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Abstract: In this paper, we establish GJR-GARCH models to extract the residuals of logarithmic returns of two index--- New 

York stock exchange composite index (NYA) and NASDAQ. and estimate the distribution function of the residuals utilizing 

Gaussian kernel method and Extreme Value Theory. The kernel cumulative distribution function estimates are well suited for the 

interior of the distribution where most of the residuals are found and the POT method of Extreme Value Theory fits the extreme 

residuals in upper and lower tails well. The monte carlo technique is used to simulate the income of securities index 20000 times 

after we get the marginal distribution of the residual income of securities index. Secondly, By using the copula function to get the 

joint distribution of mthe two stock index. Lastly, According to the theory of VAR calculate VAR value of the portfolio 

consisting of two equal weight comprehensive index in different confidence levels. 

Keyword: Extreme Value Theory, VAR Model, GJR-GARCH 

 

1. Introduction 

In this paper, we study VaR model and its over-arching 

theories including FHS technology, GARCH model, Copula 

theory, Extreme Value Theory, etc, which are widely applied 

in describing, fitting and forecasting the financial time series 

as an effective and efficient approach to the evaluation and 

measure of the risk pertaining to the financial assets. This 

paper approximately consists of three empirical researches 

and simulations as follows: 

In the third place, we construct GJR-GARCH models to 

extract the residuals of logarithmic returns of stock indices, 

and estimate the distribution function of the residuals utilizing 

Gaussian kernel method and Extreme Value Theory. The 

kernel cumulative distribution function estimates are well 

suited for the interior of the distribution where most of the 

residuals are found and the POT method of Extreme Value 

Theory fits the extreme residuals in upper and lower tails well. 

Results show that during the holding period (one day) the 

greatest loss of this portfolio is 12.6225% and the greatest 

return rate is 8.9172%. The VaR values are 

-1.6377%,-2.2782%and-4.2981% under the confidence level 

of 90%, 95% and 99% respectively, namely we have 90% 

possibility that the loss is less than 1.6377%, have 95% 

possibility that the loss is less than 2.2782% and have 99% 

possibility that the loss is less than 4.2981%
[1-5]

. 

2. The Empirical Analysis 

2.1. The Selection of Data and Its Characteristics 

Selecting New York stock exchange composite index(NYA) 

and NASDAQ as research object. Sample interval is from 

2003.1.4 to 2014.12.30. Using Logarithm yields,

1
ln ln , 1,2...,

t t t
R P P t n−= − = . 

The P is the closing price of stock index at time t. The 

essential information is below. 

Known from figuer 3, Distritution of daily logarithmic 

return of NYA and NASDAQ are fat-tail on both ends of gains 

and losses. and JB- statistic is significantly. So the results 

refuse the hypothesis of normal distribution. 
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Figure 1. Daily logarithmic return of NYA. 

 

Figure 2. Daily logarithmic return of NASDAQ. 

Table 1. Statistical indicators of NYA and NASDAQ. 

Name Mean STD Slewness Kurtosis JB- statistic 

NYA 0.00068 0.0167 -0.0701 9.2469 4052.248 

NASDAQ 0.00081 0.01814 -0.3541 8.0148 3978.415 

 

Figure 3. Normal Q-Q Plot of daily logarithmic return of NYA and NASDAQ. 

2.2. The Establishment of the Model and the Analysis of the Results 

Autocorrelogram and partial- autocorrelogram of the logarithmic return suggest that yield sequence presents a certain degree 

of serial correlation, Further, autocorrelogram of the square of the logarithmic return suggest that yield sequence square presents 

serial correlation significantly
[6-9]

. 

 

Figure 4. Autocorrelogram and partial- autocorrelogram of daily logarithmic return of NYA and NASDAQ. 
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The paper adopt Student-t distribution to estimate residuals instead of normal distribution. Next we estimate six 

ARMA-GJR-GARCH models. (table 2) 

 

Figure 5. Autocorrelogram of logarithmic return square of NYA and NASDAQ. 

Table 2. Parameters estimation & Significant level& Evaluation index of the models. 

Parameters 
The models of NYA 

Model 1 Model 2 Model 3 Model 4 

1θ    -0.7677 ( 0.0000 ) 0.1475( 0.0000 ) 

2θ     0.8571( 0.0000 ) 

3θ  0.07763 ( 0.0000 ) 0.0761 ( 0.0000 )   

6θ  -0.0470 ( 0.0106 ) -0.0474 ( 0.0079 )   

1η    0.7988 ( 0.0000 ) -0.1148( 0.0000 ) 

2η     -0.8772( 0.0000 ) 

1α  0.0894 ( 0.0065 ) 0.0825 ( 0.0019 ) 0.1105 ( 0.0000 ) 0.0724( 0.0007 ) 

2α  0.0217 ( 0.005257 ) -0.0599 ( 0.0340 )  0.0621( 0.0101) 

1λ  0.0750 ( 0.0120) 0.1985 (0.0010) 0.0734 ( 0.0114 ) 0.1240( 0.0018 ) 

2λ   -0.1946 ( 0.0007 )  -0.0830( 0.0275 ) 

1β  0.8265 ( 0.0000 ) 1.5581 ( 0.0000 ) 0.8291 ( 0.0000 ) 0.7805( 0.0000 ) 

2β   -0.5864 (0.0000)   

SSR 0.7682 0.7682 0.7723 0,7733 

AIC -5.6985 -5.6929 -5.6822 -5.6454 

SBC -5.6712 -5.671 -5.6671 -5.6216 

Q(4) 6.5877(0.0371) 8.4594 (0.0146) 11.0605 ( 0.0040 ) 6.0072 

Q(8) 8.8214(0.1839) 10.3973 (0.1089) 15.4999 (0.0167) 11.7042 (0.0197) 

Q(12) 15.4322(0.1171) 16.6584(0.0823) 24.6131 (0.0061 21.1750 (0.0067) 

Q(4) 1.9467(0.3778) 0.9806(0.6125) 1.3057 ( 0.5206 ) 0.9659 

Q(8) 5.2070(0.5175) 2.3949(0.8800) 4.7139 (0.5810) 5.2802 (0.2597) 

Q(12) 6.3938 (0.7812) 4.1401(0.9408) 6.0026(0.8150) 6.0731 ( 0.639 ) 
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According to SSR 、 Parameters significantly 、AIC and 

SBC determine the final model . The SSR of model 1 and 

model 3 are smaller than the SSR of model 2; but Q-statistic of 

model 3 and model 2 both significant suggest that there are 

still some residual serial correlation. while Q-statistic of 

model 1 is no significant, suggesting that the mean model and 

variance model are both great. And according to the principle 

of AIC and SBC, we chose the model whose AIC and SBC are 

minimum, that is model 1. Accordingly, Considering the 

NASDAQ, The SSR of model 4 and model 6 are smaller than 

the SSR of model 5; but Q-statistic of model 4 significant 

suggest that there is still some residual serial correlation. while 

Q-statistic of model 4 and model 6 are no significant, 

suggesting that the mean model and variance model are both 

great. And according to the principle of AIC and SBC, we 

chose the model whose AIC and SBC are minimum, that is 

model 4
[10-12]

. 

Two models ‘concrete form established in view of the two 

securities index as below 

The conditions average model of the model 1 is seasonal 

ARMA model: 

( ) ( ) ( ) ( ) ( )1 6 11 6 1r t r t r t t tθ θ ε η ε= − + − + + −    (1) 

Asymmetric conditional heteroscedastic model for model 1 

is ( )1,1GJR GARCH− : 

( ) ( ) ( ) ( )2 2

0 1 1 1 1
1 1 1

t
h t t h t S tα α ε β λ ε−

−= + − + − + −    (2) 

where 

0 1 1
, , 0,α β α ≥                    (3) 

1 1
0,α λ+ ≥                     (4) 

1

1

1

1, 0
,

0 0

t

t

t

S
ε
ε

−−
−

−

<
=  ≥

                (5) 

1
1

2
i j jβ α λ+ + <                 (6) 

The conditions average model of the model 4 is seasonal 

ARMA model:  

( ) ( ) ( ) ( ) ( )1 3 61 3 6r t c r t r t r t tθ θ θ ε= + − + − + − +    (7) 

Asymmetric conditional heteroscedastic model for model 4 

is ( )2, 2GJR GARCH− : 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2

0 1 2 1

2 2

2 1 1 2 2

1 2 1

2 1 2t t

h t t t h t

h t S t S t

α α ε α ε β

β λ ε λ ε− −
− −

= + − + − + −

+ − + − + −
     (8) 
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0, 1,2
i i
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          (11) 

2 2 2

1 1 1

1
1

2
i j j

i j j

β α λ
= = =

+ + <∑ ∑ ∑          (12) 

The Seasonal ARMA model is adopted in the paper to get 

residual series of NYA and NASDAQ; and conditional 

standard deviation filtering of NYA and NASDAQ are 

obtained with GJR-GARCH. (Figure 6) 

 

Figure 6. Residual filtering and Residual square of NYA and NASDAQ. 
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Figure 7. Autocorrelogram of standard error and its square of NYA and NASDAQ. 

We obtained the standardization, and satisfies the 

independence with the distributed residual, then using the 

Gaussian kernel function estimated that two kinds refer to the 

number the experience cumulative distribution function, this 

method causes to present the stepped the cumulative 

distribution function becomes smooth. Fits function the 

thought are as follows using the Gaussian kernel function[13-14]: 

using ( )f x  to fit ( )f x
⌢

. 

Where 

 ( ) ( ) ( )2

1 1

, exp
n n

i i i i

i i

f x k x x x xα α
= =

= = − −∑ ∑
⌢

  (13) 

The method of Gauss nucleus estimate may very good 

estimate internal distribution function, but regarding two 

estimate effects is not very ideal. For better estimate two 

distributions, this article to falling into two standardized 

residuals applies POT that in EVT developed in recent years 

(Peaks Over Threshold) model. 

The POT model to observing in the value all surpasses some 

big threshold value (Threshold) data modeling. Because the 

POT model has used the limited violent observation value 

effectively, therefore is generally considered that in reality is 

most useful. Establishes the tail and under the threshold value 

of tail, enables two to contain 10% residuals respectively, then 

with the method that the maximum likelihood estimated that 

the generalized Pareto distribution fits exceeds the threshold 

value the data. We got on the NYA and NASDAQ and lower 

thresholds for threshold as shown in table 3. Table 4 estimated 

values for generalized Pareto distribution parameters. Figure 8 

shows the experience in NYA and NASDAQ Exchange 

composite distribution, of which two are made to fit the 

generalized Pareto distribution, Interior is fitted with Gaussian 

kernel density estimation method. We test whether the 

generalized Pareto distribution of simulated NYA and 

NASDAQ and composite two-tailed, and by Figure 9 

generalized Pareto distribution can be a good simulation of log 

earnings residual two-tailed Distributions. 

Table 3. Pareto distribution parameters. 

 NYA NASDAQ 

The threshold value 78.1784 79.1672 

The lower value -80.2183 -84.3438 

Table 4. Pareto distribution parameters. 

Pareto 

distribution 

parameters 

NYA NASDAQ 

Top end Bottom end Top end Bottom end 

Shape 

parameter 
0.04971 0.16341 0.10944 0.09537 

Scale 

parameter 
47.97077 45.24693 37.90079 48.63171 

 

Figure 8. Empirical cumulative distribution function of NYA and NASDAQ. 
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Figure 9. Pareto distribution function and empirical distribution fitting text. 

Application of Monte Carlo simulation based on Student-t 

Copula have to identify two indexcorrelation coefficient 

matrix of the residuals and the degrees of freedom. 

Nystrom and Skoglund put forward the degrees of freedom 

provided as researchers custom analog input, to allow 

researchers to subjective pushed to the tail dependence of the 

related assets. In particular, they set up a relatively small 

degree of freedom, for example, 1,2, in order to be able to 

have a detailed inspection of possibility of occurrence of the 

associated extreme. This approach is different from normal 

distribution assumptions usually. 

It is extremely important for traditional VAR analysis and 

stress testing of extremism of dependency measure. 

The relationship of Spearman rank correlation coefficient 

and the linear correlation coefficient in the Student function is 

as follows:  

2 sin
6

R
ρπ = × × 

 
               (14) 

To compare residual error of the two index and Q-Q map of 

Student distribution, found that NYA and NASDAQ gains 

residuals and student distribution whose df is 3 are most 

closely. Therefore, this paper will set degrees of freedom at 

three. In order to apply Student-t Copula method, we should 

get each of the required parameters. 

First calculating the Spearman rank correlation coefficient; 

We can obtain the linear correlation coefficient by using the 

standard sin function transformation of the Spearman rank 

correlation coefficient. Marginal distributions of two random 

variables are subject to the freedom of Student-t distribution 

and the correlation coefficient is r. Therefore we can take 

advantages of Student-t Copula Methods to produce 4000 

random numbers obeying that the freedom is 3 and the linear 

correlation coefficient is r. Following, this 40,000-random 

numbers will be converted into interrelated uniformly 

distributed random variables by cumulative distribution 

function of t distribution. 

 

Figure 10. The quantile of the t(3) distribution of NYA and NASDAQ. 

 

Figure 11. Associated residuals simulation by t(3) copulas. 

We've got the residuals which are associated with t (3) 

Copula simulation, and through the ARMA - GJR - GARCH 

model, model 1 and model 4 predict the yield of NYA and 

NASDAQ, getting 20000 combinations of the yield of NYA 

and NASDAQ. In this paper, we establish an equal weighted 

portfolio which is composed of NYA and NASDAQ, and the 

weight of two assets both are 0.5.We assume that the weights 

of the portfolio in the holding period (24 hours) are fixed, and 

it means that it is a process of self financing, and we do not 

consider the transaction cost in this paper. The simulation 

results are shown in table 5: the portfolio in the holding period 

(24 hours) has the maximum loss of 12.6225%, and its 

maximum possible gain is 8.9172% ,and while the confidence 
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level is 90%, 95% and 99%, the VaR is -1.6377%, -2.2782% 

and -4.2981%,respectively, in the other words, there is a 90% 

possibility of the loss not more than 1.6377% , and a 95% 

possibility of the loss not more than 2.2782%, and a 99% 

possibility of the loss not more than 4.2981%. Figure 11 is a 

Mont Cartlo simulation of investment combination’s 

logarithm umulative distribution of benefits when the holding 

period is one day. 

Table 5. The simulation results. 

confidence level 90% 95% 99% 

VaR 1.6377% 2.2782% 4.2981% 

Simulation of the 

maximum loss 
12.6225% 

Simulation of the 

maximum return 
8.9174% 

 

 

Figure 12. simulation of the holding period is 1 day portfolio cumulative distribution of the logarithmic benefit. 

3. Summary 

This paper is to extract the residual of two stock index 

logarithm return by establishing ARMA-GJR-GARCH model 

with seasonal adjustment. According to the model test, the 

estimated ARMA-GJR-GARCH model can not only eliminate 

the ARCHIGARCH effect of logarithm return sequence and 

fit sample data better, but also can show the entire dynamic 

behaviors of the mean model and variance model. The 

estimation of the distribution of residuals using Gaussian 

kernel estimation and extreme value theory (EVT) is ideal. 

The former can estimate the internal distribution function 

commendably and the latter can have a good two tails 

estimation of the distribution function. We have simulated the 

stock index return for 20,000 times wielding Monte Carlo 

techniques, thus Copulas function are used to get the joint 

distribution of two stock indexes. Accurate estimating the 

marginal distribution of the two securities index return 

guarantees to get reliable joint distribution of securities index 

function by Copulas function. According to the VaR theory, 

we calculated the portfolio VaRs under different confidence 

levels that the portfolio is composed of two equal weighted 

comprehensive indexes. During the holding period (24 

hours),the maximum loss of this portfolio is12.6225%, the 

maximum possible gains is 8.9172%.The VaR value are 

1.6377%, 2.2782% and 4.2981% when the confidence levels 

are 90%, 95% and 99% respectively. GJR-GARCH, EVT and 

Copulas combination model can well capture the complex 

correlation structure among the financial market events which 

will be widely used in the field of financial risk management, 

early warning and control. 
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