30x ), x 0,x

y 0 0, y' 0 1.

 = − ∈


= =
 

whose analytic solution is given by y(x) = sin(30x)/30. 

In our test we chose the parameter values ω = 30, λ = 30i, 

xend = 100, and the numerical results presented in Figure. 2(a) 

have been computed with the integration steps mh 1 / 2= , m 

=1, 2, 3, 4, 5. 

Problem 2. Consider the inhomogeneous equation (see Ref. 

[19]) 

y′′ + 100y = 99 sin(x), y(0) = 1, y′(0) = 11, 

whose analytic solution is given by 

y( x ) cos(10x ) sin(10x ) sin( x ).= + +  

The equation has been solved in the interval [0, 10] with 
mh 1 / 2 ,m=6,7,8,9, 10.ω= =  The numerical result is shown 

in Fig. 2 (b). 

Problem 3. Consider the nonhomogeneous Duffing 

equation used in [17] 

3y y y 0.002 cos(1.01x ),

y(0 ) 0.200426728069666 , y (0 ) 0.

′′ + + =
 ′= =

 

The ‘exact’ solution was first given by Van Dooren (see 

Ref. [20]), but a more accurate solution was given by Zhao et 

al. (see Ref. [22]), i.e. 

4

2i 1

i 0

y( x ) A cos[( 2i 1)1.01x],+
=

= +∑  

with 

4

1 3 5 7 9

7 10

13

( A ,A ,A ,A ,A ) (0.2001794753661502,2.46946143255559 10 ,

3.0401498519692437 10 ,3.743490701609247 10 ,

4.609682949622697 10 ).

−

− −

−

= ×

× ×
×

 

The equation is integrated over the interval [0, 100] with 
mh 1 / 2= , m = 1, 2, 3, 4, ω = 1.01. The numerical result is 

shown in Fig. 2(c). 
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(a) 

 

(b) 

 

(c) 

Fig. 2. Efficient curves for Problem 1 (a), Problem 2 (b), Problem 3 (c). 

From Fig. 2(a), we can see that when the solution of 

differential system can be expressed as linear combinations 

of functions from the set {exp(λt), exp(−λt)}, λ ∈ C, our EF 

IRKNd methods are more efficient than IRKNd methods 

which are not exponentially fitted. From Fig. 2(b) and Fig. 

2(c), we can find that the efficient curves of the methods 

IEFRKNd2s2, IEFRKNd2s3 and IRKNd2s23 are almost 

same. But the method IEFRKNd2s4 is the most efficient 

method among them. 

8. Conclusion 

In this paper, we derive the implicit exponentially fitted 

RKNd methods of different order for solving oscillatory 

ODEs. These new methods integrate exactly differential 

systems whose solutions can be expressed as linear 

combinations of functions from the set {exp(λt),exp(−λt)}, λ 

∈ C, or equivalently {sin( ),cos( )}wt wt  when λ = iω, ω 

∈  R. We also analysis the stability of these methods. 

Numerical experiments are accompanied to show the 

efficiency and competence of the implicit exponentially fitted 

RKNd methods compared with implicit RKNd methods. 
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