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Abstract: In this note, we indicate the coincidence as abstract groups of some point groups which belong to different 

molecular orbitals. This elucidates somewhat vague presentation in many existing textbooks on molecular orbitals, thus 

abridging between group theory and quantum chemistry. 
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1. Introduction 

Point groups are indispensable tools for analysis of 

molecular orbitals. However, there is one point missing in 

most of the textbooks (given in references) to the effect that 

one group is associated to several orbitals, cf. e.g. Example 4, 

which has been a tradition in the theory because there is 

always associated a figure of the molecule. Since one group is 

associated to many molecules, it would be preferable to have a 

clear description of the correspondence between the 

molecules and the point group. In this note we shall show that 

some of the point groups which have different labels are 

isomorphic as abstract groups. Classification being the strong 

point of mathematics, this manifestation of the classification 

of point groups hopefully gives rise to better and clear 

understanding of the theory of point groups. We have treated 

the easiest case and apparently, we may go on classifying all 

the point groups, which task will be conducted subsequently. 

In the remainder of this section, we assemble fundamentals 

on group theory for readers' convenience. 

We are concerned with finite groups only. We take basic 

definitions of a group for granted. The number of elements of 

a group G is called the order of G denoted |G|. A subgroup H of 

a group H is a subset of G, which itself forms a group under 

the operation (called product) of G. A group with commutative 

product is called an Abelian group (or a commutative group). 

For finite groups, the following is fundamental. 

Lemma 1 (Lagrange). Let G be a finite group and let H be 

its subgroup. Then the order of H divides that of G: 

|H| | |�|. 

Lemma 1 is used e.g. in the following context. 

Recall that the cyclic subgroup <a> generated by a in a 

group G is the set of all powers of a: 

< � >= {�
|� ∈ ℤ} 

Since there are only finitely many different powers of a, 

we must have �� = �� , whence we may conclude that 

� = {� ∈ ℕ|�
 = 1} ≠ ∅ . Choosing � = min � , we may 

conclude that l divides all members of X and that all elements 

1, �, … , ���� are distinct, so that | < � > | = �, | < � > | =

��� {� ∈ ℕ|�
 = 1}. The order of the subgroup generated 

by <a> is called the order of a and denoted by o(a). 

By Lemma 1, l | |G| and so �| | = (�|"#$|)| |/|"#$| = 1. 

Thus, we have the generalized Fermat's little theorem: 

�| | = 1.                   (1.1) 

Corollary 1. A group G of prime order is cyclic. 

For, any element a of G generates a cyclic subgroup whose 

order o(a) divides the prime ' = |�| , and so either 

((�) = 1 or ((�) = ' . The former case leads to � = + 

(identity) and the latter case leads to � =< � >. 

Lemma 2 (Sylow) For the highest prime power ', that 

divides the order of a group G, there exists a subgroup S of 

order ',, called a Sylow p subgroup of G. All the subgroups 
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of G of prime power order '- are contained in the Sylow p 

subgroup S. All Sylow p subgroups are conjugate. 

Notation. To avoid confusion with the rotary reflection ./, 

we denote the nth symmetric group by nS . Care must be 

taken also in treating the dihedral group 0/  which is 

denoted by 2nD  in mathematics. 2nD is the semi-direct 

product of a cyclic group of order n and one of order 2: 2nD  

=< 1 >⋊< � >, where o(b)=n, o(a)=2 and there is the 

relation ���1� = 1/��.  

2. Point Groups 

By [7, p.8] point groups are rotational parts of the space 

group which leave the molecule (lattice) invariant and in the 

case of crystals there are 32 of them. 

Definition 1. We choose the principal axis of symmetry as 

the one which goes through the maximum number of 

molecules (lattice points). If there are some of them, then we 

choose the one. If there is no such an axis we choose it 

arbitrarily. The plane of symmetry is chosen so that it 

contains the maximum number of molecules. The 

intersection of the principal axis and the plane of symmetry is 

chosen to be the origin. 

� 3/ is the rotation w.r.t. the principal axis through 25/�. 

� 6  is a reflection. 67  (h=horizontal) is a reflection 

through a plane perpendicular to the axis of symmetry; 

68  (v=vertical) is a reflection through a plane 

containing a principal axis of symmetry; 69 

(d=dihedral) is a reflection through a plane containing a 

principal axis of symmetry and bisects the angle 

between two 2-fold axes perpendicular to the principal 

axis. They are all of order 2. 

� i is the inversion w.r.t. the origin. 

� ./  is the rotation through 25/�  followed by a 

reflection through a plane perpendicular to the axis of 

rotation, and is called rotary reflection (improper 

rotation). 

In what follows we often write the group itself by its typical 

element. 

Remark 1.  

(1) In the case of crystals, rotations are only those which 

rotate through integral multiples of 5/3, 5/2 or the 

products of such rotations and the inversion. 6 = �3;, 

where 3; is the rotation through 25/2. 

(2) It seems that the introduction of the rotary reflection 

./ leads to confusion because it is the product of two 

operations: 

./ = 673/                  (2.1) 

and ./

 = 67


3/

 for any integer m. Hence 

./

 = 3/


     m  even,             (2.2) 

./

 = 673/


   m  odd and .� = 673� = 67. 

Example 1. We have 

3;8 ≅ 3=. 

Example 2. The group 3=  consists of the following 4 

elements whose multiplication table is given below. 

(i) 3= is the rotation through 25/4 and 3=
= = + is the 

identity.  

(ii) 3=
; = 3; is the rotation through 5.  

(iii) 3=
? is the rotation through 35/2.  

Table 1. Character table of 3= 

@ e AB AB
C AB

D 

EF 1 1 1 1 

E� 1 -1 1 -1 

E; 1 � �; �? 

E? 1 �? �; � 

Example 3. The group 3G consists of 6 elements whose 

multiplication table is given below. 

(i) 3= is the rotation through 5/6 and 3G
G is the identity.  

(ii) 3? is the rotation through 25/3 and 3? = 3G
;.  

(iii) 3; is the rotation through 25/2 and 3; = 3G
?.  

(iv) 3?
; is the rotation through 45/3 and 3?

; = 3G
=.  

(v) 3?
I is the rotation through 55/3. 

Table 2. Multiplication table of 3G (r indicates 3G). 

o e K K; K? K= KI 

e e K K; K? K= KI 

K K K; K? K= KI e 

K; K; K? K= KI e K 

K? K? K= KI e K K; 

K= K= KI e K K; K? 

KI KI e K K; K? K= 

Table 3. Multiplication table of 
3S  

o e K K; s K;L KL 

e e K K; s K;L KL 

K K K; e KL s K;L 

K; K; e K K;L KL s 

s s K;L KL E K K; 

K;L K;L KL S K; E K 

KL KL s K;L K K; e 

Table 4. Regular multiplication table of 
3S  

o e M? M; M� K; K 

e e M? M; M� K; K 

M? M? e K; K M; M� 

M; M; K e K; M� M? 

M� M� K; K e M? M; 

K K M; M� M? e K; 

K; K; M� M? M; K e 
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Theorem 1. We have 3 3vC D= , and they are 3≅ S . 

Example 4. To 3?8  belong ammonia NH? , chloroform 

CHCl?, cyclopropenylcation radical, phosphorus sesqui 

-sulfide P=.? , etc. To 0?  belong Boron trifluoride BF? , 

triphenylmethyl radical, trans-perhydrotripolyphenylene, 

staggered conformation of ethane, etc. 

We note that the following table appears on [9, p.29] and 

the elucidation appears on [9, p.6]. 

Table 5. Multiplication table of 3?7 

o e TD
U TD

V AD
U = TD

B AD
C = TD

C WX = TD
D 

e e .?
� .?

I .?
= .?

; = 3?
; .?

? 

.?
� .?

� 3?
; e .?

I .?
; 3?

� 

.?
I .?

I e .?
= = 3?

� .?
? = 67 .?

� .?
; = 3?

; 

3?
� = .?

= 3?
� .?

I .?
? = 67 .?

; = 3?
; e .?

� 

3?
; = .?

; 3?
; .?

? = 67 .?
� e .?

= = 3?
� .?

I 

67 = .?
? 67 .?

= = 3?
� .?

; = 3?
; .?

� .?
I e 

Theorem 2. 

3?7 ≅ 3G.                 (2.3) 

Theorem3. We have 3 6 12hD D≅ ≅D  and 

3 3 6vD D≅ ≅D  is its subgroup. Consequently, we may 

treat planar molecules belonging to 0?7 as those belonging 

to 0?. 

3. Characters 

Definition 2. In a (matrix) representation Γ  of a finite 

group G, the trace of the matrix .Z  corresponding to 6 ∈ � 

is called a character of Γ and denoted by χ(6). 

χ(6) = Tr(.Z) 

There are |G| characters of G. Those which corresponding to 

irreducible representations are called simple characters. 

χF(6), … , χ7��(6). 

Theorem 4. Any irreducible representation of a finite 

Abelian group must be of degree 1, and so the representation 

^ itself is equal to the trace of the representation matrix, i.e. it 

is a character. 

Theorem 5. Any finite Abelian group is expressed as a 

direct product of cyclic groups of prime power order. 

Lemma 3. Any cyclic group 3/ of order n is isomorphic to 

the additive group of residue classes modulo n: 

3/ ≅ _/�_. 

Theorem 6. Suppose 3/ =< � > be a cyclic group of order 

n. Since �/ = +  it follows that the values of a character 

χ ∶  3/ →  ℂ× must be the nth roots of 1. Hence it suffices to 

restrict the range to the torus group d = {z ∈ ℂ ||z| = 1} . 

Then the character χ is determined by its value at a, say 

χ(�) = +;fg// , the piervotny primitive root of 1. The 

correspondence χ → h + �ℤ gives rise to the isomorphism 

X(3/) ≅ ℤ/�ℤ ≅ 3/. 

This theorem follows from Lemma 3 since the 

correspondence a ↔ +;fg//  give rise to an isomorphism 

between the groups <a> and l/ of the group of nth roots of 1. 

Now combining Theorem 5 and Theorem 6, we deduce 

Theorem 7. Any finite Abelian group is isomorphic to its 

character group X(G) = {χ: G → d|χ is a homomorphism}: 

� ≅ X(�). 

Let ^ = +;fg/? be the piervotny primitive 3rd root of unity 

and let o = +;fg/G the piervotny primitive 6th root of unity. 

Table XXI [7, p.16] after changing the columns of 3? and .? 

reads. 

Table 6. Character table of 3? 

@ e pD TD
C = AD

C TD
D = WX TD

B = AD 
TD

B

= WXAD
C 

χF 1 1 1 1 1 1 

χ; 1 ^ ^; 1 ^ ^; 

χ? 1 ^; ^ 1 ^; ^ 

χ� 1 -1 1 -1 1 -1 

χI 1 −^ ^; -1 ^ −^ 

χ= 1 −^; ^ -1 ^; −^; 

Table 7. Character table of 3G  

@ e Ar Ar
C = AD Ar

D = AC Ar
B = AD − C Ar

V 

χF 1 1 1 1 1 1 

χ� 1 -1 1 -1 1 -1 

χ; 1 o; = ^ o= = ^; 1 o; = ^ o= = ^; 

χ? 1 o= = ^; o; = ^ 1 o= = ^; o; = ^ 

χ= 1 ω = −^; o; = ^ -1 −ω = ^; 
−o;

= −^; 

χI 1 −o; = −^ −ω = ^; -1 o; = ^ ω = −^ 

By changing the 5th and 6th rows in Table 5, it coincides 

with Table 6, so that these character groups are isomorphic. 

By Theorem 7, we reprove Theorem 2. 

4. Rotations as Matrices 

In this section we elucidate the rotations and reflections as 

matrices. 

Theorem 7. 

Let 

cos sin

sin cos
Aθ

θ θ
θ θ

− =  
 

            (4.1) 

and 

cos sin
.

sin cos
Bφ

φ φ
φ φ

 
=  − 

           (4.2) 
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Then the linear transformation Aθ=y x by Aθ  means the 

rotation (in the positive direction, i.e. counterclockwise) 

w.r.t. the origin byθ and that the linear transformation

Bφ=y x  by Bφ means the reflection w.r.t. the line ℓ  which 

goes through the origin and is subtended to the positive 

direction of the x -axis by the angle 
2

φ
. 

Proof. We give a proof that makes full use of Euler's 

identity. Expressing the Cartesian coordinates as the complex 

number in polar coordinates: 

cos
cos sin ,

sin

r x
z x iy r ir

r y

Θ   = = ⇔ = + = Θ + Θ   Θ   
z  

we see that the rotation 
i ie z zeθ θ=  of z byθ is 

( ) ( ) ( )

( )
( )

cos sin

cos cos sin s in

sin cos cos sin

cos sin sin cos ,

iie z re r ir

r r

i r r

x x i x y

θθ θ θ
θ θ
θ θ

θ θ θ θ

Θ+= = Θ + + Θ +
= Θ − Θ −
+ Θ − Θ

= − + +

 

which is the linear transformation  

cos ysin
.

sin ycos y

x x
A

x
θ

θ θ
θ θ

−   
=   +   

 

Of course,  

arg .A zθ θ= Θ +             (4.3) 

For the treatment of Bφ we note that 

0 ,B A Bφ φ=               (4.4) 

which we now check. Since 0B means the reflection w.r.t. the 

x -axis, it corresponds to taking the complex conjugate. 

Therefore, the effect of Bφ on z corresponds to
ie zθ

. 

Hence with arg z = Θ , we have 

0arg B z θ= − Θ .             (4.5) 

Now since B zθ is the vector obtained from z by the 

rotation by 1

2
θ − Θ − 

 

, it follows that 1 1
arg

2 2
B zθ θ θ = − Θ − 

 

, 

which is equal to (4.5). Hence (4.4) follows. 

Corollary 1. We have the following identities which have 

the geometric meaning. 

A A A A Aθ φ φ θ θ φ+= = ,            (4.6) 

A B Bθ φ θ φ+= ,                (4.7) 

B A Bθ φ θ φ−= ,                (4.8) 

and 

B B Aθ φ θ φ−= .               (4.9) 

It is easy to deduce (4.7) etc. from (4.3) and (4.5). Indeed, 

we find that 

arg A Bθ φ θ φ= + − Θz ,          (4.10) 

which is Bθ φ+ , i.e. (4.7).  

Similarly, since arg Aφ φ= Θ +z , we have 

( ) ( )arg B Aθ φ θ φ θ φ= − Θ + = − − Θz , 

whence (4.9).  

Finally,  

( ) ( )arg B Bθ φ θ φ θ φ= − − Θ = − + Θz , 

whence (4.10) follows.. 

Lemma 4. 

We have the following identities 

0B A Bθ θ−= ,               (4.11) 

0B B Aφ φ= .               (4.12) 

Proof. We make use of (4.4) to express Bφ  as 0A Bφ . 

E.g. (4.12) follows by writing 
0 0 0B B A B Bφ φ= and noting 

that 2

0B E= . 

With aid of Lemma 4, we may give a lucid proof of 

Corollary 1. 

0 0A B A A B A B Bθ φ θ φ θ φ θ φ+ += = = ,    (4.13) 

i.e. (4.7). To prove (4.8), we use (4,4), (4.11), (4.7) to deduce 

that 

0B A A B A A B Bθ φ θ φ θ φ θ φ− −= = = ,    (4.14) 

whence (4.8). Finally, 

0 0 0B B A B A B A B B A A Aθ φ θ φ θ φ θ φ θ φ− − −= = = =   (4.15) 

by (4.11), (4.12) and (4.6) successively. 

The following examples give rudiments of matrix 

representations of the group 
3vC . 

Example 5. Given a regular triangle ABC, let O be the 

center of gravity and let the mid points of AB, BC, CA be D, 

E, F, respectively and choose DO to be the x -axis. Let 

2E E= , 

2

3 2 3 4

3 3

,C A C Aπ π= = ,            (4.16) 

and 
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( )

( )

( )

4

3

2

3

0

1 3

2 2
1 ,

3 1

2 2

1 3

2 2
2

3 1

2 2

1 0
3 .

0 1

v

v

v

B

B

B

π

π

σ

σ

σ

 
− − 

 = =
 

− 
 

 
− 

 = =
 
 
 

 = =  − 

,     (4.17) 

Then 

( ) ( ) ( ){ }2

3 3, , , 1 , 2 , 3v v vG E C C σ σ σ=     (4.18) 

forms a group w.r.t. the multiplication of matrices and is 

isomorphic to the group 3vC or the symmetric group of 

order 6 (cf. Theorem 1). 

Example 6. Let 3E E= , 

2

3 3

0 1 0 0 0 1

0 0 1 , 1 0 0 ,

1 0 0 0 1 0

C C

   
   = =   
   
   

     (4.19) 

and 

( ) ( )

( )

1 0 0 0 0 1

1 0 0 1 , 2 0 1 0 ,

0 1 0 1 0 0

0 1 0

3 1 0 0 .

0 0 1

v v

v

σ σ

σ

   
   = =   
   
   

 
 =  
 
 

    (4.20) 

Then 

( ) ( ) ( ){ }2

3 3' , , , 1 , 2 , 3v v vG E C C σ σ σ=     (4.21) 

forms a group w.r.t. the multiplication of matrices and is 

isomorphic to the group 3vC  (cf. Example 5). 

Example 7. We find a regular matrix 1

1

1 1 1

a b

X b a

 
 =
 
 
 

 such 

that 

1

3

cos sin 0

sin cos 0 ,
1

0 0 1

A
X C X

θ

θ θ
θ θ−

− 
   = =   
   

 

o

o
   (4.22) 

i.e. similar to 3C .  

To this end, it suffices to consider 
3

1

A
C X X

θ =  
 

o

o

or 

1 a cos sin sin cos 1

1 1 1 a sin cos a cos sin 1

1 cos sin sin cos 1

b a b a b

b b

a b

θ θ θ θ
θ θ θ θ
θ θ θ θ

+ − +   
   = + −   
   + − +   

  

whence 

a cos sin

sin cosb

θ θ
θ θ

= +
 = − +

. 
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