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Abstract: In this article we give a variation of the converse of Fabry Gap theorem concerning the location of singularities of 

Taylor-Dirichlet series, on the boundary of convergence. whose circle of convergence is the unit circle and for which the unit 

circle is not the natural boundary. 
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1. Introduction 

The gap theorem of Fabry states that if ( ) z

k
f z a e λ−= ∑ is 

a power series whose circle of convergence is the unit circle 

and lim /
k

n k = ∞ then the unit circle is the natural boundary 

of ( )f z . 

Polya ([7]) proved the following converse of this result: 

Let k
n be a sequence of integers for which 

/iminfl
k

n k < ∞ ; then there exists a power series 
z

k
a e λ−∑ whose circle of convergence is the unit circle and 

for which the unit circle is not the natural boundary. 

Based on a sequence A as mentioned earlier, we construct a 

multiplicity sequence 1
{( , )}

n n n
B λ µ ∞

== , that is, a sequence 

where, for n m≠ one has n m
λ λ≠ , 1

| | | |
n n

λ λ +≤ and 

each n
λ appears n

µ times. For this sequence B we prove that 

the infinite product ( )G z which vanishes exactly on B± , 

satisfies [ ]
!/ | ( ) | ( { | |})n

n n n
G O exp

µµ λ λ= ε  every 0>ε . 

That is, we have a sharp estimate for the n
µ th derivative 

function of ( )G z evaluated on n
λ . 

We assume that the reader is familiar with the theory of 

Entire Functions and the theory of Dirichlet series, as used in 

the books [1,5,8–11]. 

We note that other results concerning the location of 

singularities of Taylor–Dirichlet series have been derived by 

Blambert, Parvatham, and Berland (see [2–4]). 

2. Auxiliary Results and Notions 

In this section, we describe the definitions and also to 

express and prove the lemma, we need to prove the theorem. 

Definition 2.1. We denote by ( , )L c D the class of all 

sequences 1
{ }

n n
A a ∞

== with distinct complex terms n
a  

diverging to infinity, 1
| | | |

n n
a a +≤ satisfying the following 

conditions: (see also [12]) 

(1) There is a constant 0c >  so that 

| | | |
n m

a a c n m− ≥ −  for all n m≠ . 

(2) / |li | 0m
nn

n a D→∞ = ≥ . 

(3) the sup | arg | / 2
n

a π< . 

Definition 2.2. Choose a sequence 1
{ }

n n
A a ∞

== which 

belongs to the class ( , )L c D . supposeα and β be real positive 

numbers so that 1α β+ < . We say that a sequence 

1
{ }

n n
B b ∞

== with complex terms , 0
n n

b b ≠ , with the | |
n

b not 

necessarily in an increasing order, and sup | arg | / 2
n N n

b π∈ ≤ , 

belongs to the class ,
Aα β if for all n N∈ we have 

{ :| | | | },
n n n

b z C z a a α∈ ∈ − ≤  and for all m n≠ one of the 

following conditions holds: 

(i) m n
b b=  

(ii) | | | |
| | { , }.m na a

m n
b b max e e

β β− −− ≥  

One observes that ( )i allows for the sequence B to have 

coinciding terms. We may now rewrite B in the form of a 

multiplicity sequence 1
{ , }

n n n
λ µ ∞

= in the following way; first 
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we split B into groups of terms having the same modulus, 

and then within each group we order them by the size of their 

argument, beginning from smaller to larger. The arguments 

are taken in the interval 0 arg 2
n

b π≤ ≤ . We shall say that 

{ , }
n n

λ µ is the ( , )λ µ reordering of B . 

Remark. We point out that the spacing condition (2)  of a 

sequence ( , )A L c D∈ plays a very important role throughout 

the article. 

Let nΓ be as in  

{ : }n j nj b bΓ = = . 

One deduces that if nj ∈Γ then .j nΓ = Γ We also 

define ( )m n to be the number of terms of nΓ and we shall 

refer to ( )m n as the pseudo-multiplicity of nb . 

In the lemma that follows, we get an upper bound for 

( )m n with respect to nb . 

Lemma 2.3. There exist positive constants ψ  and χ  so 

that for any n one has 

( ) | | | |
n n

m n a bα αψ χ≤ ≤  

Proof. First note that the relation 

 
| | /2 | | 2 | |n n na b a≤ ≤  

holds for all 0n n> since | | | | .n n na b a α− ≤ Consider now 

any nj ∈Γ ( { : }n j nj b bΓ = = ). Then 

| | | ( ) ( ) | | | | |j j j j n n j na a b b b b a bα= − + − + ≤ +  

| |
2 | |

2

j

n

a
a≤ +

 

It follows that | | 4 | | .j na a≤ Then one also gets 

| | | ( ) ( ) ( ) |n j n n n j j ja a a b b b b a− = − + − + −  

| | | | 5 | |n j na a aα α α≤ + ≤  

Finally, the spacing condition 

| | | |n ka a c n k− ≥ −  

yields that for any nj ∈Γ one has 

| | 5 | |nc j n a α− ≤  

Since ( )m n is the number of terms of nΓ , then 

( ) 2max{| |: }.nm n j n j≤ − ∈Γ From the above 

equation it follows that there exists a positive ψ  so that 

( ) | | .nm n a αψ≤ Finally, the relation | | 2 | |n na b≤ yields 

a positive χ  so that ( ) | | .nm n b αχ≤  

Lemma 2.4. For any n  one has 

| |
n n

αµ χ λ≤  

Proof. Let n k
bλ = for some k N +∈  . From the previous 

lemma we know that ( ) | |
k

m k b αχ≤ for some 0χ > . But the 

pseudo-multiplicity ( )m k  of k
b  is the multiplicity n

µ of n
λ . 

Thus, one obtains the relation | |
n n

αµ χ λ≤ . 

Another important lemma, which is important for this paper 

can be stated as follows: 

Lemma 2.5.Let ( , )A L c D∈ be a real positive sequence and 

let ,
B Aα β∈ so that { }

n
B b= is real positive too, with 

( , )λ µ its reordering. Then the regions of convergence of the 

three series 
* **, ,f f f as defined in 

1
,( ) ( ) n

n

z

n
f z p z e

λ
µ

∞ −
=

=∑             (1) 

where 
1

0
( )

n

n j

j

nj
p z c z

µ
µ

−

=
=∑ is a polynomial with 1

0
n

n
c

µ −
≠ , 

and 

1* **

1 1
( ) , ( )n n nz z

n nn n
f z A e f z A z e

λ µ λ∞ ∞− − −
= =

= =∑ ∑  (2) 

are the same. For any point z inside the open convex region, 

the three series converge absolutely. Similarly, if instead of a 

real sequence ( , )A L c D∈ we have a complex sequence 

( ,0)A L c∈ . 

Proof. We have to show that 

1log
lim 0, lim 0,n

n n
n n

n µ
λ λ→∞ →∞

−
= =  

is satisfied. First, note that from Lemma 2.4 one deduces that 

the right limit of 

1log
lim 0, lim 0,n

n n
n n

n µ
λ λ→∞ →∞

−
= =  

is valid. Thus, it remains to verify the left limit. 

We claim that 

| | | | /2, 1
n n

a nλ ≥ ≥  

This implies that 

| |log log log 1
0,

| | | | | | | | 2

n

n n n n

an n n n n
n

n a n aλ λ
= ≤ → → ∞  

since / | |
n

n a D→ , and we are done. 

Let us justify our claim. It is obvious that 1 1
| | | | /2aλ ≥ . 

Assume that | | | | /2
k k

aλ ≥  for some k . We will prove that 
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1 1
| | | | /2

k k
aλ + +≥ as well. 

Note that there is at least one n
b  so that 1k n

bλ + = . If 

1 1
| | | | /2

k k
aλ + +< then 1 1

| | /2 | | | | | | /2
n n k k

a b aλ + +≤ = < . 

Since 1
| | /2 | |

n k
a a +< , this implies that n k≤ since 

1
| | | |

n n
a a +≤ for all n ∈ Ν , therefore 1 1

{ }k

k m m
bλ + =∈ . This 

means that 1 1
{( , )} { }k k

m m m m m
bλ µ = =≠ , thus there is some 

1
{( , )}

k

j m m m
b λ µ =∈  with 1j k≥ + . It follows that 

1 1

1

| || | | |
| | | | | | ,

2 2 2

jk k

k k j

aa a
bλ λ+ +

+> ≥ ≥ ≥ ≥  

that is, 1 1
| | | |

k k
a a+ +> which is false. Thus 1 1

| | | | /2
k k

aλ + +≥  

and this completes the proof. 

3. Main Results 

This section describes the main theorem of this paper, and it 

can be fixed by using proven methods Polya. 

Theorem 3.1. suppose ( , )A L c D∈ be a real positive 

sequence. Let ,
B Aα β∈ so that { }

n
B b= is real positive too 

1inflim
n

n Dλ − = < ∞ and let ( , )λ µ be its reordering. Then any 

Taylor-Dirichlet series ( )f z as in (1), satisfying 

1
ln | | ln

limsumsu p ,li p n
n n

n n

n n

c Aµ

λ λ
−

→∞ →∞=       (3) 

whose circle of convergence is the unit circle and for which 

the unit circle is not the natural boundary. 

Proof. We follow on the lines of the proof of Theorem in 

[6]. 

Let 
* **, ,f f f and n

A as defined in (1), (2) and 

max{| |: 0,1, 2,..., 1}.
jn n nA c j µ= = −        (4) 

From Lemma 2.5, the regions of convergence of the three 

series are the same. Since the n
λ are real positive numbers, we 

consider the non-trivial case, that is when the three series 

converge in identical half-planes of the form 0 0
,z x x Rℜ > ∈ . 

With no loss of generality we assume that the abscissa of 

convergence (ordinary and absolute) is the line 1x = . 

In other words the relation 

ln
1limsup n

n

n

A

λ→∞ =              (5) 

holds. Thus, all three series converge absolutely and 

uniformly in any half-plane 1x τ≥ > . One also notes that 

from (3) we have 

1

ln | |
1limsu .p n

n

n

n

c
µ

λ
−

→∞ =          (6) 

There clearly exist two sequences of integers i
B and 

j
B such that 

2

1 1
[(1 ) ], ,

i j j i
B c B B B+= + > and the number of 

n
λ in ( , )

j i
B B is greater than 2 3

( )
i j j

c B B c B− > . (The c's 

denote absolute positive constants.) The existence of these 

sequences is immediate from /iminfl
n

n λ < ∞ . Denote the 

n
λ in the intervals ( , )

j i
B B by n

λ ′ . We clearly have 

/iminfl
n

n λ ′ < ∞ . For construction of ( )f z we shall use only 

the n
λ ′ . Put 

1
( ) ( ) n

n

z

n
f z p z e

λ
µ

∞ ′−
=

=∑ We shall determine the 

n
pµ so that the unit circle will be the circle of convergence and 

the point1will be a regular point of ( )f z . It will suffice to 

show that there exists a number 1 , 1 0l> > , such that the 

circle of convergence of 

( )
( ) ( ) n

n

z l m

mn m
f z l p z l e b e

λ
µ

′− + −+ = + =∑ ∑  

has radius greater than 1 l− . We shall choose 

( 1) / ,l r r r= − a sufficiently large integer. We have by the 

binomial expansion 

1
( )1

( )
n

n

r
z

r

n

r
p z e

r

λ

µ

−′− +−+∑ ,

1 1
( )

n

n n

m

m

m

m n

r r
e p z C

r r

λ

µ λ

′ −
−

′
− − = +  

 
∑ ∑

m

m

m

b e
−=∑  

We have to show that 
1/suplim m

m
b r< , for some choice of 

the 
n

pµ with
1/

sup |m 1li | n

n
p

λ
µ = . 

Let ε be a small but fixed number; we distinguish two 

cases. 

In case ( ),i m does not lie in any of the intervals 

(( / )(1 ), ( / )(1 ))
j i

B r B r− +ε ε . Then we show that for every 

choice of the 
n

pµ with | | 1,
n

pµ ≤  
1/limsup ,m

m
b r δ< −  

( )δ δ= ε . 

This means that if m is large enough and does not lie in 

(( / )(1 ), ( / )(1 ))
j i

B r B r− +ε ε then ( )m

m
b r δ< − . Clearly 

,

1
.

n

n

m

m m

n

r
b C

r

λ

λ

′ −

′
− ≤  

 
∑            (7) 

If we define 

,
(( 1) / )

k m

k m k
C r r H

−− =  

We find 

1
/ (( 1) / )( 1) / ( 1).

k k
H H r r k k m+ = − + − +       (8) 

By studying the quotient (8) we see that 
( 1)

,
max (( 1) / )

r m

k rm rm m
H H C r r

−= = − and by applying 
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Stirling's formula 

1/ 2 1/2! ~ (2 ) k kk k cπ − + −
 

We note that 
1/ m

rm
H r→ as m → ∞ . It follows from (8) that 

there exists ( ) 0k k= >ε such that 

1
/ 1 / (1 )

k k
H H for n rmη+ > + < + ε        (9) 

1
/ 1 / (1 )

k k
H H for n rmη+ < − > − ε       (10) 

and hence a simple calculation shows that there exists a 

( ) 0β β= >ε such that 

( )m

k
H r β< −                 (11) 

for k not in ( / (1 ), / (1 ))rm rm+ −ε ε . 

Now clearly 

1 2

m
b = +∑ ∑  

where in 
1∑ the summation is extended over the 

/ (1 )k rm< + ε and in 
2∑ over the / (1 )k rm> − ε . (By 

assumption m does not lie in 

(( / )(1 ), ( / )(1 ))
j i

B r B r− +ε ε and in (7) the n
λ ′ are all in 

( , )
j i

B B ; thus if ( / )(1 )
j

m B r< − ε , / (1 )
n

rmλ ′ > − ε and if 

( / )(1 )
i

m B r> + ε , / (1 )
n

rmλ ′ < + ε .) Thus from (9), (10) and 

(11) (by summing a geometric series) 

4
( )m

m
b c r β< −  

or 

1/li sup ( )m m

m
b r δ< −  

which completes the proof. 

In case ( )ii  

( / )(1 ) ( / )(1 ).
j i

B r m B r− < < +ε ε  

We write 

,
m m m

b b b′ ′′= +  

where 

,

1

1 1
( ) ,

n

n n

m

m m

r r
b p z C

r r

λ

µ λ

′ −

′
− − ′ = +  

 
∑  

,

2

1 1
( ) ,

n

n n

m

m m

r r
b p z C

r r

λ

µ λ

′ −

′
− − ′′ = +  

 
∑  

1∑ indicates that the summation is extended only over 

those n for which n
λ ′ does not lie in ( , )

j i
B B , and in 

2∑ the summation is extended over the other n . 

We 

,

1

1 n

n

m

m m

r
b C

r

λ

λ

′ −

′
− ′ ≤  

 
∑  

and we can show that 
'1/suplim m

m
b r< as before. 

Now we show that we can choose the 
n

pµ to be such as to 

make all the m
b′′ for ( / )(1 ) ( / )(1 )

j i
B r m B r− ≤ ≤ +ε ε equal to 

0 . Thus we must determine the
n

pµ so that 

,

2

1 1
( ) 0

n

n n

m

m

r r
p z C

r r

λ

µ λ

′ −

′
− − + = 

 
∑  

These are homogeneous equations for the 
n

pµ . The 

number of these equations is less than 2( ) /
j i

B B r− for 

sufficiently small ε and the number of unknowns is greater 

than 3
( )

j i
c B B− which is greater than the number of 

equations for large enough r . Thus the system of equations 

always has a solution, and further we can suppose that the 

absolute value of the largest 
n

pµ is 1 . This will insure that the 

circle of convergence of ( )f z will be the unit circle, which 

completes the proof. 

4. Conclusion 

In this study we examine a variation of the converse of 

Fabry Gap theorem.  

Polya's result shows that in some sense Fabry's result is the 

best possible. Perhaps the elementary and direct proof that 

mentioned above might be of some interest. 

To do this, a sequence with a series of new build and 

reordering the call, using the convergence of three series 
* **, ,f f f  obtain upper and lower bounds. And using the 

Stirling's formula and we will achieve the desired result in this 

paper. 
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