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Abstract: In this paper, we will define a new class of chaotic maps on locally compact Hausdorff spaces called α-type 

chaotic maps defined by α-type transitive maps. This new definition coincides with Devaney's definition for chaos when 

the topological space happens to be a metric space. Furthermore, we will study new types of non-wandering points called 

α-type nonwandering points. We have shown that the α-type nonwandering points imply nonwandering points but not 

conversely. Finally, we have defined new concepts of chaotic on topological space. Relationships with some other type of 

chaotic maps are given. 
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1. Introduction 

I studied a new type of topological transitive map called 

topological α - transitive [1] and investigated some of its 

topological dynamic properties. Further, I introduced and 

defined the notions of α- wandering points, and studied the 

notion of minimal α-open sets [2]. I have proved some new 

theorems and propositions associated with these new 

definitions. I have also shown that topologically α-type 

transitive maps, α-wandering points and topologically 

α-mixing are preserved unde r  α r-co nj ugacy. Recently 

there has been some interest in the notion of a locally 

closed subset of a topological space. According to Bourbaki 

[3] a subset S of a space ),( τX  is called locally closed if it 

is the intersection of an open set and a closed set. Ganster 

and Reilly used locally closed sets in [4] to define the 

concept of LC–continuity, i.e. a function 

),(),(: στ XXf →  is LC–continuous if the inverse with 

respect to f of any open set in Y is closed in X[4]. The 

study of semi open sets and semi continuity in topological 

spaces was initiated by Levine [5]. Bhattacharya and Lahiri 

[6] introduced the concept of semi generalized closed sets 

in topological spaces analogous to generalized closed sets 

which was introduced by Levine [7]. Throughout this paper, 

the word "space “ will mean topological space . Let A be a 

subset of a space X,. Recall that a point x is said to be anα
- limit point of A if for each α - open U containing x, 

φ≠∩ )\( xAU .The set of all α - limit points of A is called 

the α -derived set of A and is denoted by )(ADα  . The 

point x є X is in the α –closure of a set A ⊂ X if α(U) ∩ 

A≠φ, for each open set U containing x. Then the α - 

closure of a set A is the intersection of all α -closed sets 

containing A and is denoted by )(AClα . A subset of a space 

X, Then the UUA :{)(int ∪=α  is α–open and AU ⊂ }. 

In this paper, we will define some new conceptions such as: 

totally α-transitive, α-type hyper-cyclic maps and we 

proved some theorems associated with this definition. If the 

map XXf →: is α-irresolute. f  is said to be weakly 

topologically α-mixing if ff ×  is α-type transitive , i.e. 

there is a positive integer n such that φ≠∩ 11)( VUf
n and 

φ≠∩ 22 )( VUf
n  provided that 

2121 ,,,, VVUU are 

non-empty α open subsets of X. f  is said to be 

topologicallyα- mixing if there is a positive integer N such 

that φ≠∩VUf n )( for every n>N provided U and V are 

non-empty α-open subsets of X. Note that a topologically 

α-mixing map is weakly topologically α-mixing and a 

weakly topologically α-mixing map is α-type transitive 

which is transitive. We will also define a new types of 

chaotic maps called α-type chaotic and prove some new 

theorems associated with this definition. In [10] we defined 

a new class of chaotic maps on locally compact Hausdorff 

spaces called λ-type chaotic maps defined by λ-type 
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transitive maps. This new definition implies John Tylar 

definition which coincides with Devaney's definition for 

chaos when the topological space happens to be a metric 

space. A non-degenerate topological space X is said to 

be:α-type chaotic, if for any two distinct points p and q of 

X there exists an α- open set U containing p and an α-open 

set V containing q such that no α-open subset of U is 

homeomorphic to any α-open subset of V ; and the space X 

is said to be strongly α-type chaotic if for any two distinct 

points p and q of X there exist α-open sets U containing p 

and V containing q respectively such that no α-open subset 

of U is homeomorphic to any subset of V Relationships 

with some other type of chaotic maps are given 

2. Preliminaries and Definitions 

In this section, we recall some of the basic definitions. Let 

X be a topological space and .XA ⊂ The interior (resp. 

closure) of A is denoted by Int(A) (resp. Cl(A). 

Definition 2.1. By a topological system we mean a pair

),( fX  , where X is a compact Hausdorff topological space 

(the phase space), and XXf →: is a continuous function. 

The dynamics of the system is given by 

N∈∈=+ nXxxfx nn ,),( 01
and the solution passing 

through x is the sequence N∈nwherexf n )}({ . An 

element Xx ∈  is called periodic point if for some

xxfn n =≥ )(,1 . The least such n is called the period of x. 

The set of all periodic points of f  is denoted by )( fPer . 

Definition 2.2. Let ),( fX be a topological system. 

Suppose that XXf →: is α-irresolute map. 

1. The map f  is said to be α-type transitive if there 

is a positive integer n such that .)( φ≠∩VUf n

provided that U and V are non-empty α-open 

subsets of X [1]. 

2. The map f  is called totally α-transitive if nf  is 

topologically α-type transitive for all 1≥n . 

Definition 2.3. [1,2] Suppose XXf →: is α-irresolute 

map. The map f is called topologically α-mixing if, given 

any nonempty α-open subsets 1, ≥∃⊆ NXVU such that 

φ≠∩VUf n )( for all n>N. Clearly if f is topologically 

α-mixing then it is also α-type transitive but not conversely 

Let ),( fX  
be a topological system. A point x ∈ X 

“moves,” its trajectory being the sequence

),.....,(...),(),(, 2 xfxfxfx n where 
nf  is the nth iteration 

of the map f . The point )(xf n  is the position of x after n 

units of time. The set of points of the trajectory of x under f 

is called the orbit of x, denoted by )(xO f
. 

Definition 2.4. Suppose XXf →: is α-irresolute map. 

The map f  is said to be α-type hyper cyclic if there is a 

point Xx ∈ (called α-type hyper cyclic point) whose orbit 

under f , }:)({)( N∈= nxfxO
n

f
, is α-dense in X. 

Definition 2.5. Let ),( fX be a topological system, then 

the map
 XXf →:  is α-type chaotic if 

1. The set of all periodic points for f is α-dense in X. 

2. f is α-type hyper cyclic map. 

Proposition 2.6 

1. Let X be a α-compact space without isolated point, 

if f is α-type hyper cyclic, that is there exists x0 

∈X such that the set )( 0xO f
 is α- dense then f  

is α-type transitive . 

2. if YYgandXXf →→ :: are topologically 

rα -conjugated by the homeomorphism 

XYh →:  . Then g is α-type hyper cyclic (i.e. 

for all y ∈ Y the orbit )( yOg
 is α-dense in Y) if 

and only if f is α-type hyper cyclic (i.e. the orbit 

))(( yhO f
 of h(y) is α-dense in X). 

3. If X is separable and second category then 

topologically transitive then the map f is hyper 

cyclic. 

Proof 1. Let Xx ∈0 is such that )( 0xO f
is α-dense in X. 

Given any pair U, V of α-open subsets of X, by α-density 

there exists n such that Uxf
n ∈)( 0

, but )( 0xO f
 is α- dense 

implies that ))(( 0xfO n

f
is α-dense, so intersects V , i.e. 

There exists a positive integer m such that .))(( 0 Vxff nm ∈
Therefore VUfxf mnm ∩∈+ )()( 0

that is .)( ϕ≠∩VUf m So 

f is α-type transitive. 

proof 2. Let XYh →:  be the αr-conjugacy. Assume 

that g is α-type hyper cyclic so there is Yy ∈ such that 

)(yOg
 is α-dense and let us show that f is α-type hyper 

cyclic i.e. ))(( yhO f
 is α-dense in X. For any U ⊂ X 

non-empty α-open set, )(1 Uh−  is a α-open set in Y since 

1−h  is continuous because h is αr- homeomorphism and it 

is non-empty since h is surjective. By α-density of )(yOg
, 

there exists k ∈ N such that )()( 1 Uhyg k −∈  ⇔  

Uygh k ∈− ))((1 .Since h is a αr-conjugacy, kk ghhf �� =  
so Uyghyhf kk ∈= ))(())(( , therefore ))(( yhO f

 

intersects U. This holds for any non-empty α- open set U 

and thus shows that ))(( yhO f
 is α-dense. The other 

implication follows by exchanging the role of f and g. 

Suppose XXf →: is α-irresolute map. f  is said to 

be weakly topologically α-mixing if ff ×  is α-type 

transitive , i.e. there is a positive integer n such that 

φ≠∩ 11)( VUf n and φ≠∩ 22 )( VUf n  provided that 

2121 ,,,, VVUU are non-empty α open subsets of X. f  is 

said to be topologicallyα- mixing if there is a positive 

integer N such that φ≠∩VUf n )( for every n>N provided 

U and V are non-empty α-open subsets of X. It is clear that 

a topologically α-mixing map is weakly topologically 

α-mixing and a weakly topologically α-mixing map is 

α-type transitive which is transitive.  

Definition 2.7. A non-degenerate topological space X is 

said to be: 
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(a) α-type chaotic if for any two distinct points p and q 

of X there exists an α- open set U containing p and 

an α-open set V containing q such that no α-open 

subset of U is homeomorphic to any α-open subset 

of V ; 

(b) strongly α-type chaotic if for any two distinct points 

p and q of X there exist α-open sets U containing p 

and V containing q respectively such that no α-open 

subset of U is homeomorphic to any subset of V ; 

Let ),( fX be a topological system. Suppose XXf →:

is α-irresolute map, the α- minimality of (X, f ) is defined 

by requiring that every point x ∈ X visit every α- open set V 

in X (i.e. Vxf n ∈)(  for some n ∈ N) then, instead, one 

may wish to study the following concept: every nonempty 

α-open subset U of X visits every nonempty α-open subset 

V of X in the following sense: .)( φ≠∩VUf n  for some n ∈ 

N. If the system (X, f ) has this property, then it is called 

topologically α-type transitive as we mentioned before. We 

also say that f itself is topologically α-type transitive if the 

system cannot be broken down or decomposed into two 

α-subsystems (disjoint sets with nonempty α-interiors) 

which do not interact under f , i.e. , are invariant under the 

map (A ⊂ X is f-invariant if f (A) ⊂ A). 

An α- minimal topological system is a system that has no 

non-trivial sub-α-system, that is, any α-closed set XA ⊂  

satisfying AAf ⊂)(  is either empty or the whole X itself. 

Equivalently, ),( fX  is α-minimal if the orbit of every 

point x in X is α-dense (i.e. XxOCl f =))((α
 ) . If X itself is 

a minimal set we say that the system (X, f) is a minimal 

system. 

Definition 2.8. (Topological weak α-mixing) A 

topological system ),( fX  is topologically weakly α-mixing 

if the product system is topologically α-type 

transitive. If for every two non-emptyα- open sets 

XVU ⊂, , all but finitely many time steps k ∈  N satisfy

φ≠∩VUf k )( , then the system is said to be (topologically) 

α- mixing. . 

In between α-minimality and topologically α-type 

transitivity, we have the notion of strong α- transitivity.  

Definition 2.9. A system is strongly α-transitive if for 

every point .Xx ∈  the set 
∪
∞

=

−

0

})({
n

n
xf

 is α-dense, or 

equivalently, if every non-empty α-open set XU ⊂ satisfies

XUf
n

n =
∞

=
∪

0

)(
.  

Definition 2.10. (Topologically α-Exact Map): A map f : 

X → X is topologically α-type exact if for any non-empty 

α-open set U ⊂ X there is appositive integer n for which 

XUf n =)( .  

Proposition 2.11. We have the following results:  

Exact implies mixing implies weakly mixing implies 

transitive. 

Topologically α-Exact Map implies topologically exact 

map but not conversely  

A non-empty α- closed invariant set not containing proper 

subset which would be α-closed and invariant is called 

α-minimal. 

Theorem 2.12. Any two α-minimal sets must have empty 

intersection. 

Proof. Let M1 and M2 be two distinct α-minimal sets, and 

suppose that 

.21 φ≠∩= MMA  Then A is α-closed, and for every a ∈ 

A and every 

n ∈ N, 
21)( MMaf n ∩∈ , so A is invariant. But then A is a 

proper subset of both M1 and M2 which is α-closed, invariant 

and non-empty, contradicting the fact that M1 and M2 are 

α-minimal. 

Remark 2.13. It is easy to see that topologically exact 

maps are also transitive 

Remark 2.14. It is easy to see that any topologically 

α-exact map is also α-type transitive map which implies 

transitive map. 

Remark 2.15. Any topologically α-exact map implies 

topologically exact. 

Definition 2.16. Let ),( fX be a topological system, then
 

XXf →:  is α-type chaotic if 

1. The set of all periodic points for f is α-dense in X. 

2. f is α-type transitive. 

Theorem 2.17. Suppose YXf →: is α-irresolute map 

that is onto and suppose that D is α-dense subset of X. Then 

)(Df  is α-dense subset of Y . 

Proposition 2.18. Recall that if ),( fX is a topological 

dynamical system, where X is a Hausdorff space. Then the 

following hold: 

1. The set of all fixed points is a closed subset of X. 

2. Orbits of any two periodic points are either 

identical or disjoint. 

3. If a trajectory converges, it converges to a fixed 

point. 

4. An element is eventually periodic if and only if it 

has a finite orbit. 

5. Every orbit is an invariant set; the orbits of periodic 

points are minimal invariant sets. 

6. A subset of X is invariant if and only if it is a union 

of orbits. 

7. The closure of an invariant set is also invariant. 

8. The set of all periodic points is an invariant set. 

9. For each XA ⊂ , the set 
∪
∞

=0

)(
n

n Af
 is the smallest 

invariant set containing A. 

Let (X; f) and (Y; g) be two topological systems. Then a 

topological conjugacy h from f to g carries orbit of f passing 

through x to orbit of g passing through h(x). 

Theorem 2.20. Let (X; f) and (Y; g) be two topological 

systems and let YXh →:  be a topological αr-conjugacy[1]. 

Then 

1. XYh →− :1 is a topological αr-conjugacy. 

2. hgfh nn
�� =  for all .N∈n  

3. Xp ∈  is a periodic point of f if and only if h(p) is a 

periodic point of g. 
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1. If p is a periodic point of f with α-neighborhood D 

of p, then the α-neighborhood of h(p) is h(D). 

2. The periodic points of f are α-dense in X if and only 

if the periodic points of g are α-dense in Y . 

3. f is topologically α-type transitive on X if and only 

if g is topologically α-type transitive on Y . 

4. f is topologically α-minimal map on X if and only if 

g is topologically α-minimal map on Y . 

5. f is topologically α-mixing map on X if and only if 

g is topologically α-mixing map on Y . 

6. f is α-type chaotic map on X if and only if g is 

α-type chaotic map on Y . 

Let ),( fX be a topological system. A map XXf →: is 

called type−α  chaotic, if it is topological α-type 

transitive and, its periodic points are α-dense in X, i.e. 

every non-empty α-open subset of X contains a periodic 

point  

Definition 2.21. Let ),( fX  be a topological system. A 

point Xx ∈ is called α-recurrent if for every α- open set V 

containing x, there is N∈n  such that Vxf n ∈)( . 

Proposition 2.22. Every α-recurrent point is recurrent 

point but not conversely.  

Theorem 2.23. [1] Let (X, τ) be a topological space and 

XXf →: be α -irresolute map. Then the following 

statements are equivalent: 

(1) f is topological α-transitive map 

(2) For every nonempty α-open set U in X, )(
0

Uf n

n

∞

=
∪ is 

α-dense in X 

(3) For every nonempty α-open set U in X, )(
0

Uf n

n

−
∞

=
∪

is α-dense in X 

(4) If XB ⊂ is α-closed and B is f- invariant i.e. 

.)( BBf ⊂  then B=X or B is nowhere α-dense 

(5) If U is α-open and UUf ⊂− )(1 then U=ϕ or U is 

α-dense in X. 

For proof see [1] 

3. The Product of Two Topological 

Systems 

Now, given two maps  on 

topological spaces X and Y. respectively, consider their 

product 

with product topology on X × Y. 

Lemma 3.1. Let be topological systems. 

The set of periodic points of  is α-dense in  

if and only if, for both of and , the sets of periodic 

points in X and Y are α-dense in X, respectively Y. 

Proof: Assume that the set of periodic points of  is 

α-dense in X (i.e.  ) and the set of 

periodic points of g is α-dense in Y (i.e. ). 

We have to prove that the set of periodic points of  is 

α-dense in . Let  be any non-empty 

α-open set. Then there exist non-empty α-open sets 

 with . By assumption, there 

exists a point  such that  with . 

Similarly, there exists  such that  with 

. For  and k = mn we get  

 

 

Therefore W contains a periodic point and thus the set of 

periodic points of  is α-dense in . 

Conversely let  be non-empty α-open 

subsets. Then  is a non-empty α-open subset of 

. As the set of the periodic points of  is α-dense 

in , there exists a point such that 

 for some n. From the 

last equality we obtain  for  and 

 for .  

By Lemma 3. 1, α-denseness of periodic points carry over 

from factors to products. But, topological α-type transitivity 

may not carry over to products. The converse of this 

situation is however true: 

Lemma 3.2. Let  be maps 

and assume that the product  is topological α-type 

transitive on  . Then the maps  and  are both 

topological α-type transitive on X and Y respectively. 

Proof. We prove the α-transitivity of ; the 

α-transitivity of  can be proved similarly. Let  be 

non-empty α-open sets in X. Then the sets 

 are α-open in . As 

 is α-type transitive, there exists a positive integer n 

such that . From the equalities: 

 

So . Thus  is topological α-type 

transitive.  

Definition 3.3. Let XXf →:  be a map on the 

topological space X. If for every nonempty α-open subsets 

XVU ⊂,  there exists a positive integer 0n  such that for 

every φ≠∩≥ VUfnn
n

),(,0
 then f  is called 

topologically α-type mixing. 

It is clear that topological α-type mixing implies 

topological α-type transitive. 

There is an even stronger notion that implies topological 

α-type mixing. 

Definition 3.4. Let XXf →:  be a map on the 

topological space X. If for every nonempty α-open subset 

XU ⊂  there is a positive integer 0n  such that for every 

,)(,0 XUfnn
n =≥  then f is called locally α-type 

YYgandXXf →→ ::

,Y×Y×:g× XXf → ,g(y))(f(x),y)g)(x,×(f =

),(,),( gYfX

g×f YX ×

f g

f

XfPerCl =))((α

YgPerCl =))((α

g×f

Y×X Y×XW ⊂

YVandXU ⊂⊂ WVU ⊂×

Ux ∈ xxf n =)( 1≥n
Vy ∈ yyg m =)(

1≥m Wy)(x,p ∈=

),()×()()×( yxgfpgf kk =

pyxygxf kk === ),())(),(((

g×f Y×X

YVandXU ⊂⊂
V×U

Y×X g×f

Y×X V×Uy)(x,p ∈=
),())(),(((),()×( yxygxfyxgf

nnn ==

xxf n =)( Ux ∈
yyg n =)( Vy ∈

YYgandXXf →→ ::

g×f

Y×X f g

f

g
11 ,VU

YVVandYUU ×× 11 == Y×X
g×f

φ≠∩VUgxf n )()(

.])([×])([

]×[)](×)([)()×(

11

11

φ≠∩∩=

∩=∩

YYgVUf

YVYgUfVUgf

nn

nnn

φ≠∩ 11 )( VUf
n f
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eventually onto. 

Lemma 3.5. The product of two topologically α-type 

mixing maps is topologically α-type mixing. 

Proof: Let be topological systems and f, g 

be topologically α-type mixing maps. Given 

 there exists α-open sets 

 such that  and . 

By assumption there exist  such that  

 

we get 

 

Which means that f × g is topologically α-type mixing. 

Now, we give some sufficient conditions for a product 

map to be α-type chaotic. 

Theorem 3.6. Let YYgandXXf →→ ::  be α-type 

chaotic and topologically α-type mixing maps on 

topological spaces X and Y. Then Y×Y×:g× XXf →  

is α-type chaotic. 

Proof.: The map g×f  has α-dense periodic points by 

Lemma 3.1 and it is topologically α-type mixing by Lemma 

3.5 and hence topologically α-type transitive. Thus the two 

conditions of α-type chaos are satisfied.  

4. α-Minimal Maps and 

α-Non-Wandering Points 

In the study of the dynamics of α-irresolute map f : X →X 

of α- compact space X into itself, a central role is played by 

the various low recursive properties of the points of X. One 

of the important such properties is α-non-wanderingness. A 

point x ϵ X is called α-wandering if there exists α-open set U 

containing x such that for all n > 0, .)( φ=∩UUf n

 
A point 

is α- nonwandering if it is not a α-wandering point. The 

α-non-wandering set is the complement of the set of 

α-wandering points. We will prove that the α-wandering set 

is α-open and the α-nonwandering set is α-closed. It is easy 

to show that the α- non-wandering set )( fΩα  is a 

non-empty α- closed invariant subset of X. A non-wandering 

set of a topological system has the property that an orbit 

starting at any point of the set comes arbitrarily close 

arbitrarily often to the set. Examples of α-non-wandering 

sets are fixed points, limit cycles, invariant sets. 

One of the goals of dynamical system theory is to 

decompose the α-nonwandering set in to disjoint α- closed 

subsets, called α-type basic sets, which have α-dense orbits, 

when this can be done , the entire phase space X can be 

partitioned into the α-stable sets of the α-type basic sets. The 

α-stable set of a α-type basic set is the set of points whose 

w-limit is in the α-type basic set. But, the α-unstable set of 

α-type basic set is the set of points with α-limit set in the 

α-type basic set. If X is a compact space then every limit set 

is nonempty. 

Proposition 4.1. If YYgandXXf →→ :: are 

topologically -conjugate. Then  

(1)  is α-type transitive if and only if is α-type 

transitive; 

(2)  is α-minimal if and only if is α-minimal; 

(3)  is topologically α-mixing if and only if  is 

topologically α-mixing. 

Definition 4.2. Let XXf →:  be α-irresolute self-map 

of a topological space X. A fundamental α-type domain for 

f is α-open subset XD ⊂  such that every orbit of f

intersect D in at most one point and intersect  in at 

least one point. 

Proposition 4.3. Let YYgandXXf →→ ::  be two 

α-irresolute self-maps. Assume that there are a fundamental 

α-type domain XD f ⊂  for f , a fundamental α-type 

domain YDg ⊂  for g  and a αr-homeomorphism 

 such that fhhg �� =  on 

 . Then f  and g  are 

topologically αr-conjugated. 

Definition 4.4. Let (X; f) be a topological system. A point 

x ϵ X is α-type non-wandering if for any α-open set U 

containing x there is N > 0 such that .)( φ≠∩UUf N  The 

set of all α-type non-wandering point is denoted by NWα( f ) 

or . A point which is not α-type non-wandering is 

called α-type wandering or α-wandering for short.  

Proposition 4.5. Let ),( fX be a topological system every 

α-type non-wandering point in X is non-wandering point, 

but not conversely.  

Theorem 4.6. Let ),( fX be a topological system on 

α-Hausdorff space X. Then: 

(1) NWα ( f ) is α-closed. 

(2) NWα ( f ) is f -invariant.  

(3) If f  is invertible, then NWα( ) = NWα( f ). 

(4) If X is α-compact then NWα( f ) ≠ϕ. 

(5) If x is α-type non-wandering point in X, then for 

every α-open set U containing x and n0 ϵ N there is 

n>n0 such that .)( φ≠∩UUf n
 

5. Conclusion 

There are the main results: 

Definition 5.1. Suppose XXf →: is α-irresolute map. 

The map f  is said to be α-type hyper cyclic if there is a 

point Xx ∈ (called α-type hyper cyclic point) whose orbit 

under f , }:)({)( N∈= nxfxO n

f
, is α-dense in X. 

Definition 5.2. Let ),( fX be a topological system, then 

the map
 

XXf →:  is α-type chaotic if 

1. The set of all periodic points for f is α-dense in X. 
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2. f is α-type hyper cyclic map. 

Theorem 5.3. Suppose YXf →: is α-irresolute map that 

is onto and suppose that D is α-dense subset of X. Then 

)(Df  is α-dense subset of Y . 

Definition 5.4. Let ),( fX  be a topological system. A 

point Xx ∈ is called α-recurrent if for every α- open set V 

containing x, there is N∈n  such that Vxf n ∈)( . 

Proposition 5.5. Every α-recurrent point is recurrent point 

but not conversely.  

Theorem 5.6. Any two α-minimal sets must have empty 

intersection. 

Lemma 5.7. Let ),(,),( gYfX be topological systems. 

The set of periodic points of g×f  is α-dense in YX ×  if 

and only if, for both of f and g , the sets of periodic 

points in X and Y are α-dense in X, respectively Y. 

Lemma 5.8. Let YYgandXXf →→ ::  be maps 

and assume that the product g×f  is topological α-type 

transitive on Y×X  . Then the maps f  and g  are both 

topological α-type transitive on X and Y respectively. 

Lemma 5.9. The product of two topologically α-type 

mixing maps is topologically α-type mixing. 

Definition 5.10. Let (X; f) be a topological system. A 

point x ϵ X is α-type non-wandering if for any α-open set U 

containing x there is N > 0 such that .)( φ≠∩UUf N  The 

set of all α-type non-wandering point is denoted by NWα( f ) 

or . A point which is not α-type non-wandering is 

called α-type wandering or α-wandering for short. 

Proposition 5.11. Let be a topological system 

every α-type non-wandering point in X is non-wandering 

point, but not conversely.  

Proposition 5.12 Let (X, f ) be a topological system on 

α-Hausdorff space X. Then: 

(1) NWα ( f ) is α-closed. 

(2) NWα ( f ) is f -invariant.  

(3) If f  is invertible, then NWα( ) = NWα( f ). 

(4) If X is α-compact then NWα( f ) ≠ϕ. 

(5)  If x is α-type non-wandering point in X, then for 

every α-open set U containing x and n0 ϵ N there is 

n>n0 such that .)( φ≠∩UUf n  
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