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Abstract: From a mathematical perspective, a surface is a generalization of a plane which does not necessarily require being 

flat, that is, the curvature is not necessarily zero. Often, a surface is defined by equations that are satisfied by some coordinates 

of its points. A surface may also be defined as the image, in some space of dimensions at least three, of a continuous function 

of two variables (some further conditions are required to insure that the image is not a curve). In this case, one says that one 

has a parametric surface, which is parametrized by these two variables, called parameters. Parametric equations of surfaces are 

often irregular at some points. This is formalized by the concept of manifold: in the context of manifolds, typically in topology 

and differential geometry, a surface is a manifold of dimension two; this means that a surface is a topological space such that 

every point has a neighborhood which is homeomorphic to an open subset of the Euclidean plane. A parametric surface is the 

image of an open subset of the Euclidean plane by a continuous function, in a topological space, generally a Euclidean space of 

dimension at least three. The paper aims at giving an introduction to the theory of surfaces from differential geometry 

perspective. 
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1. Introduction 

Differential geometry is a discipline of mathematics that 

uses the techniques of calculus and linear algebra to study 

problems in geometry. The theory of plane, curves and 

surfaces in the three-dimensional Euclidean space formed the 

basis for development of differential geometry during the 

18th and the 19th century. Since the late 19th century, 

differential geometry has grown into a field concerned more 

generally with the geometric structures on differentiable 

manifolds. Differential geometry is closely related to 

differential topology and the geometric aspects of the theory 

of differential equations. Differential geometry arose and 

developed as a result of and in connection to the 

mathematical analysis of curves and surfaces. The theory 

developed in this study originates from mathematicians of the 

18th and 19th centuries. Principal contributors were Euler 

(1707-1783), Monge (1746-1818) and Gauss (1777-1855), 

[1, 2, 3, 9]. 

Mathematical study of curves and surfaces has been 

developed to answer some of the nagging and unanswered 

questions that appeared in calculus, such as the reasons for 

relationships between complex shapes and curves, series and 

analytic functions. These unanswered questions indicated 

greater, hidden relationships and symmetries in nature, which 

the standard methods of analysis could not address. The 

purpose of this paper is to give an elaborate introduction to the 

study of curves and surfaces, and those are, in general, curved. 

Nevertheless, our main tools to understand and analyze these 

curved objects are (tangent) lines and planes and the way those 

change along a curve, respective surface. This is why we start 

with a brief chapter assembling prerequisites from linear 

geometry and algebra, [4, 6, 7, 8, 10]. 

The objects that will be studied here are curves and 

surfaces in two- and three-dimensional space, and they are 
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primarily studied by means of parametrization. The main 

properties of these objects, which will be studied, are notions 

related to the shape. The study tangents of curves and tangent 

spaces of surfaces, and the notion of curvature will be 

introduced and defined through differentiation of the 

parametrization, and related to first and second derivatives, 

respectively. The notion of curvature is quite complicated for 

surfaces, and the study of this notion will not be ignored. The 

culmination is a famous theorem of Gauss, which shows that 

the so-called Gauss curvature of a surface can be calculated 

directly from quantities which can be measured on the 

surface itself, without any reference to the surrounding three 

dimensional space, [4, 5, 7, 8, 10]. 

2. Manifolds 

The core idea of both differential geometry and modern 

geometrical dynamics lies under the concept of manifold. A 

manifold is an abstract mathematical space, which locally 

resembles the spaces described by Euclidean geometry, but 

which globally may have a more complicated structure, [6, 

9]. A manifold can be constructed by ‘gluing’ separate 

Euclidean spaces together; for example, a world map can be 

made by gluing many maps of local regions together, and 

accounting for the resulting distortions. Therefore, the 

surface of Earth is a manifold; locally it seems to be flat, but 

viewed as a whole from the outer space (globally) it is 

actually round. Another example of a manifold is a circle; 

small piece of a circle appears to be like a slightly bent part 

of a straight line segment, but overall the circle and the 

segment are different one-dimensional manifolds, [2, 9]. 

Definition 2.1: A manifold is a Hausdorff space M with a 

countable basis such that for each point p M∈  there is a 

neighborhood U of p that is homeomorphic to nR  for some 

integer n. If the integer n is the same for every point in M, 

then M is called a n-dimensional manifold, [1, 2, 9]. 

Definition 2.2: A topological space X is said to be 

Hausdorff if for any two distinct points ,x y X∈  there exist 

disjoint open sets U and V with x U∈  and y V∈ , [1, 9]. 

The study of manifolds combines many important areas of 

mathematics: it generalizes concepts such as curves with the 

ideas from linear algebra and topology. Certain special 

classes of manifolds also have additional algebraic structure; 

they may behave like groups, for instance. From [1, 4, 5], an 

atlas describes how a manifold is glued together from simpler 

pieces where each piece is given by a chart (coordinate chart 

or local coordinate system). The description of most 

manifolds requires more than one chart. An atlas is a specific 

collection of charts which covers a manifold. An atlas is not 

unique as all manifolds can be covered multiple ways using 

different combinations of charts, [4, 5, 8]. 

Definition 2.3: An atlas A  on a manifold M  is said to be 

maximal if for any compatible atlas A′  on M  any 

coordinate chart ( , )x U A′∈  is also a member of A , [1, 9]. 

This definition of atlas is exactly analogous to the non–

mathematical meaning of atlas. Each individual map in an 

atlas of the world gives a neighborhood of each point on the 

globe that is homeomorphic to the plane. While each 

individual map does not exactly line up with other maps that 

it overlaps with, the overlap of two maps can still be 

compared. Different choices for simple spaces and 

compatibility conditions give different objects. The 

dimension of the manifold at a certain point is the dimension 

of the Euclidean space charts at that point map to (number n 

in the definition), [2, 3, 9]. All points in a connected manifold 

have the same dimension. In topology and related branches 

of mathematics, a connected space is a topological space 

which cannot be written as the disjoint union of two or more 

nonempty spaces. Connectedness is one of the principal 

topological properties that is used to distinguish topological 

spaces. A manifold with empty boundary is said to be closed 

manifold if it is compact, and open manifold if it is not 

compact. All one-dimensional manifolds are curves and all 

two-dimensional manifolds are surfaces, [1, 3, 9]. 

3. Surfaces 

Examples of surfaces abound in everyday life are: 

balloons, tubes, cans, soap films and the surface of our planet 

earth are all physical models of surfaces. In order to study the 

theory of surfaces in these objects, one needs understand the 

idea of coordinates to make calculations involved. Of course, 

all these surfaces can be thought of as embedded in 

Euclidean space E
3
. But just as a curve needs only one 

coordinate, the very definition of a surface is that it is 

described using just two coordinates: surface of the earth by 

the longitude and latitude. 

Definition 3.1: Let 2D R⊂  denote an open subset. 

a) A function :f D R→  of two variables is called smooth 

( C
∞

), if all partial derivatives exist, and, moreover, are 

continuous functions. 

b) A vector function 
3

:r D R→ , 

( ) [ ( ) (,   , ) ], ,( ), ,r u v x u v y u v z u v= of two variables is 

called smooth ( C
∞

), if its coordinate functions 

, , :x y z D R→  are all smooth. 

The partial derivatives of a smooth function :f D R→  

with respect to the variables u and v at a point 
0 0

),(u v D∈ are 

denoted 
0 0 0 0

( ) (, , , )
u v

f u v f u v R∈ . Also, the partial derivatives 

of a vector function 
3

:r D R→ at 
0 0

),(u v D∈  are the vectors 

3

0 0 0 0 0 0 0 0
,   ,( ) [ ( ) (, , ), ( ), ]

u u u u
r u v x u v y u vzu v R= ∈ , and 

3

0 0 0 0 0 0 0 0
,   ,( ) [ ( ) (, , ), ( ), ]

v v v v
r u v x u v y u vzu v R= ∈ , [3, 4, 5, 

10]. 

Definition 3.2: Let 2D R⊂ denote an open subset, let 
3

:r D R→  denote a smooth vector function, and let 

, :u v I → R  denote smooth functions such that 

( ) ( )( ),u t v t D∈  for all t in the interval I. Then, the 

composite function 
3

: I →x R  defined as 

( ) ( ) ( )( ) ,t u t v t=x r
 
is smooth and has the derivative
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )  ,  ,t u t u u t v t v t v u t v t′ = ′ + ′x r r , [3, 4, 5, 

10]. 

Definition 3.3: Let 2D R⊂ denote an open subset. A 

smooth vector function 
3

:r D R→  of two variables is called 

a parametrization (or coordinate patch) for the surface 
3

S ⊂ E  consisting of all points P with ( ),OP u v= r
����

 with 

( ),u v D∈ if: 

a) r is a one-to-one (injective) map (i.e., every point in S 

corresponds to a unique point in D); 

b) The partial derivatives 
3

0 0 0 0 0 0 0 0
,   ,( ) [ ( ) (, , ), ( ), ]

u u u u
r u v x u v y u vzu v R= ∈

 
and 

3

0 0 0 0 0 0 0 0
,   ,( ) [ ( ) (, , ), ( ), ]

v v v v
r u v x u v y u vzu v R= ∈ are 

linearly independent at every point ( )0 0,u v D∈ . 

A subset 
3

S ⊂ E  that has a coordinate patch r as above, is 

called a regular surface, [3, 4, 5, 10]. 

Definition 3.4: The first parameter curve through 
0

P S∈  

with ( )0 0 0 ,OP u v= r
����

 arises from parametrization ( )0 0,u vr
 

looked upon as a vector function of the single variable u 

(with u in an interval containing u0). It consists of the points 

( )0,P u v  with ( ) ( )0 , 0 ,u vOP u v= r
����

 in the image of the 

parallel to the u-axis through ( )0 0,u v . 

Similarly, the second parameter curve through P0 arises 

from the parametrization ( )0 ,u vr as a vector function of the 

single variable v, [3, 4, 5, 10]. 

Definition 3.5: A space curve C with parametrization 
3

: I →x R  is called a smooth curve on ( )D S⊂r if and only 

if there is a smooth parametrization ( ) ( )( ), ,u t v t t I∈ of a 

plane curve in D such that ( ) ( ) ( )( ) ,t u t v t=x r , [3, 4, 5, 

10]. 

Definition 3.6: Let S denote a regular surface and 0P S∈ . 

a) The linear tangent plane 
0PT S  to S at P0 consists of all 

velocity vectors to smooth curves on S through P0. 

Given a coordinate patch 
3

: D →r R  for S with 

( ) 00 0,  u v OP=r
����

, it has a parametrization 

( ) ( )
0 0 0 0 0 ,  }, , ,{P u vT S s u v t u v s t= + ∈r r R . 

The affine tangent plane 
0P Sπ  to S at P0 consists of all 

points 3Q ∈ E  with
00 PP Q T S∈

�����

. It has a parametrization, [3, 

4, 5, 10].  

( )
( )

0

3
0 0 0

0 0

{ |

 

,

, ,       },

P u

v

S Q OQ OP s u v

t u v s t

π = ∈ = +

+ ∈

���� ����

E r

r R  

Definition 3.7: A vector 3∈n R is called a normal vector to 

S at P0 if n is perpendicular to all tangent vectors 
0PT S∈v [3, 

4, 5, 10]. 

Definition 3.8: Let 
3

: D →r R denote a coordinate patch 

for the surface S with ( )0 0
,  ,u v OP P S= ∈r

����

. The vector 

( ) ( ) ( ) ( )
( ) ( )

,  ,0 0 0 0
 ,  30 0 0, 0  0, 0

u v u vu v
P u v

u u v v u v
ν ν

×
= = ∈

×
r r

R
r r

 

is a unit normal vector to the surface S at the point P, [3, 4, 5, 

10]. 

Definition 3.9: Let 
3

: D →r R denote a coordinate patch 

for the surface S. We define three functions , , :E F G D → R  

given by, [3, 4, 5, 10]. 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

, , ,

, , ,

, , ,

u u

u v

v v

E u v u v u v

F u v u v u v

G u v u v u v

= •

= •

•=

r r

r r

r r
. 

Definition 3.10: Let P S∈  denote a point on the surface S 

with ( )0 0
,OP u v= r

����

. The length of the tangent vector 

( ) ( )0 0 0 0,  ,u v pa u v b u v T S= + ∈w r r  is given by 

( ) ( ) ( )2 2 2

0 0 0 0 0 0
 ,   2 ,  ,a E u v abF u v b G u v= + +w , [3, 4, 5, 

10]. 

Definition 3.11: Let 
3

: D →r R , 2D ⊂ R  open, denote a 

coordinate patch for the surface S; let furthermore 

( ) ( ) ( )( ) , ,t u t v t a t b= ≤ ≤x r
 
denote a parametrization for a 

curve C on S. The derivative ( )   
ds

s t
dt

′ =  of the arc length 

function ( ) ,s t a t b≤ ≤  satisfies: 

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 22
, 2 , ,s t u t E u t v t u t v t F u t v t v t G u t v t′ = ′ + ′ ′ + ′

 

and thus the length of the segment of the curve C between the points corresponding to the parameters t0 to t is given (in short 

form) by, [3, 4, 5, 10]. 

( ) ( ) ( ) ( )
1 1

0 0

2 2

1   =  2    .

t t

t t

s t s t dt u E u v F v G dt= ′ ′ + ′ ′ + ′∫ ∫
 

Definition 3.12: The angle α between the curves C1 and C2 satisfies, [3, 4, 5, 10]: 

( )
( ) ( )( ) ( ) ( )( )

           1 2 1 2 2 1 1 2

2 2 2 2
   2         2      1 1 1 1 2 2 2 2

u u E u v u v F v v G
cos

u E u v F v G u E u v F v G

α
′ ′ + ′ ′ + ′ ′ + ′ ′

=
′ + ′ ′ + ′ ′ + ′ ′ + ′

 



 Pure and Applied Mathematics Journal 2017; 6(3-1): 6-11 9 

 

 

Definition 3.13: Let 
3

: D →r R  denote a smooth 

parametrization for the surface S, and let R S⊂  denote a 

subset whose boundary is a piecewise smooth curve C S⊂ . 

The area a(R) of R is given as, [3, 4, 5, 10]: 

( )
( )

( )

1

1

2

   

          

u v

R

R

a R dudv

EG F dudv

−

−

= ×

= −

∫∫

∫∫

r

r

r r

 

Definition 3.14: The normal section ( )C P
v

 of the surface 

S at the point P S∈  in direction 
P

T S∈v is the curve which 

arises as the intersection of the normal plane ( )Pπ
v

 and the 

surface S, i.e., ( ) ( ) C P S Pπ= ∩
v v

. 

The normal curvature ( );n Pκ v  is then defined as the 

(plane) curvature of the normal section ( )C P
v

viewed as a 

curve in the normal plane ( )Pπ
v  

with orientation given by 

the basis ( ){ }, Pνv , [3, 4, 5, 10]. 

Definition 3.15: Let S be the surface obtained as the graph 

of a smooth function 2: ,f D D→ ⊂R R open with

[ ]  0,  0 D= ∈0  and 
( ) ( ) ( )

( )
0,  0  0,  0  0,  0  

               = 0,  0   0

x y

xy

f f f

f

= =

=
. 

Then, ( )1 0,  0xxfκ =  and ( )2 0,  0yyfκ =  are the maximal, 

resp. minimal normal curvatures of S at O, and the normal 

curvatures ( )nκ θ  in direction [ ] ,  ,  0 Ocos sin T Sθ θ= ∈v is 

given by Euler’s formula 

( ) ( ) ( )2 2

1 2
;     

n
O cos sinκ θ θ κ θ κ= + , [3, 4, 5, 10]. 

Definition 3.16: Let S be the graph of the function f 

above, let ( )1 0,  0xxfκ =  and ( )2 0,  0yyfκ = . Then, the 

second order Taylor approximation of f at (0, 0) takes the 

form ( ) 2 2

1 2,   F x y x yκ κ= + . 

The surface T given as the graph of the function F is called 

the approximating paraboloid of S at O, [3, 4, 5, 10]. 

Definition 3.17: Normal and geodesic curvature.  

Let S denote a surface with a given parametrization 
3 2

:   ,  → ⊂r R RΩ Ω . Let C denote a curve on S with 

parametrization ( ) ( ) ( )( ) ,t u t v t=x r with ( ) ( )( ),u t v t a 

parametrization for the corresponding curve in Ω. Let Pt 

denote the point on the curve with ( ) ( )( ),tOP u t v t= r
����

. 

Along the curve, we have the following vector fields 

(“moving vectors”): 

a) the tangent vector field t(t) (or “moving tangent 

vector”) attaching to each point on the curve the unit 

tangent vector. 

b) the normal vectors to the surface S – given by 

( ) ( ),   ,u v

u v

u v u vν ×
=

×
r r

r r
– assemble to a normal vector 

field (“moving normal vector”) ( ) ( ) ( )( ) ,t u t v tν ν=  

along the curve. 

c) The vector ( ) ( ) ( )  t t tγ ν= × t  is contained in the 

tangent plane 
tPT S at Pt and is perpendicular to t(t); it 

constitutes an “oriented normal vector” to t(t) with 

respect to 
tPT S ”, [3, 4, 5, 10].  

Definition 3.18: The coefficients of these two components 

are called 

• ( ) ( ) ( )  g t t sin tκ κ θ=  – the geodesic curvature at Pt; 

• ( ) ( ) ( ) ( ) ( ) ( )   n t t cos t t t tκ κ θ κ ν= = •n  – the normal 

curvature at Pt, [3, 4, 5, 10]. 

Definition 3.19: The normal curvature of κ satisfies, [3], 

[4], [5], [10]: 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )       

1

1
 

n
t t t

s t

t t
s t

κ ν

ν

= ′
′

= − ′
′

•

•

t

t

. 

Definition 3.20: Normal curvature depends only on the 

tangent vector t of the curve at P, and not on the curve itself. 

For a non-zero tangent vector 
u v

a b= +t r r , and the 

definition of the normal curvature of S in direction t, [3, 4, 5, 

10]: 

( ) ( ) ( ) ( )( )2

2 21
n u u u v v u v va ab bκ ν ν ν ν= − • + • + • + •t r r r r

t
 

Definition 3.21: The second fundamental form.  

Finally, we want to find expressions for the coefficients in 

the definition 3.12, that are easy to calculate. To this end, we 

use, [3], [4], [5], [10]: 

Definition 3.22: Given a surface S with parametrization 
3

:r D → R as above. We define three real-valued smooth 

functions , , :e f g D → R
 
by 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )

 
,   ,  ,

,   ,  ,

,   , ,

uu u v
e u v u v u vuu

u v

uv u v
f u v u v u vuv

u v

vv u v
g u v u v u vvv

u v

ν

ν

ν

• ×
= • =

×

• ×
= • =

×

• ×
= •

×

r r r
r

r r

r r r
r

r r

r r r
r

r r
 

and the second fundamental form on a tangent vector 

u v P
a b T S= + ∈t r r with ( ),OP u v= r

����

 as the quadratic 

polynomial in the two variables a and b, [3, 4, 5, 10]: 

( )( ) ( ) ( ) ( )2 2,  ,   2 , ,II u v e u v a f u v ab g u v b= + +t . 

Definition 3.23: The normal curvature kn of S at P with 

( ),OP u v= r
����

 
in the tangent direction 

u v P
a b T S= + ∈t r r

 
is 

the quotient of the secondand the first fundamental form 

(3.15) at t, [3, 4, 5, 10]; i.e., 
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( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

2 2, 2 , ,
  

2 2, 2 , ,

II e u v a f u v ab g u v b

n I E u v a F u v ab G u v b
κ

+ +
= =

+ +

t
t

t
 

Definition 3.23: Calculation of principal curvatures and 

principal directions.  

Our next aim is to find at every point P on a surface S two 

principal curvatures such that all other normal curvatures 

( )  nκ t
 
are sandwiched between those two. Moreover, it 

would be nice to have formulas calculating these entities. Our 

point of departure is definition 3.23 expressing normal 

curvatures as the quotient of the two fundamental forms on 

the tangent direction. What are the maximal, resp. minimal 

values for this expression (the normal curvature), and in 

which (tangent) directions do they occur?, [3, 4, 5, 10]. 

Here is another way to phrase this question: Let P S∈ be 

such that ( )0 0,OP u v= r
����

. 

We fix the values of the two fundamental forms at that 

point, i.e., 

( ) ( ) ( )
( ) ( ) ( )

0 0 0 0 0 0

0 0 0 0 0 0

, , , , , ,

, , , , ,

E E u v F F u v G G u v

e e u v f f u v g g u v

= = =

= = =
 

Now we ask: For which real numbers k does the equation 

2 2

2 2

2

2

ea fab gb

Ea Fab Gb
κ + +=

+ +
 

have a non-trivial solution [a, b] 6= [0, 0]? 

Remark: There exists always a solution for 

[ ] [ ], i.e.,  , 1,  0
e

k a b
E

= =  

Definition 3.24: Let P S∈  be a point on a regular surface, 

and let E, F, G and e, f , g denote the coefficients of the first 

and second fundamental forms at P in a given 

parametrization. Then, we define the Gaussian curvature 

( )Pκ  of S at P as the real number ( )
2

2

eg f
P

EG F
κ −=

−
, and the 

mean curvature H(P) as the real number 

( ) ( )2

 2
 

2

eG gE fF
H p

EG F

+ −=
−

. Remark, that K and H define 

smooth functions K(u, v) and H(u, v) on their domain, [3, 4, 

5, 10].  

Definition 3.25: Let P S∈  be a point on a surface S, let 

K(P) and H(P) denote the Gaussian, resp. mean curvature of 

S at P. Then, the numbers ( ) ( ) ( ) ( )2
    

1
P H P H P K Pκ = + −  and 

( ) ( ) ( ) ( )-
2

  
2

P H P H P K Pκ = −
 
are called the principal 

curvatures for S at P. The associated principal directions are 

the tangent directions 
1 1 1 2 2 2
   and   

u v u v
a b a b= + = +t r r t r r

with ( ) ( ) ,  1, 2n i i P iκ κ= =t . (These are only well-

determined for 
1 2

κ κ≠ !), [3, 4, 5, 10]. 

Definition 3.26: 

a) The principal curvatures, Gaussian curvature and mean 

curvature at a point P S∈  are connected by the 

following relations: ( ) ( ) ( )1 2K P P Pκ κ=
 

( ) ( ) ( )1 2
 

2

P P
H P

κ κ+
= ; 

b) the last equation explains the name mean curvature. 

c) The principal directions 
i i u i v

a b= +t r r  can be 

determined as the solutions of the linear equations 

( ) ( )  0i i i iE e a F f bκ κ− + − = , (or as the solutions of 

the linear equations ( ) ( )  0i i i iF f a G g bκ κ− + − = .), 

[3, 4, 5, 10].  

Definition 3.27: The geometric significance of the 

Gaussian curvature. 

The Gaussian curvature appears just as a tool in the 

calculation of the principal curvatures. In fact, this invariant 

can tell us much more about the local and global properties 

of the surface S. First of all, one can see, that Gaussian 

curvature, mean curvature, and thus the principal curvatures 

are independent of the chosen parametrization – whereas the 

coefficients E, F, G and e, f , g clearly depend on 

parametrizations. The reason is, that the principal curvatures 

– as the extremal curvatures of the normal sections – are 

geometric entities that do not depend on parametrization. 

Gaussian curvature and mean curvature can be calculated 

from the principal curvatures, [3, 4, 5, 10]. 

Definition 3.28: Classification of points on a surface. 

Already the sign of the Gaussian curvature contains very 

useful information about the surface S in the neighbourhood 

of a given point P ∈ S, [3, 4, 5, 10]. 

Definition 3.29: A point P ∈ S is calledelliptic if K(P) > 0, 

a) hyperbolic if K(P) < 0, 

b) parabolic if K(P) = 0 and k1(P) 6= 0 or k2(P) 6= 0, 

c) planar if k1(P) = k2(P) = 0, [3, 4, 5, 10]. 

4. Geodesics 

In mathematics, the differential geometry of surfaces deals 

with the differential geometry of smooth surfaces with 

various additional structures. Surfaces have been extensively 

studied from various perspectives: extrinsically, relating to 

their embedding in Euclidean space and intrinsically, 

reflecting their properties determined solely by the distance 

within the surface as measured along curves on the surface. 

One of the fundamental concepts investigated is the Gaussian 

curvature which was first introduced by Carl Friedrich Gauss 

(1825-1827)), who showed that curvature was an intrinsic 

property of a surface, independent of its isometric embedding 

in Euclidean space, [4, 7, 10]. 

Surfaces naturally arise as graphs of functions of a pair of 

variables, and sometimes appear in parametric form or as loci 

associated to space curves. An important role in their study 

has been played by Lie groups, namely the symmetry groups 

of the Euclidean plane, the sphere and the hyperbolic plane. 

These Lie groups can be used to describe surfaces of constant 

Gaussian curvature; they also provide an essential ingredient 

in the modern approach to intrinsic differential geometry 

through connections. On the other hand, extrinsic properties 
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relying on an embedding of a surface in Euclidean space 

have also been extensively studied. This is well illustrated by 

the non-linear Euler-Lagrange equations in the calculus of 

variations: although Euler developed the one variable 

equation to understand geodesics, defined independently of 

an embedding, one of Lagrange's main applications of the 

two variable equations was to minimal surfaces, a concept 

that can only be defined in terms of an embedding, [4, 7, 10]. 

The smooth surfaces equipped with Riemannian metrics 

are of foundational importance in differential geometry. A 

Riemannian metric endows a surface with notions of 

geodesic, distance, angle and area; an important class of such 

surfaces are the developable surfaces which are surfaces that 

can be flattened to a plane without stretching (examples the 

cylinder and the cone). On the other In addition, there are 

properties of surfaces which depend on an embedding of the 

surface into Euclidean space. These surfaces are the subject 

of extrinsic geometry. They include the minimal surfaces 

which are surfaces that minimize the surface area for given 

boundary conditions (examples include soap films stretched 

across a wire frame, catenoids and helicoids) and ruled 

surfaces which are surfaces with at least one straight line 

running through every point (examples include cylinder and 

hyperboloid of one sheet), [4, 7, 10]. 

5. Conclusion 

Starting with the idea of a chart, the paper has developed a 

step by step introduction of the theory of surfaces upto the 

curvature of a surface. Using the notions and definitions 

developed in the this paper, the focus is now classes of 

interesting surfaces, get new information and develop some 

advanced concepts on surfaces. 
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