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Abstract: In this paper we establish an identity involving logarithmic derivative of theta function by the theory of elliptic
functions. Using these identities we introduce Ramanujan’s modular identities, and also re-derive the product identity, and many
other new interesting identities.
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With above notation, the celebrated Jacobi triple product

1. Introduction and Definitions identity can be expressed as follow

Assume throughout this paper that g =™ , when o -y
L7 > 0. As usual, the classical Jacobi theta functions are z (_1) q 7z'= (QQQ)W (ZQQ)oo (Q/ZQQ)OO (1.3)
defined as follow[1-3], n=—c

o Employing the Jacobi triple product identity, we can de-
1 . . . . . .
91(2 |T) = —ig" Z (_1)" qn(n+1)e(2n+l)lz (1.1) T1ive the 1nf1n1te product expressions for theta fupctlon
Propositionl.1. (Infinite product representations for theta
functions)

0,102 3 (-1) e ) 6,(z17)=2q"sinz(q’:4°)_(4°¢":q°)_ (0’747,

() [resr) (),

— 2 2niz ( )
6(zI1)=Y 4" 194 (z17)= (2 ). (weia) (o),
(z17)=

n=—co

n=—o

6:I0=3 gty 60057, (a0), (e 7),

n=-co

The ¢ — shifed factorial is defined by When there is no confusion, We will use 6’. (Z) for

(Z | Z') ; ( )for 9 (Z | Z') to denote the partial de-

00

(a;q)oo = |_| (l - aq") rivative with respect to the variable, and & for &, (0 | Z') ,

"= i =1,2,3,4.From the above equations, the following facts

and some times write are obvious

(a.a5.+,a,39)_ =(a;q)_(aq),(a,:9).
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n(n+1) - 2qi (qz;qz )oo (_qz;qz)j0

2

0= 30 “lgi0) (o)
6,=3 -1yq” =(¢:4°). (~a:4’)

With respect to the (quasi) period 77 and 7@, Jacobi
theta functions &,i =1,2,3,4 satisfy the following rela-

(1.6)

tions

G(z+mr)=-6(z|1), 6,(z+m1)=-6,(z|1)
0,(z+m|1)=6,(z|1), 6,(z+m|1)=6,(z|T)
6 (Z + 71 | T) = —q_le_mg1 (Z | T)

0,(z+m|1)=¢ 62‘252(Z|T)

O, (z+m|r)=q"e 93(Z|T)
54(Z+77T|T)=—q e 9(Z|T)

and

91(2+g|Tj=92(Z|T)a Hz(z+g|r)=—91(z|r)

@(z+g|rj=94(z|r), 04(z+g|rj=03(z|r)
also have
6{(2+%|rj=iMﬁ4(z|r)
6, z+%|r =M6,(z|1)
(1.7)

6, z+%|r =M6,(z|1)

=iM6(z|7)

o, Z+%|T
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491(2+m2+n|TJ=M6’3(Z|T)

Hz(z+m2+n|rj=—th94(z|T)

(1.8)
T

@(ﬂ |rj=iM01(z\r)

@(z+m2+”|rj=M92(z|T)

-1 _
Where M =q ‘e =z
The following trigonometric series expressions for the
logarithmic derivative with respect to Z of Jacobi Theta
functions will be very useful in this paper,

2n

Z(Z|T)_00tz+4; ey —sin 2nz

6, _ S
E(Z|T)__tanz+4z(_l) o sin 2nz

5; n=l (1.9)
= (z|7) 42( 1) —sin 2nz

&

ﬂ(z‘r):4i n2nsin2nz

04 n=1 17

Theorem 1.1. The sum of all the residues of an elliptic
function in the period parallelogram is zero.

2. Main Theorem and Proofs

Theorem 2.1. For x and y , we have

6,7.6.,\ 6 06 (x
2(x)+=2(y)-=(x+y)=686
6, )55 )78 (6 (1), (v

Proof. We consider the following function
o, (z+x)94 (z+y)94 (z—x—y)

& (2)6.(z)

by the definition of 91 (Z | Z') , we can readily verify that

2.1)

/(2)=

f (Z ) is an elliptic function with periods 7Tand 71 ,The

JT 7T
only poles of f (Z) is Oand 7 Furthermore, Tis

its simple pole and 0 is its pole with order two. By virtue
of the residue theorem of elliptic functions, we have

Res(f;%j+Res(f;O):0 2.2)
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And applying relation of 491 and 34 in (1.7-1.8) and i ( )_ i ( )_(99)2 91(x) 2 i 91()’) 2
L’Hospital’ rule, we can obtain 0, 7 0, ARG g, (x) 6,(»)
) _ mr 2 6 (x)6; () -6 (v)6; (x)
Res (f,;j = zlam)g(z —ij(z) =(6,6) & ()& (y
26 (x+)6 (x-)
7T =6 )y —-—"7 " -7/
(=T Jo (e )6 +)e () O 98 0
= lim
% 652(2)94(2)
. 5\3 This completes the proof of Corollary 2.2.
= (ZB) 6’1 (x) 61 (y) 61 (x +y) (2.3) Remark 2.1. The corollary2.1 is often written in terms of
e ( m j fad ( m ) the weierstrass elliptic and sigma functions as [7, p.451]
2)"'\ 2
_O(xtylolx—y
6,(x)6()8(x+>) 0 () -0 (x) = ZF2)o(e=)
a*(x)o* (»)

= ' 2
8,(0); (0)
Theorem 2.2. For y and y are real, we have

(
Next we compute Res ( f; 0) s

. d
Res (f;O) = E%Z(sz(z)) | 51 4 ,
=limzf (2) 2+ (2) 2.4) (Q’J (Z‘X)‘(Q“J (z-»)
220 z f ’ 01 04
L, 2.0, o, :iﬁl(z—E)94(z+E—x—y) 57
=limz f(z){z+ A (z42)+ 6, (z+5) 2 5'1|94(22—x—y)| 7
+ﬂ(z—x—y)—2ﬂ(z)—ﬂ(z) where Im z denotes the imaginary part of the complex
A 6 o, number Z .
— o, (x) 6, ()’)‘94 (X+J’) {i(x) +ﬂ(y) _ﬂ(x_'_y)} Proof. Firstly, we replace x by z—Xx +7 and y by
g’ (0)4,(0) o, o, o, o
X —y+—in Theorem 2.1. it becomes

From Theorem 1.1, substituting (2.3) and (2.4) into (2.2),
by performing a little reduction we can complete the proof of

)

)t ) (e)
(z-x)8,(x-»)8(-»)
(e P

N

Theorem 2.1.
Corollary 2.1. For x and ), we have

6.) () (6 (= (g) ELr*2)8(x=)

S )-| 2 (x)=(8

oo S
Sine x — y is real, Hl (x—y),z' =1,2,3,4 is also real

Proof. We differentiate the formulae of Theorem2.1 with
valued, then we have

=

a
=6,6,—
2381

respect to 1, and then set y =0, then
' ! 2 \ g
4, g .(6(x) {ﬂ R
Zi1(0)-] 2| (x)=(66)| 2 25 Im| 2(z=x)=25(z-)
2] 5)w=teay[g] oo mGeog
N bi ith her el identity [7 =86 94(x_y) [94(2_)()91(2_)})] (2.9)
ow we combine with another elementary identity [7, 203 491()6—)/) 6, (z—y)Bl(z—x)

We note that (2.9) is precisely the numerator of (2.7). We

p.467]
now consider its denominator. In Corollary2.1, replace ) by

& (x) A (y) - (y) A (x) =6.6 (x+y)t91 (x—y) (2.6)

From formula (2.5) and (2.6), we can obtain
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m
z—y Z—x+7and X by z—y,then obtain

(4]0 %) -
=(6\) 6,(22-x-)6,(y~x)

& (z-x)6; (=-»)

Now from (2.9) and (2.10), the left hand side of (2.7) be-
comes

(2.10)

—X)Hl(z—y)}(

1 1 o,(
9;946’1(x—y)1m(6’(z— )6,(z=x)

| 6 (z-x)¢; ( ») | (2.11)
x=)|

|9 (2z x- y) 2z— y)

_Im(6,(z-x)8(z-»)6(7 %), (z-»))

9149449(x —y)|94 (Zz -X —y)|

Here we can see that it is crucial that X and ) are both

real , Since 91 (Z —x) = 91 (Z —y) . On the other hand, we

can derive a different expression for the imaginary part of the
above quantity. Since we note that in Corollary2.1, replacing
ybyz—y, x by x—zand zby y—2z, we can deduce

z
(where Imz =

).

2i

21'Im(94 (z-x)g(z-»)6(z-x)6, (E—y))
- 0,(:-x)8(:-1)4 (F-1)8,(z-)
-6(z-x)6,(z-»)6,(z-x)6(z-»)
=6,6,(z+z-x-»)6,(y-x)g(z-7)

Substituting above equality into (2.11), we can obtain the
result (2.7). This complete the proof of Theorem 2.2.

3. Implications for Square Sum

In this section, we will re-deduce the Lambert series rep-
resentations for Hiz , 914 , Hiﬁ from Theorem 2.1 easily and dif-

ference methods from [4-6].
Theorem 3.1. For Jacobi Theta function &, , we have

_1+4Z

1+q

JiT +
Proof. We note that 94 x+

T)=gleas).
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then
o', (
—| x+

T+ T g,
J=-+ 220
6, 2

6,
+77

In Theorem 2.1, we replace xby x+ , then it

becomes

g' g’ g’ 2
22 () 22(0)- 22 (r3) =002

T
Next,we choose X =0 and =Z with the facts that

o103 ) (%)

above equality becomes

6, (m\ 6 (m > q"
=211 1-21Z|=1+4
’ 914) 914) ;qu"

This complete the proof of Theorem 3.1

Theorem 3.2. For Jacobi Theta function 93 , we have

Proof. We set x =01in (12 ), then differentiate it with

1

g,
respect to y and set y =0, We recall (1.9) for ?(z | T) ,
)
then

N 2inz —2inz
(%] (217) =83 cos 2z =43 ( )
4 n=l1

And from (1.9), we can obtain

2 n=l1

Hence, we can obtain

o2z

=1+8

n=1 1 _q2n

This complete the proof of Theorem 3.2
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