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Abstract: In this note we shall show how Carlitz in 1954 could have reached an analogue of the Voronoi congruence in the 

more difficult case of p≡1(mod4): h(-4p) ≡B(p+1)/2(x4)(mod p), where B(p+1)/2(x4) is the generalized Bernoulli number with x4 

being the Kronecker symbol associated to the Gaussian field Q(√-4). 
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1. Introduction 

Throughout this paper let p  be an odd prime and let 

N∈α . Let )(nϕ  denote Euler's function counting the 

number of integers between 1 and n  relatively prime to n . 

Then 1)( −−= αααϕ ppp  and 1)( −= ppϕ . 

In the case 1 mod 4( )p ≡  the Legendre symbol 

( )paap |)( =χ  is the real primitive even Dirichlet character to 

the modulus p  associated to the real quadratic field Q p（ ）
 

and the Kronecker symbol )|)(()()( 444- paaaa pp χχχχ ==  

is the real primitive odd character associated to 
）（ 4p-Q , 

while in the case )4(mod1≡p , the Legendre symbol is the 

real primitive odd character associated to the imaginary 
quadratic field 

）（ p-Q  and the Kronecker symbol 

)|)(()( 44 paaap χχχ =  is the real primitive even character 

associated to the real quadratic field ）（ 4pQ , where 4χ  

indicates the real primitive Dirichlet character mod 4 
associated to the Gaussian field Q i（ ）. 

For a Dirichlet character χ mod q , let 

∑= qiap

qa ea /2
mod )()( χχτ be the normalized Gauss sum. 

Let ),( χsL  denote the Dirichlet L -function associated to 

χ . For a non-principal χ , the series for ),( χsL  is 

convergent for 0Re >= sσ  and we may speak of the value 

),1( χL . Throughout in what follows, whenever we refer to a 

character, we mean an odd character (hence necessarily 
non-principal). Let )(dh  denote the class number of the 

imaginary quadratic field 
）（ dQ  with discriminant 0<d , 

and let )|()( ⋅=⋅ ddχ be the corresponding Kronecker 

character. In this sense 4χ  above is 4-χ  but we use the 

notation 4χ . Then Dirichlet's class number formula reads 

)/(2),1(||)( πχdLdwdh =            (1) 

where w  is the number of  roots of 1 in ）（dQ . 

For the imaginary quadratic field 
）（ 4p-Q , )4(mod1≡p , 

Eq. (1) reads 

)(2)/(2),1(42)4( 4-14 pp BLpph χπχ ==− −      (2) 

where )(χnB  is the nth generalized Bernoulli number to be 

introduced in Section  4. 
We recall that Kummer, who trying to prove the Fermat 

last theorem, found an equivalent condition to the regularity 
of a prime to be the non-divisibility of the numerators of 
Bernoulli numbers 342 ,,, −pBBB ⋯  by p ([1, Theorem 2, p. 

417]). Since )1/()(2 - 41 += + nBE nn χ , the simplest 

generalized Bernoulli number, the non-divisibility of 

4/)1( −pE  by p  is to be interpreted to correspond to some 

regularity of a certain class number type stuff, and it is so as 
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shown in Theorem 1. 
Also recall the following fact comparable to Eq. (2) 
Proposition 1 [Voronoi] For )4(mod3≡p , we have 

)(mod2)( 2/)1( pBph p+−≡−             (3) 

where 2/)1( +pB is the 2/)1( +p -th Bernoulli number. 

The congruence Eq. (3) follows from Voronoi's work and 
was taken up as exercises in Borevic and Safarevic [1], and 
more recently recasted  by Ireland and Rosen [2]. 

If in the case )4(mod3≡p , we consider two quadratic 

fields 
）（ 4pQ  and ）（ p-Q  as sub-fields of Q 4p,i（ ）, 

and interpret Eq. (3) to mean the congruence of the class 
number to an easily calculable number, then it is quite natural 
to ask for the counterpart of the congruence Eq. (3) for the 
imaginary quadratic field 

）（ 4p-Q  in the case 

)4(mod1≡p , since it would be the one in the case of two 

subfields of 
）（ 4p,1-Q .The answer is given by the 

following 
Theorem 1. For )4(mod1≡p , the counterpart of Voronoi's 

congruence Eq. (3) reads 

)(mod  2)4( 42/)1( pBph p ）（χ+−≡−       (4) 

This follows immediately from the 
Carlitz-would-have-proved result  Eq. (9) in the special case 
of 1=α : 

Theorem 2. Carlitz in 1954 would have proved for 
)4(mod1≡p  

)(mod )|(4)4(2
2/)(

4/)1(

1

α
ϕ α pEpsph

p

p

s

≡=− ∑
−

=
     (5) 

in particular 

)(mod 4S)4(2 2/)1(1/4,0 pEph p−≡=−         (6) 

where 1/4,0S  is the 1/4-th character sum. 

There have appeared several papers claiming that the Euler 
number 

2/)1( −pE  in the case )4(mod1≡p  is the least 

positive residue pmod , and it a fortiori that it is not 

divisible by p, answering the question posed by Guy [3,B45] 
as unsolved. Indeed, it was settled in 1972 already. This 
unfortunate situation has been somehow streamlined by Liu 
[4] but not fully. It is only in [5] that the proper formulation 
of the results were made ([5,(2.26)]) which still lacks the 
proper interpretation in our Theorem 1 above. Also, although 
[5] is the most advanced and contains many other 
expressions involving the values ),12( χ+rL , the most 

interesting case is the case 1=α  and the higher power case 
gives just complicated expressions. E. g. for 2l  2 == ，α  
[5,(2.25)] reads 

))(mod5/(43/)()4( 2/)5(43
2 ppBBphp pp +≡+− +−χ  (7) 

In view of this, we confine ourselves to the congruence for 

the 2/)( αϕ p -th Euler number 
2/)( αϕ p

E  considered 

representatively in [8], on pp. 283-291, it is stated 

( 1) / 4

( ) /2
1

4 ( | )
p

p
s

E s pαφ

−

=

≡ ∑                     (8) 

)(mod),1()(-2 44 pLi pp χχχχτ=  

which is to read Eq.(5). 

It follows that the mid-term in Eq.(8) is less than p and the 
far-left term is a positive integer (in Eq.(8), the far-right term 
cannot be seen to be a positive integer without appealing to 

the class number formula), i.e. that 
2/)( αϕ p

E  is congruent 

to the least positive residue mod p, and a fortiori 
2/)( αϕ p

E  

is congruent to the least positive residue mod  p. 
Thus deducing a congruence of an Euler number through 

the class number (or one of its equivalent forms) is in the 
reverse direction, i. e. rather similar to the related problem of 
Chowla which asks for an elementary proof of the 

non-vanisngness of 0,1/1S . Only in the reverse direction of 

assuming the non-vanishingness, it is proved that the 
cotangent values are linearly independent over Q(cf. [9]). 

In Section 2, we shall show how Carlitz in 1954 could 
have proved all these results on Euler number congruences, 
confirming that results on Euler numbers could be obtained 
as special cases of generalized Bernoulli numbers. We note 
that this interpretation (in the case )4(mod1≡p ) is possible 

only when one considers not only the field )4( pQ −  but also 

the field )( pQ  as subfields of the bicyclic biquadratic 

field ),( piQ  (cf. [10]). We shall also publicize in Section 

3 the important universal method of Yamamoto for 
expressing the short interval character sums in terms of 

)L(1,χ , hence of class numbers, streamlining the situation. 

2. The Carlitz 1954 Proof 

First we state two auxiliary lemmas which are useful in 
elementary evaluations, the first being the reduction principle, 
the second the parity principle. 

Lemma 1. For any periodic function χ of period q and 

any Ν∈N , we have 

∑∑∑
−

===

+







=

]/[

111

)()()(
qNqN

a

q

a

N

a

aa
q

N
a χχχ         (9) 

where ]/[ qNqN −  is the least non-negative residue of 

)(mod qN . 

In particular, if χ  is a non-principal character mod p, 

and Ν∈−= )1( αβ pN , then 

∑∑
−

=

−

=

=
)1(

1

)1(

1

)()(
p

a

p

a

aa
ββ

χχ
α

          (10) 
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Proof. Eq.(9) follows from the division of  the interval: 

∑∑∑∑
+==










==

++=
N

qNqc

q

c

q

N

b

N

a

cbqca
]/[1101

)()()( χχχ  

and Eq.(10) follows from the from the orthogonality of  

characters and )1(
)1(

)1( −=






 −−− p
p

p
pp βββ

α
α . 

Lemma 2.For any function f, we have 

∑∑∑
=










==

−=−
N

a

N

N

a

a afafaf
1

2

1a1

)()2(2)()1(      (11) 

and in particular for any Dirichlet character χ  and any 

integer 0≥j , we have 

))()2(-)(2)4((2)2()2()1( ,1/1,2/1
1

1

χχχχχ jj

jj
N

a

ja SSaa +

=

=−∑                  (12) 

Proof. follows immediately on classifying the values of 
2moda . 

Corollary 1. [9,Theorem 10] 

∑∑









==

=−
2

1a1

)()2()())2(21(

N

N

a

aNaa χχχχ  

i. e. 

0,2/11,1/1 )2())2(21( NSS χχ =−        (13) 

Proof. We note that Eq. (12) reads for a non-principal  
Dirichlet character mod N, N being odd, 

)()(2)2()()1( ,1/1,2/1
1

1

χχχχ jj

j
N

a

ja SSaa −=− +

=
∑  

which is the equality in the proof of Funakura. The rest of the 
proof uses the finite Fourier transform and we refer to [9], 
completing the proof. 

Remark 1. The Dirichlet class number formula Eq. (1) for 
the imaginary quadratic field in finite form reads (cf. [11, 
p.53]) 

)(
||

1
)( 1,1/1 dS

d
dh χ−=           (14) 

in view of 

)(
||

),1( 1,1/12/3 dd S
d

L χπχ −=          (15) 

whose general form (for an odd character χ  mod q) is 

)(
)(

),1( 1,1/1 χ
χτ
πχ S

q

i
L −=             (16) 

Combining Eq. (13) and  Eq. (15) gives rise to 

)())2(2()(0,2/1 dhS dd χχ −=           (17) 

which is [12, Corollary 3.4]. 
The 1/4-the sum is also due to Dirichlet ([13, Vol. 3, (5), 

(ii), p. 101]; cf.[12, Theorem 3.7]). 

)(2)4( 0,4/1 dSdh χ=−                (18) 

whose special case with )4(mod1≡p  has been essentially 

used in Chowla [14, p. 58]  and also in [8] to deduce from a 
form of the class number formula Eq.(15) their main 
ingredient in the disguised form 

),1(
)(

)( 40,4/1 p

p

p LS χχ
π
χτ

χ =         (19) 

The following lemma is essentially due to Carlitz. 
Lemma 3. [15, (1.10)]) If }0{2 ∪Ν∈+= llmn ，  and in 

Eq. (21) m is an odd multiple of 2/)( αϕ p , then 

)(mod)|2()2()1()1(2 2/)(
2/)1(

0

2
1

2/)(

αϕ
ϕ

α
αα

α ppssE p

mp

s

ls

p

p ∑
−

=

−

−−≡                   (20) 

)(mod)|2()2()1()1(2
2/)1(

0

2

1

2/)(

α
ϕ

αα

α ppssE
p

s

ls

p

p ∑
−

=

−

−−≡     (21) 

Proof. Equation [15,(1.10)] reads for any Ν∈r , 

))12((mod)2()1()1(2 2

0

2
2 +−−≡ ∑

=

rsE
r

s

nsr

n     (22) 

Choosing 2/)1( −= αpr  and replacing the powers 
ms)2(  by the Legendre symbol in Eq. (22) leads to Eq. (20). 

Remark 2. Note that Eq. (20) is [5,(1.6)] which in turn is a 
generalization of Zhang and Xu [5, l. 4, p. 290] which is an 
essential formula in their whole argument. 

The case m  being an even multiple of 2/)( αϕ p  is also 

treated in [5]. 
Equation [22] appears in Carlitz [15, p.39] who uses a 

telescoping of the difference equation satisfied by the Euler 
polynomial. We note that since the exponent of p in (22) is 

α2 , there is a possibility of obtaining the congruence modulo 
a higher power of  p (details will appear elsewhere). 
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Proof of Theorem 2. Although in [1] as well as in [2], an 
appeal to the Euler criterion is made in order to replace the 
power of an integer by the Legendre symbol, it was used as 
early as in Carlitz [15, p. 39] who replaces the power 

2/)( αϕ pa  by )|( pa  mod αp in the case m is an odd 

multiple of 2/)( αϕ p  in [15, (1.6)]. If he did it in [15, (1.10)] 

(Lemma 3 above), then he would have immediately obtained  
Eq.(20). Then by the reduction lemma and the parity lemma, 
everything boils down to the 1/4-th sum )(0,4/1 pS χ  for 

which he should have known the Dirichlet class number 
formula Eq. (18) and the proof would have been complete. 

3. Short Interval Character Sums 

In this section we shall just supplement to [16] which 
contains many useful identities for short interval character 
sums in terms of the values of the L-function, by restricting 
those involving class numbers. We have a handy complete 
table of short interval sums of Kronecker symbols [6] which 
will suffice for the purpose of this note, but we state the results 
in slightly more general form. The following is a slight 
generalization of Yamamoto's theorem. 

Lemma 4. ([16, (5.3)]) Let ,,,/ Ν∈= ututβ  and 

}0{0 ∪Ν∈≤< kut ，  and let 

∑ ≤≤
== /

0,, )(
1

)(
qa

k

kkk aa
q

SS
βββ χχ  

for a primitive Dirichlet character χ  mod q ,where the 

prime on the summation sign means that for extremal values 
qβ，0  of a, the corresponding summand is to be halved. Then 

+
+−

= ∑∑
∞

==

+−

11

1

,

)()(

)!1()2(
)(!

n
r

r
k

r
r

rk

k
n

nnb

rki
kS

χ
π

βχτβ  

∑
∞

=
+

+
+

1
1

1
1

)()(

)2(

)(!

n
k

k

k n

nnb

i

k χ
π

χτ
       (23) 

where 

),1()1()1()( 1 krnb ntntr

r ≤≤−−−= −+ ηηχ  

ntntk

k nb −+
+ −+−−−= ηηχ 1)1)(1()1()( 1

1      (24) 

and ./2 uie πη =  

Lemma 4 allows us to establish all the short interval results 
used in section 3 in a unified and stereotyped way. 

Lemma 5. For )4(mod1≡p , let )|()( paap =χ  be the 

real primitive even character corresponding to Q )( p . Then 

we have 

),1(
)(

)()( 40,4/14/1 p

p

pp LSS χχ
π
χτ

χχ ==  

),1()(
2

- 44 pp L
i χχχχτ

π
=           (25) 

and 

.0)(:)( 0,2/12/1 == pp SS χχ         (26) 

On the other hand,  for )4(mod3≡p , let 

)|()(- paap =χ  be the real primitive odd character 

corresponding to Q )-( p . Then we have 

-p
1/4 -p 1/4,0 -p -p -p

τ(χ )
S (χ )=S (χ )= (1+χ (2))L(1,χ )

2πi
    (27) 

-p
1/2 -p 1/2,0 -p -p -p

τ(χ )
S (χ ):=S (χ )=(2-χ (2)) L(1,χ )

πi
      (28) 

Proof. For )4(mod1≡p , we apply Lemma 4 with 

.,4,1,
u4

1
,0 2/ieut

t
k πηα ======  

Then )(2)( 41 ninb χ=  and 

∑
∞

=

=
1

4
4/1

)()(2

2

)(
)(

n

pp

p
n

nni

i
S

χχ
π
χτ

χ  

which gives the first equality in Eq.(25). The second follows 
on substituting .2|4|)( 4 ii =−=χτ  

In the same way, we choose 

，-1,2,1,
2

1
,0 2/2 ======= ieut

u

t
k πηα  

and Eq. (26) follows. 
Now suppose ).4(mod3≡p  Then .-1)-1(- =pχ  Choosing 

the parameters as 

,,4,1,
4
1

,0 2/ ieut
u

t
k i ======= πηα  

we deduce Eq. (27) after some calculations. 

For ，-1,2,1,
2

1
,0 2/ ======= ieut

u

t
k πηα , we 

obtain 

== −

≡

−
− ∑

n

n

i
S

p

n

p

p

)(

2

)(4
)(

)2(mod1
2/1

χ
π
χτ

χ

,
]1)[(

2

)(4 2

1 n

n

i

p

n

p −
∞

=

− ∑
χ

π
χτ

 

where 2]1[  is the principal character mod 2, whence we may 

deduce Eq.(28), completing the proof. 
Remark 3. Eq.(25) and Eq.(26) already appear in [16, p.282] 

and Eq. (25) is [8, Lemma 3]. Zhang and Xu [8, Lemma 2] 
who appealed to the identity valid for a primitive odd 
character χ  to the conductor f: 

),1(
)(

)(
1

)(
0

1,1/1 χ
π
χτχχ L
i

aa
f

S
fa

−== ∑
≤≤

   (29) 
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to prove Eq.(25). However Eq.(29) is a form of Dirichlet's 
class number formula and is an immediate consequence of 

Lemma 4: 
，1,1,

u
1 ===== ηα ut

t  and so that 

.0)(,2)( 21 =−= nbnb  Hence,  

∑
∞

=

−=
1

11/1

)(

2

)(
2)(

n n

n

i
S

χ
π
χτχ

，

 

which gives Eq.(29). 

4. Generalized Bernoulli Numbers 

Let χ  be a primitive character to the modulus f. The j-th 

generalized Bernoulli number )(χjB  is defined by 

,)()(
1

1∑
=

−








=

f

a

j

j

j
f

a
BafB χχ         (30) 

in particular, 

),(
1

2
41 χ++

−= nn B
n

E              (31) 

(cf. e. g. [17]). On [18, p. 174], Eq. (31) is misstated. 
It is known that for χ  odd, 

),,12(
)/2(

)!12)(()1(2
)(

1212 χ
π

χτχ ++−= ++ jL
ff

j
B

j

j

j   (32) 

and in particular 

1,1/11 f

1
),1(

)(
)( SLB == χ

π
χτχ .       (33) 

Carlitz proved 
Lemma 6. If χ is a primitive character to the modulus f 

and p is a prime such that |p f/ , and np |)( αϕ , then 

)(mod))(1(
1

1

)(
1,1/1

1n αχχ
pSp

fn

B
−≡

+
+        (34) 

and in particular, 

)(mod0
1

)( 41n αχ
p

n

B
≡

+
+ .           (35) 

In view of Eq. (31), Eq. (35) in the special case 4χχ =  

asserts for np |)( αϕ  that nE  is congruence to 0 or 2 

according as )4(mod1≡p  or )4(mod1-≡p , which is an 

refinement of Nielsen's results, which we state as 
Proposition 2. If  np 2|)( αϕ  , then 

02 ≡nE  or )(mod2 αp         (36) 

according as )4(mod1≡p or )4(mod3≡p ;  

In particular, 

01 ≡−pE  or )(mod2 p         (37) 

according as )4(mod1≡p or )4(mod3≡p .  

The proof follows from Eq.(20) with np 2|)( αϕ  

2/)(

2
αϕ p

n  being even, in which case we have )(]1[ sp
 in place 

of the Legendre symbol, 
p]1[  being the principal character 

mod p: 

)(mod)(]1[)1()1(2
2

1

1

2

1

2
α

α

α

psE p

p

s

s

p

n ∑










 −

=

−

−−=  

The details of a more complicated case has been treated in 
[5]. 

Remark 4. Eq.(36) is due to Carlitz [15], who uses a 
slightly different methods  and also states that the special 
case Eq.(37) was proved already in 1923 by Nielsen [19, 
p.273]. The implication of Lemma 6 also would suggest to 
consider an analogue of the Voronoi congruence Eq.(3) . 

5. Concluding Remarks 

1. As has been completely demonstrated in this note, any 
short interval character sum may be expressed as a linear 
combination of ),1( ′χL s and inevitably in terms of the class 

number Eq.(1) (as Berndt says, ``we give here some proofs of 
Eq.(5) ([12, p. 261]) that do not involve class number 
consideration, although, admittedly, the use of L -function 
gives an undeniable link with class numbers.") It therefore 
follows that any attempt at obtaining a closed form of such a 
short interval sum in an elementary way bears no credit. 
Berndt [12, pp.413-445] contains a number of useful 
formulas, but of course is not exhaustive (cf. formulas in 
Lemma 5). But now that we have Yamamoto's colossal theory, 
we are supposed to use it. 

2. We notice that in Lemma 5 we consider short interval 
character sums with polynomial weight, and it a fortiori, of 
Bernoulli polynomial weight, and the final formulas contain 
Bernoulli numbers and class numbers of imaginary quadratic 
fields (cf. Lemma 5; for )4(mod1≡p , 

pχχ 4
 is odd, and 

for )4(mod3≡p , pχχ 4  is odd ) as in Berndt [12, pp. 

413-445] and [6]. But Yamamoto also treats the case of 
Clausen function weight, or what is the same thing, log sin 
weight. Therefore, it is very intriguing to pursue research on 
class numbers of real quadratic fields as in Chowla [14]. 

3. Considering congruences to the higher prime power 
modulus is important from p-adic theoretic point of view. 
The results like Eq.(5) or Eq.(36) are not mere generalization 
of Eq.(10) or Eq.(12) , but should be interpreted p-adically. 
As the example of Shiratani and Yokoyama [20], some 
relations on Bernoulli or Euler numbers can be deduced by 
p-adic argument (cf. [21] for general treatment). We hope to 
return to this direction of research elsewhere. 
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4. One could use the well-known relation 

n

nn

nn BnEnT 2
22)2(

22 )12(222 −== −  (cf. [19, p. 56]) on the 

tangent coefficient or the second order Euler numbers to 
deduce Voronoi congruence. One could try to generalize 
Voronoi's argument to treat the generalized Bernoulli number. 
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