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Abstract: This paper studies the fractional order model for computer virus in SEIR model. Firstly, the basic reproduction 

number R0, which determines the threshold of the spread of the virus is determined. The stability of equilibra was also determined and 

studied. The Adams-Bashforth-Moulton algorithm was employed to solve and simulate the system of differential equations. 

The results of the simulation depicts that by small change in � led to big change in the associated numerical results. 
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1. Introduction 

While the information technology revolution has 

significantly improve business activities and made living 

comparatively easy to manage through services such as 

managing bank account, travelling arrangement, and buying 

items online, it has also come with a high cost operations and 

manipulations through propagation of computer virus. This 

computer virus does not only propagates and leads to huge 

losses in terms of money to companies and customers, but is 

also implicated for loss of important data. It is estimated that 

annually, millions dollars are lost by the virtue of various 

infection [13]. In early 1980(s) the idea of mathematical 

models for the study of computer virus spread became 

pronounced. Since 1988 Epidemic models for computer 

viruses have been studied. Murray [13] seems to be the first 

to propose the relationship between epidemiology and 

computer viruses, although he did not provide any specific 

models. 

Viruses were once propagated by exchanging disk; now; 

global connectivity gives malicious code to propagate a 

farther and faster. Bad use of computer through network 

invasion is on the increase. Today, over 74000 different 

strains of computer viruses have been observed since in 1986 

the first virus was identified (Symantec Security Response, 

2010). The have been several challenges on cyber world due 

to cyber attack leading to a great defense to protect valuable 

information from certain malicious agents (Trojan horse, 

worms, virus). The spread of these dangerous agents is 

similar to that of spread of endemic in biological processes. 

Many studies have employed biological system to understand 

the dynamics of spread of malicious objects in a computer 

network and prescribe procedures for protecting the 

computer system [10 ,12]. 

The activity of malicious objects in entire network can be 

examined by applying epidemiological models for disease 

spread [2, 5, 12]. Richard et al. 2005 design an SEI 

(Susceptible-Exposed- Infected) model to study the 

propagation of computer virus. They however, did not 

consider the length of latency period and consider the effect 

of anti-virus software. Yen and Liu, 2006 also proposed SEIR 

that assumes that recovery hosts have a permanent 

immunization period with a certain probability, which is not 

consistent with real life situation. By obtaining solution to 

this obstacle, [2, 3], also propose a SEIRS model with latent 

and temporary immune periods, which can identify common 

worm propagation. Garretto et al. [29] present a model that 

seeks to examine the propagation of virus and worms in 

distinct network topologies. Zou et al. [9] propose an internet 

worm monitoring system that checks a worm in its initial 

stage of propagation employing Kalman filter. Zhu et al. [21] 

apply optimal control method to study the dynamics of 

computer virus. They take into consideration a controlled 

delayed model and then use an optimal control technique, by 

making an assumption that there is a trade off between 

central loss and the effect. Carla and Teneriro also present 
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fractional dynamics of computer virus propagation to study 

[21] model. 

In this paper we analyze the fractional order version of the 

integer order model proposed by Mei et al. [30] for computer 

virus and its dynamics. We simulate numerically the model 

for different values of the order of the fractional derivatives

α . In this regard, the paper is arranged as follows. In 

Section3, we describe the model proposed for computer virus 

dynamics. In Section 4, we analyze several simulations of the 

model for different values of the fractional derivatives 

explain the implication of the results. In the last Section, we 

show the main conclusion and outline same future research 

figures. 

2. Fractional Order Calculus (FOC) 

The theory of differential calculus began when Leibniz 

wrote about 
1/ 2 ( )D f x  for generalization of the derivative 

operator ( )D f xα
to fractional values of �, the order of the 

derivative. 

The growth of the fractional calculus (FC) is attributable to 

many contributions of mathematicians for example Euler, 

Liouville, Riemann, and Letnikov [17]. 

Presently fractional calculus has been associated with long 

memory in the fields such as physics and engineering [18, 

15]. Notwithstanding the FC applications in engineering 

there are ongoing effort to explore new areas of applications 

of FC such as the modeling of dynamical [19]. 

We present some of the definitions of fractional calculus. 

The most common applied definitions of a fractional 

derivative of order α  are the Riemann-Liouville (RL), 

Gr¨unwald-Letnikov (GL), and Caputo (C) formulations. GL 

is stated as 

[ / ]

0
0

1
( ) lim ( 1) ( ), , 0,

t a h
GL k

a t
h

k

D f t f t kh t a
kh

α
α

α
α

−

→ =

 
= − − > > 

 
∑  (2.1) 

Definition 2.2. The Caputo fractional derivative of order 

( 1, )n nα ∈ − of a continuous function :f R R+ →  is given 

by 

( ) ( ),     n d
D f x I D f x D

dt

α α α−= = .                  (2.2) 

where (.)Γ  is Euler’s gamma function, [�] means the integer 

part of �, and ℎ is the step time increment. These expressions 

contain the history of the past dynamics, divergent to the 

integer counterpart that is a “local” operator. This property 

was observed in numerous phenomena and their modeling 

turns easier employing the FC formalism, while integer order 

models are often looks more complicated. We observe that 

the definition of time-fractional derivative of a function ( )f t  

at n
t t=  deals with integration and computing time-fractional 

derivative that demands. The concept of fractional derivative, 

we will implement Caputo’s definition which is a variation of 

the Riemann- Liouville definition and has the advantage of 

solving initial value problems. 

3. Model Formulation 

By considering connection of computers, it is classified as 

external if connected to internet and external not connected. 

We subdivide the population into four classes. ( )S t

represents the susceptible computers, that is, uninfected 

computers and new computers which connected to network at 

time t , ( )E t  represents the exposed computers, that is, 

infected but not yet broken-out, ( )I t  denotes the infectious 

computers and ( )R t the recovered computers, that is, virus-

free computer having immunity. Let �(�), �(�), �(�), 	(�) 

denote their corresponding numbers at time �, without 

ambiguity; �(�), �(�), �(�), 	(�) will be abbreviated as �, �, �, 

	, respectively. The model is formulated as the following 

system of differential equations: 

Now we introduce fractional order into the ODE model by 

Mei et al. [30]. The new system is described by the following 

set of ODE 

1 2

1 2

(1 ) ,

,
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,
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   (3.1) 

dN dS dE dI dR

dt dt dt dt dt

α α α α α

= + + +                  (3.2) 

It can be obviously noticed that the first three equations in 

(3.1) are independent of the fourth equation, and hence, the 

fourth equation can be done away with without loss of 

generality. Therefore, system (3.1) can be stated as 

1 2

1 2

(1 ) ( )

( ) ,

( )

dS
p N SI SE p S

dt

dE
SI SE k E

dt

dI
E d I

dt

α

α

α

β β µ

β β σ µ

σ µ

= − − − − +

= + − + +

= − +

  (3.3) 

where N  represents the rate at which external computers are 

connected to the network; p  represents the recovery rate of 

susceptible computer as a results of the anti-virus ability of 

network; k  stands for the recovery rate of exposed computer 

due to the anti-virus ability of network; 1
β  denotes the rate at 

which, when having a connection to one infected computer, 

one susceptible computer can turn into exposed but has not 

broken-out; 2
β indicates the rate of which, when having 

connection to one exposed computer, one susceptible 

computer can turn into exposed; σ  symbolizes the rate of 

the exposed computers cannot be cured by anti-virus 

software and broken-out; d  represents the recovery rate of 
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infected computers that are cured; µ  indicates the rate at 

which one computer is removed from the network. 

where 
30 1, , ( , , ) .N S E I S E Iα +< ≤ = + + ∈ℝ  

The reason for considering a fractional order system 

instead of its integer order counterpart is that fractional order 

differential equations are generalizations of integer order 

differential equations. Also, using fractional order differential 

equations can help us to reduce the errors arising from the 

neglected parameters in modeling real life phenomena. We 

should note that the system (3.1) can be reduced to an integer 

order system by setting 1α = . 

Adding up the equations given in (3.1), we obtain 

Let 
3 3{ : 0}X X+ = ∈ ≥ℝ ℝ and ( ) ( ( ), ( ), ( ))TX t S t E t I t= . 

For the proof of the theorem about non-negative solutions we 

shall require the following Lemma [20]. 

Lemma 3.1 (Generalized Mean Value Theorem) Let 

[ ]( ) ,f x C a b∈ and ( ) ( , ]D f x C a bα ∈  for 0 1α< ≤ . Then we 

state 

1
( ) ( ) ( )( )

( )
f x f a D f x a

α αξ
α

= + −
Γ

 

with 0 , ( , ]x x a bξ≤ ≤ ∀ ∈ . 

Remark 3.2 Suppose ( )  [0, ]f x C b∈ and ( ) ( , ]D f x o bα ∈
for 0 1α< ≤ . It is obvious from the Lemma 3.1 that if 

( ) 0D f xα ≥ ), ( , )x a b∀ ∈  then the function f is 

nondecreasing, and if ( ) 0,D f xα ≤  ( , )x a b∀ ∈ then the 

function f  is nonincreasing for all [0, ]x b∈ . 

Theorem 3.1 There is a unique solution for the initial value 

problem given by (2.1) - (2.2), and the solution remains in 
3

+ℝ  

Proof. The existence and uniqueness of the solution of 

(2.1)-(2.2) in (0, )∞ can be obtained from [10, Theorem 3.1 

and Remark 3.2]. We need to show that the domain 
3

+ℝ  is 

positively invariant. Since 

0

0 1
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0,
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σ

=

=
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= ≥
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         (3.4) 

on each hyperplane bounding the nonnegative orthant, the 

vector field points into 
3

+ℝ . 

It is clear that ( )N t also remains nonnegative. For 

convenience in calculations we the following system, which 

can be obtained from (3.1): 

1 2

1 2

(1 ) ( )

( ) ,

( )

dS
q N SI SE p S

dt

dE
SI SE k E

dt

dI
E d I

dt

α

α

α

β β µ

β β σ µ

σ µ

= − − − − +

= + − + +

= − +

  (3.5) 

with initial conditions 

0 0 0
(0) , (0) , (0) .S S E E I I= = =            (3.6) 

The basic reproduction number, 0
ℝ , of the integer order 

model ( 1)α =  is computed in [22] to be 

( )1 2

0

(1 ) ( )

( )( )( )

N p r

p r k

β α β µ
µ µ α µ

− + +
=

+ + + +
ℝ             (3.7) 

The basic reproduction number, 0
ℝ , is expressed as the 

number of secondary infections owing to a single infection in 

a completely susceptible population. For 0
1<ℝ the disease-

free equilibrium is globally asymptotically stable and if

0
1>ℝ , the endemic equilibrium is globally asymptotically 

stable [21]. 

3.1. Equilibrium Points and Stability 

We consider the initial value problem (3.5)-(3.6) with α  

satisfying 0 1α< ≤  in order to estimate the equilibrium 

points of (3.5), let 

0,

0,

0.

D S

D E

D I

α

α

α

 =


=
 =

 

Then the equilibrium points are ( )0 1,0,0E =  and

* * *
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The Jacobian matrix 0
( )J E for the system given by (2.6), 

computed at the disease free equilibrium is below 

2 1

0 2 1

( )

( ) 0 ( ( ))

0 ( )

p

J E k

r

µ β β
β α µ β

α µ

− + − − 
 = − + + 
 − + 

 

Theorem 3.2 Disease free equilibrium of the system (3.5) 

is asymptotically stable if 

( )1 2(1 ) ( )
1

( )( )( )

N p r

p r k

β α β µ
µ µ α µ

− + +
<

+ + + +
 

Proof. Disease free equilibrium is asymptotically stable if 

all of the eigenvalues, i
λ = 1, 2,3,i =  of 0( )J E satisfy the 

following conditions [26, 22]: 
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arg
2

i

πλ α> .                            (3.8) 

These eigenvalues can be obtained by solving the 

characteristic equation 0
det( ( ) ) 0J E Iλ− =  

Hence, we obtain the following algebraic equation: 

2

2( ( ))[ (( ) ) ( )] 0p A B ABCλ µ λ β λ+ + − + − − =  

where 

( )A k α µ= + + , 

0

),

( 1),

B r

C

µ= +
= −ℝ

 

If AB C> , then the condition given by (3.8) is met. 

We now examine the asymptotic stability of the endemic 

(positive) equilibrium of the system given by (3.1). The 

Jacobian matrix 1( )J E determined at the endemic 

equilibrium is expressed as 

* *

0 2 1

* *

1 0 2 1
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( ) ( )( 1) ( )

0 ( )

p S S

E p S k S
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ℝ
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Thus, the characteristic equation of the linearized system is 

expressed of the form 

3 2

1 2 3 0,c c cλ λ λ+ + + =  

*

1 0 2( ) ( ( ) ( )),c p S k rµ β α µ µ= + − − + + − +ℝ  

2 0( )( )( )( 1)c p k rµ α µ µ= + + + + −ℝ , 

3 0( )( )( )( 1)c p k rµ α µ µ= + + + + −ℝ , 

Let ( )D φ stands for the discriminant of a polynomial f . 

If 
3 2

1 2 3( )x x c x c x cφ = + + + then Denote 

1 2 3

1 2 3

2 3 3 2

1 2 3 1 2 3 1 2 31 2

1 2

1 2

1 0

0 1

( ) 18 ( ) 4 4 27 .3 2 0 0

0 3 0

0 0 3 2

c c c

c c c

D c c c c c c c c cc c

c c

c c

φ = − = + − − −  

Following [22; 23]. we arrive at the proposition 

Proposition 3.2. One assume that 1
E  exists in 

3

+ℝ  

1) If the discriminant of ( )xφ , ( )D φ is positive and Routh-

Hurwitz are satisfied, that is, 

1 3 1 2 3
( ) 0, 0, 0, ,D c c c c cφ > > > > then 

1
E is locally 

asymptotically stable. 

2) If 
1 2 1 2 3

( ) 0, 0, 0, , [0,1)D c c c c cφ α< > > = ∈  then 
1

E is 

locally asymptotically stable. 

3) If 
1 2

( ) 0, 0, 0, 2 / 3,D c cφ α< < < >  then 
1

E  is unstable. 

4. Numerical Methods and Simulations 

In view of the fact that most of the fractional-order 

differential equations hardly have exact analytic solutions, 

approximation and numerical techniques is the most effective 

way of solving such systems. Numerous analytical and 

numerical methods have been developed to solve the 

fractional order differential equations. For numerical 

solutions of system (3.1), one can apply the generalized 

Adams-Bashforth- Moulton method. In order to give the 

approximate solution by means of this algorithm, we 

consider the following nonlinear fractional differential 

equation [24, 25]. 

( ) ( , ( )),    0tD y t f t y t t Tα = ≤ ≤  

0(0) ,   0,1, 2,.... 1k ky y k m= = −  where 0(0) ,   0,1, 2,.... 1k ky y k m= = −  

0
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t

k k
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This equation corresponds to the Volterra integral equation 

1
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−
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Diethelm et al. employed the predictor-correctors scheme 

[24, 25], depended on the Adams-Bashforth- Moulton 

algorithm to integrate Eq. (4.1). By employing this scheme to 

the fractional-order model for computer virus, and putting 

, , 0,1, 2,..., ,
n

T
h t nh n N Z

N

+= = = ∈  Eq. (4.1) can be 

discretized as follows [24, 25]: 
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( ) ( )( ), 1 1 ,   0 .j

h
b n n j n j j n

α
α α

α
+ = − + − − ≤ ≤  

The parameter values used for the simulations were, 

10N = , 0.7p = , 1
0.002β = , 2

0.003β = , 002µ = , 0.09σ = ,

0.04r = and the following set of (1,0.95,0.90,0.85)α = for 

each compartment. Now we take into account the initial 

population include susceptible nodes (0) 10S = , exposed to 

infected nodes (0) 1E = , infected nodes 1(0) 1=  for 

numerical simulation. 

 

Figure 1. Dynamics of the susceptible computers � versus time �, of system (7), for � ∈ {0.1, . . . , 1}. Parameter values and initial conditions are those stated. 
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Figure 2. Dynamics of the exposed computers � versus time �, of system (7), for � ∈ {0.1, . . . , 1}. Parameter values and initial conditions are those stated. 

 

Figure 3. Dynamics of the infected computers � versus time �, of system (7), for � ∈ {0.1, . . . , 1}. Parameter values and initial conditions are those stated. 

5. Discussion 

In this paper, we have considered a fractional calculus 

model for computer virus propagation. From the numerical 

results in Figures 1,2 and 3, it is obvious that the approximate 

solutions depend continuously on the fractional derivative 

�.The approximate solutions ( )S t , ( )E t , and ( )I t are shown 

in Figures 1,2 and 3 with four different values of �. In each 

figure four different values of � are taken into account. Given 

= 1, system (3.3) is termed as the classical integer-order 

system (3.1). We showed in Figure 1, the variation of ( )S t

versus time � with varying values of � = 1, 0.95, 0.90, 0.85 

by fixing other parameters. It is observed that ( )S t  does not 

drop sharply in a relatively small period of time for small 

values of �. Figure 2 depicts ( )E t versus time � and Figure 3 

also shows ( )I t  versus time �. However, variation in � for 

Figure 2 and 3 is more apparent than that of Figure 1. This 

buttresses the sensitive nature of fractional order models. 

Following [27 , 28], one observes that both steady states of 

integer order and fractional order turn to point to the fixed 

point given a long period of time. In dealing with situations 

in real life, data collected can help determine the order of the 

system. One also needs to mention that when dealing with 

real life problems, the order of the system can be determined 

by using the collected data. 

6. Conclusion 

In this paper, it is assumed that the virus process has a 

latent period and computers infected by the virus have also 

infectivity. An SEIR compartmental model for transmission 

of virus in computer network is formulated and studied. The 

threshold parameter 0
ℝ is determined. The steady states of 

the model is also derived and analyzed in order to determine 

the stability of the system. Adams-Bashforth-Moulton 

method is used to carry out the numerical simulations of the 

fraction order model. The simulation results show that by 

varying � small result in a big change in the associated 
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numerical results. By transforming classical into a fractional 

order type gives impetus to the transformed model to be more 

sensitive to order of differentiation α. 
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