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Abstract: In this study, we generalize both b-metric spaces and 2-metric spaces into a new class of generalized metric
spaces that we call b,-metric spaces. Then, under various contractive circumstances in partially ordered spaces, we demonstrate
a few fixed point theorems in b,-metric space. Many Mathematician gave the concept of b, -metric spaces as a generalization
of 2-metric space. The purpose of this research article to established some results of 2-metric space proved by the Arun Garg et

al. in b, -metric spaces and prove new results.
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1. Introduction

The idea of metric spaces in functional analysis was
initially introduced by Maurice Frechet in 1906 [29].
Mathematicians have since developed the idea of metric
spaces in a variety of ways.

Czerwik and many other writers investigated, introduced,
and proved various fixed point solutions for single and multi
valued mappings in 1993 [1, 2]. Czerwik also studied,
introduced, and proved the idea of a b-metric space.

On the other hand, Géhler offered the idea of a 2-metric in
[3], using the encouraging example of a triangle's area in R3.
For mappings in these spaces, multiple fixed point results
were also attained. It is important to keep in mind that 2-
metric spaces are not topologically equal to metric spaces,
unlike many other recent generalizations of metric spaces,
and there is no direct connection between the conclusions
produced in 2-metric and in metric spaces.

Different Mathematician studied the various types of
mappings in b-Metric Space and 2-Metric Spaces [4-26].

As a generalization of both 2-metric and b-metric spaces,
Zead Mustafa et. al. [27] offer the idea of by-metric spaces in
their study. Then, in partially ordered b,-metric spaces, he
established a few fixed point theorems under various
contractive circumstances.

We expand the findings of the b-complete b-metric space
in to by-metric spaces in this study.

2. Mathematical Preliminaries

The definitions provided by Zead Mustafa et al. [27] are as
follows:

Definition 1: Let ¥ be a nonempty set, s =21 be a real
number and let J: )(3 — [ be a map satisfying the following
conditions:

1. For every pair of distinct points X,y [ ¥ there exists a

point zU ¥ such that d(x,y,z) #0

2. If two of three points X, y, z are same then

o(x,y,2z)=0

3. The symmetry:

8(x,y,2) =8(x,2z,y) =8(y,x,2) = 8(y,z,x) =
8(z,x,y) =8(z,y,x) forall x,y,z0 X.

4. The rectangle inequality:
O(x,7,2) < S[3(x, y,1) + 8(y,2,0) + &(z,x,0)]  for all
x,y,z,t 0.

Definition 2: Let {x,} be a sequence in a b,-metric space

(X,9) . Then
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1. {x,} is said to be b,-convergent to x[] Y, written as
lim x, =x ifforall a0 Y, limd(x,,x,a)=0.

n—o n—o

2. {x,} is said to be a b,-Cauchy sequence in X if for all
aly, lim d(x,,x,,a)=0.

n— 0o

3. (x,0) is said to be b,-complete if every b,-Cauchy

sequence is a b,-Convergent sequence.

Some simple b,-metric space examples are provided below
[27]:

Example 1: Let ¢=[0,0) and J(x,y,z) =[xy, yz,zx]’if
x %y #z# x, and otherwise

o(x,y,z)=0, where p=1 is a real number. Evidently,
from convexity of function

f(x) =x? for x=o0, then by Jensen inequality, we have
(a+b+c)? <377 (aP +b” +cP)

So, one can obtain the result that ()¥,0) b,-metric space
withs <377

Example 2: Let a mapping d:[0° - [0, +w) be defined by

o(x,y,z) = min{|x—y|,|y—z|,|z—x|}

Then O is a 2-metric on [ , i. e., the following inequality
holds:

o(x,y,2) S O(x, y,t) +O(y,z,t) + I(z, x,t)

for arbitrary real numbers x, y, z, ¢t. Using convexity of the
function

£ (x)=x" on [0, +o0) for p > 1, we obtain that

0, = min{|x —y|,|y - z|,|z —x|}p is a by- metric on [ with
s <3

Proposition 1: Let (¥,d) and (x”,d”) be two by,-metric
spaces. Then a

Mapping f: x — x”is b,-continuous at a point x [ Y if
and only if it is b,-sequentially continuous at x; that is,
whenever {x,} is b,-

Convergent to X, {fx,} is by-convergentto f(x).

Lemma 1 [27]: Let (X,0) be a by-metric space and

suppose that {x,} and
{y.} are by-convergent to x and y, respectively. Then we
have

1 .
—25(x, v,a) < Liminf &(x,, y,,a) < Limsup d(x,, y,,a) < s20(x, y,a)
K n - 00 n - 00

forall “a”in X .In particular, if y, =y is constant, then

1 .
—0(x,y,a) < Liminf d(x,,y,,a) < Limsup o(x,, y,,a) < s0(x, y,a)
S n— o n—

Proof: 1t is simple to observe that using the rectangle inequality in the provided b,-metric space

o(x,y,a) =0(x,a,y) < sd(x,a,x,) +sd(a,y,x,) +s0(y,x,x,)

< 58(x,a,%,) + 57 [3(a, 1, 1,) + (1, X5 1) + Oy, @ ¥,)]+ 58(1, %5 V)

And

J(Xnaynaa) = J(Xnaaayn) SSd(xnaaax)+S5(a7yn7x)+‘g5(ynaxaxn)

S SJ(xf’l9a9x)+S2[5(a5yn5y)+J(yf’l9x5y)+5(x5a5y)]+SJ(yn5x9xn)

We get the desired outcome by using # — o n as the upper
limit in the second inequality and n — © as the lower limit
in the first inequality.

Ify, =y, then

5(xayaa)SSd(xaya‘xn)+S5(y7a7xn)+S5(aa-xaxn)
And
J(Xn 7y7a) SSa—(xnayax)+S5(y7a7x)+sa-(a7xn7x)

Main Results:
We begin by demonstrating a lemma that states the
sequence {x,} is a b,-Cauchy sequence.

Lemma 2: Let ()¥,0) be a b,- metric space with coefficient
s21 and I': ¥ - xbeamapping.
Suppose that {x,} is a sequence in X induced by

X,y =Ix, such that
a(xn,xnﬂ,a)Sa’a(xn_l,xn,a) (1)

For all 0N, where a 00[0,1) is a constant. Then {x,} is
a by- Cauchy sequence.

Proof: Suppose x, 0 and x,,, =Tx, for allnN . For
the lemma's proof, three separate cases are taken into account.
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3
Case I: Leta D[O,l) . By (1), we have S ao(x, 3, %,,4)
s
<a"0(xy,x;,a)
0(x,,%,4,a) < A0(x,_,X,,a)

Thus, for any n=mandn,m N , we have
2
Sa°0(x,_5,X,_1,a)

a(xm s xn 9a) < S[a(xm 9xm+1’ a) + a(xm+1’xn 9a)]
2
< Sa(-xm 7xm+19a) ts [a(-xmﬂ 7xm+27a) + a(-xm+29xn 7a)]
2 3
S 50(X,, X415 @) 5 0(Xy0415Xp42,@) +57[0(X,425 X543, @) +0(X,43, X,,,@)]

2 3 4
SSa(xm9-xm+17a)+S a(xm+]9-xm+29a)+s a(-xm+29-xm+39a)+s a(xm+37xm+4aa)+

—————— +s"_m_10(xn_2 X, 1,a) + s”_m_la(xn_l ,X,,d)

<sa™o(xy,x,a)+ szamﬂa(xo, x,a)+ s3a’m+20(x0 X, a)+ s4a’m+30(xo,x1 ,a)+

....... + s”_m_la"_Za(xO,xl ,a)+ s"_m_la"’_la(xo,x1 ,a)

<sa"[l+sa+stat +sPa’ +stat v +5" g 4 g ) (xg, X a)

<sa” [y (sa) Plxg.x,a)
i=0

m
sa o £, X, 15Xy 42 5emeeemenne 23Xy gpgeeenees }
0(xy,x;,a) , as m — oo, which implies that {x,} N 0 0

T l-sa is a b,- Cauchy sequence in X.
is a b,- Cauchy sequence. Case III: Let s=1, then the proof of lemma is similar to
case L.

Now we prove the theorems of Arun Garg et. al [28] in b,-

Case II: Now, leta D[l,l),(s >1). In this case, we have ~ Metric spaces:
s Theorem 3: Let (),<) be a partially ordered set and

In other words {I""x,} is a b,- Cauchy sequence.

a" - 0 as n — o, so there is suppose that there exist a by- metric
ny ON, such that @™ <. Thus, by case I, we claim that 0 on ) such that (x,0) is a by~ complete metric space
0 : with coefficient s>1
{(F™) xg Yoy = {0y 3 Xy 41> Xy 425 eeeeeeee N } is a

and I : ¥ - Yy be a mapping such that
b,- Cauchy sequence. Then

TR IR S U s X1t U

o(x,Ix,a)0(y,ly,a) ra

o(x,ly,a)d(y,Mx,a) +
3

s0(Mx,Ty,a) < a,0(x,y,a) +a,

1+0(x, y,a) 1+0(x, y,a) 2
o.My, a)0(x,ly,a) - 0(y,Mx,a)0(y.Ty,a)
! 1+0(x,y,a) : 1+0(x,y,a)
Where o) 0 o3 04 and as are positive constant with If there exist 7, N such that x, =x, ,;, then x, =x,

(a,+a, +a; +sa, +sas)<l. Then [ has a unique fixed

. . . =lx, ,le. x, isafixed pointof I .
point in ¥ . Moreover, for any x[1 ¥, the iterative sequence 0 0

‘ Without losing generality, let's move on, suppose
{T"x} (nON) b,- converges to fixed point. x, # x,,, forall (n0N), then by (2)

Proof: Assuming x, Y such, we create an iterative

sequence {x,} by x,,, =lx, (n0ON).
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50(x,,x,,,a)=s0(lx,_,lx,,a)
0(x,-1, M x,-1,@)0(x,,, [, , @) +ar 0(x,-1,x,,@)0(x,,Mx,,a) ¥
1+0(x,-,x,,a) 1+0(x,_y,x,,a)
0(x,1,Mx,-1,0)0(x,1,Tx, ., @) +a a(x,,x,,0)0(x,,Mx,,a)
1+0(x,_y,x,,a) 1+0(x,_y,x,,a)

<a0(x,_,x,,a) +a,

4

0(%,-15%,, A)0(X,, X41,4)
1+0(x,_;,x,,a)

a(xn—l > xn+1 > a)a(xn > X no a) +
1+0(x

<a0(x,_,x,,a)+a, A )
n=1>"n»

a a(xn—laxnaa)a(xn—laxnaa) +a5 a(xn:xnaa)a(xnaxn+laa)
1+0(x,_;,x,,a) 1+0(x

n—l’xn 7a)
Sa0(x,_;,x,,a)+d,0(x,,X,,1,a) +Ays[0(x,_,X,,a) +0(x,,X,,,a)]

50(x,,X,41,a) < () +50,)0(x,_1,X,,a) +(a, +50,)0(x,,X,.1,a)

(s —ay —5a4)0(Xp, Xn41, @) < (@1 + 5A4) (X1, X, @) 3)

Again,
50(x,,,x,,,a) =s0(Tx,_,l'x,,a)
<ad(x,_x,,a)+a, o(x,_;,I'x,_;,a)0(x,,lx,,a) ra, o(x,,l'x,_,a)0(x,_;,Tx,,a) N
1+0(x,_;,x,,a) 1+0(x,_;,x,,a)
o(x,,lx,,a)0(x,,l'x,_,a) o(x,_,Tx,,a)0(x,_;,Tx,,a)
a, +a;
1+0(x,_,x,,a) 1+0(x,_,x,,a)

S0(X,,X,41,a) S NO0(X,_;,X,,a) +Q,0(x,,X,,1,a) + Ass[0(x,_,,x,,a) +O(x,,X,,1,a)]
(s—a, —sas)o(x,,x,,;,a) < () +505)0(x,_,X,,a) ()
Adding (3) and (4), we get

(2s -2a, —sa, —sas)0(x,, X,

41,@) < 2oy +sa, +sas)0(x,_,x,,a)

(2a, +sa, +sas)
2s -2a, —sa, —sas)

0(x,,,X,41,a) < 0(x,_1,X,,a)

__ Qa +sa, +sa5)
(2s-2a, —sa, —sas)
2 4 5

In view of (a)+a, +a; +sa, +505) <1, then (0<a <1.Thus by the Lemma (2), {x,} is a by-Cauchy sequence in X .

Since (x,d) is a by-complete, then there exists some point x* such that X, — x* as n — o then by (2), we can easily see that

o(x,,x,,a)0(x*,I'x* a) rg

o(x,,Ix*,a)d(x*,I'x*,a)
8 +

s0(Mx,My,a) < a0(x,,x*,a) +a,

1+9(x, y,a) 1+0(x,y,a)
o(x,,Mx,,a)0(x,,lx* a) ra o(x*,Ix, ,a)0(x*,I'x*, a)
4 1+0(x, y,a) > 1+0(x, y,a)

0(x,,,X,41,a)0(x*, Tx*, a) ‘g 0(x,, Tx* a)0(x*,Tx*, a) N
1+0(x,,x*,a) 140y, x%,a)
0(x,,,X,41,a)0(x*,Tx*, a) rg 0(x*,x,,11,a)0(x*, Tx*,a)
1+0(x,,x*,a) T 143(x,. %, a)

= ala(xn 7X*:a) + aZ

)

4
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Taking the limit as n — o both the sides of (5), we get x* is a fixed point of [ as a result.
Limit(x,,,Tx*)=0ie. x, - Mx*as,n —» 0. To demonstrate the fixed point's uniqueness, we assume
n—o that if there is a second fixed point y*, then by (2), we get

It demonstrates that Mx* = x" by virtue of the limit of the
b,-convergent sequence's uniqueness.

o(x*,Tx*,a)d(y*,Iy* a) iy o(x*,Ty*,a)0(y*,I'x* a) N
1+0(x*, y*,a) 3 1+0(x*, y*,a)
o(x*,I'x*, a)d(x*,'y*, a) ‘g 0(y,I'x,a)0(y,ly,a)
1+9(x*, y*,a) 1+ o(x*, y*,a)

sO(Mx*,Ty*,a) < @, 0(x*, y*,a) + @,

4

s0(Fx*,Ty* a) < a,0(x*, y*,a) + a,0(x*, T y*,a)

o .0y s D70

(x*,y*,a) (6)
As (a,+a, +a, +sa, +sa;5) <1, this implies that (@, +a;3) <l,as,s 21.
We conclude from (6) that d(x*, y*,a) =0 = x* = y*. g on X such that (X,0) is a b,- complete b,- metric

We now generalize Naidu's [6] finding.

space with coefficient s>1 and [} &, be a pair of self
Theorem 4: Let (),<) be a partially ordered set and

mapping from X to X satisfying the following conditions:
suppose that there exist a b,- metric
(a)
S[az (rlxa r2y7a)] < aa(-xa rlxaa)a(ya r2y9a) + ﬁa(ya rl-xaa)a(-xa rzy,a) - min{a(xa yaa)a(ya rzyaa)a (7)
a(xa rlxaa)a(ya rz)/, a),a(x, r]xsa)a(ya I_lxa a),a(x, I_ 2y9a)a(y5 r]xaa)aa(ya I_lxa a)a(ya rzy,a)}

a, B, with d a+2p0s

an =A<1. Then
0<a,f=<1 K

(b) I, &I, are compatible pair for every x, y, a [1 ¥ and for some non-negative

I, &I, have a common fixed point in )X . Further, if B <1,then I} &', have a unique fixed point.
s

a+2p0s
s

Proof: Let

=A, we define a sequence {x,} subset of Y for an arbitrary point x, 0 x such that I'\x, =x,,,,
M yX,e = X,40,0=0,1,2,3,......

S CHCHERING) EX EAFEAN gSAN)
<alo(x,-,Tx,,a)0(x,,T,x,, @)+ BlO(x,,Tx,,a)0(x, 1, ,x,,a)]

o(x,_,x,,a)0(x,,l ,x,,a),0(x,_,[x,_1,a)0(x,,l ,x,,a),
-min { o(x,_;,lx,_,,a)0(x,,Tx,_,a),0(x,_,T ,x,,a)0(x,,lx,_;,a),
o(x,,l,x,,a)0(x,,lx,_1,a)}

n—1>

S[52 (xn 7xn+19 a)] < a[a-(xn—l ,xn sa))a-(xn axn+1aa)] + ﬁ[a-(xn axn+1aa)s{5(xn—1 ,xn ,Cl) + 5()(" sxn+1 ’a)}]

5(xn—1 7xn 9a)5(xn a-xn+15a)a 5()6'”_1 7xn aa)d(xn 9-xn+19a)a
-min { 5(xn—1 > Xy 9a)5(xn s Xy 7a)a 5(xn—17-xn+19a)5(-xn s Xy 7a)a
J(xn 9xn+laa)5(xn > Xy ,Cl)}

S[J2 (xn ’xn+1’ a)] < a[a(xn—l ’xn ’a))a(xn ’xn+1 ,Cl)] + ﬂs[a(xn ’xn+l9a)5(xn—l’xn’ Cl)] + ﬂs[JZ (xn’xn+13a)]

a-(xn—l > Xy ’a)a-(xn > X+l ,a), a-(xn—l > Xy ’a)a-(xn > Xn+1 ’a)a

-min {
0,0,0}
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S(l _ﬁ)d(xn’ xn+1 7a) < (a + Sﬂ)a('xn—l 7xn 7a)

+
O(x,,X,4,a) < (a—sﬁ)é_(xn_l ,X,,Q)
s(1=5)
+
(a+sB)<si-p)= 1=
J(xnsxnﬂaa) s /]J(xn—laxnaa) (8)
Replacing x,y,a by x,_;,x,,a respectively, we have
O(x,_1,X,,a) S Ad(x,_,X,_,a) 9)
From (8) and (9), we have
O(x,,%,.,a) < /]zé_(xn_l,xn,a) (10)

Continue in same manner, n times, we have
O(x,,%,41,a) S A" (x4, %,,a)
Thus, for some m,n > 0,m > n, we have
O(x,),%,,,a) < O(X,,X,41,a) + O(X, 411, X,42,0) T O(X, 15, X,y 43,@) Foeeeee FO(X,, 1, X, )
SA"+ A L + A" N3(x,, %, )

< %J(xo,xl,a) .
Letting m,n — o, we have 9(x,,x,,,a) - 0.
= {x,} is a Cauchy b,- sequence in X .
Again I|,[', are compatible pair and {x,} [ y is a sequence then {O(I',l",x,,[,["\x,)} - 0 as {['x,} and {[,x,}
converges to same limit. So,
hmt % =limr 2 = L(imrax) = I'z(liml'lxn) =T wu=T,u=u, for some uie. uisacommon fixed

n—oo /N n-oo 7o oo

point for I"jandl,
To demonstrate the fixed point's exclusivity, we assume that if there is a second fixed point v, then by (7), we obtain
s[0? (Myu,Tyv,a)] < ad(u,T u,a)0(v,T ,v,a)+ GOV, u,a)0(u,l ,v,a) —min{d(u,v,a)0(v,I,v,a),
o(u,l u,a)0(v,Iyv,a),0(u,lu,a)0(v,lu,a),0w,l ,v,a)0(v,lu,a),0v,l u,a)0(v,l ,v,a)}

o(u,v,a) < ﬁa(u,v,a)
s

spaces.
= 0(u,v,a) =0 as £-<1. P
s

= u = v . This completes the proof.
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