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Abstract: Devastatingly, in spite of the long standing research works on HIV/AIDS infection and treatment dynamics, 

reviews of existing models clearly shown that the behavioral attitude to treatment consistency by those screened to become 

aware and those receiving treatment have not been given the desired attention. Moreso, the inconsistency following avoidable 

treatment truncation and later resumption of treatment by these classes of infectives, which could lead to colossal drug abuse is 

also not accorded the much expected consideration. Therefore, in this present study, we sought and formulated a nonlinear 6-

Dimensional deterministic mathematical HIV/AIDS dynamic model that accounted for the global stability analysis of the role 

of antiretroviral therapy abuse for the treatment of HIV/AIDS epidemic. The model is structured upon dynamical interactions 

between 6-subpopulations and HI-virus under bilinear control functions with constant screening of the susceptible. It is 

assumed that the rate of resumption of ART upon truncation is less than initial ART truncation following the incorporation of 

HIV aware infectives not ready to receive ART treatment and HIV aware infectives with truncated treatment protocol The 

system mathematical well-posedness was investigated and model reproduction number determined for both off- treatment 

(with value 0.343 ) and for onset-treatment (with value 0.271). We considered the model for off-treatment and thereafter by 

incorporating LaSalle’s invariant principle into classical Lyapunov function method, we presented an approach for the global 

stability analysis of the role of ART abuse in HIV/AIDS treatment. Furthermore, the analysis and results of this paper 

presented a dynamic methodological application of bilinear control functions and an impeccable understanding of the 

fundamental mechanism in HIV/AIDS treatment in the presence of ART abuse. Using in-built Runge-Kutta of order of 

precision 4 in a Mathcad surface, numerical validity of model is conducted to investigate the study theoretical and analytical 

predictions. Results shows that application of onset-treatment functions with trend of ART abuse yield tremendous reduction in 

HIV/AIDS infection epidemic following the recovery rate of the susceptible population with value increasing from 0.5 

cells/mm
3
 to 1.203 cells/mm

3
 within the first 3months and attained stability of 0.62 cells/mm

3
 through the time interval of 20- 

30 months. 

Keywords: Antiretroviral-Therapy-abuse, Global-Stability-Conditions, Lyapunov-Function, Bilinear-Control-Functions, 

Upper-Triangular-Matrix, Mass-Action, Theoretical Predictions, Analytical Results 

 

1. Introduction 

Following the enormity of the present research, we 

thought it should be worthy to subdivide the introductory 

aspect into two distinct parts in order to give an insight 

to the disease historical background and associated 

literature on mathematical models of HIV/AIDS 

infection dynamics.  

1.1. Historical Background on HIV Infection 

The human immunodeficiency virus (HIV) is known to 

belong to the class of viruses called Retroviruses 

characterized by ribonucleic acid (RNA) as their genetic 

material. HIV is understood to be the causative agent of the 

acquired immunodeficiency syndrome (AIDS). The 

dimension of HIV infection and its treatment dynamics is 

known to have moved beyond the virus and risk factors 
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associated with its transmission to a more detailed 

understanding of the mechanism associated with the spread 

distribution and impact of any intervention on the population. 

In reality, the magnitude of the untold hardship resulting 

from HIV infection in the update is firmly relatively 

unknown, though matching an estimated annual incidence 

rate of about 24.9 million in 2000 to 37.9 million as at end of 

June, 2019 (UNAIDS, 2019), [1]. Perturbingly, since the 

discovery of AIDS in 1981, the epidemic has become a threat 

to the health and survival of millions of individuals, families 

and communities worldwide. Until now, despite the effort 

made by world bodies like the World Health Organization 

(WHO), United Nation International Children Emergency 

Fund (UNICEF), United Nation Development Program 

(UNDP), Joint United Nations Programme on AIDS 

(UNAIDS) and other recent organizations on HIV in 

collaboration with several scientific research bodies, there 

have been no outright medical cure for the deadly disease. 

Rather available, are a number of preventive and intervention 

treatment measures in the range of condom use and 

antiretroviral drugs such as Azidothymidine (AZT), 

Nucleoside analogues, Non-nucleoside analogues, Reverse 

transcriptase inhibitors (RTI), Protease inhibitors (PIs) and 

Fusion inhibitors (FIs), [2]. These drugs are administered as 

preventive and suppressive measures to victims in order to 

keep the virus inactive for some time. Notably, these 

therapeutic treatment have appeared promising in retarding 

the spread and replication of HIV and HIV related infection, 

noting that the aspect of prevention remain the most effective 

strategy against the spread of HIV/AIDS epidemic, [3]. 

The most vulnerable at risk of acquiring the deadly disease 

are individual from developing countries of Asia and Africa 

having records of sexual contacts with HIV infected people, 

homosexual, bisexual men, intravenous drug abuser 

user/sharing of household and medical accessories and persons 

transfused with contaminated blood, [4]. Devastating is the 

fact that the spread of HIV infection is seen to be much earlier 

and easier in these parts of the continents when compared with 

the rest of the world. A situation that can be attributed to lack 

effective utilization of available drugs, arising from low 

knowledgeable and abject poverty. Moreso, the unassuming 

consequences arising from complete lack of outright cure, 

incessant drug abuse and the negative status as the incurable 

disease, forms the integral factor of the present investigation. 

HIV is basically transmitted through two major routes: 

horizontal routes consisting of sexual intercourse (both 

homosexual and heterosexual) contacts, blood transfusion, 

intravenous drug users and contaminated injecting equipment; 

and vertical transmission route (mother-to-child). The latter 

route involves the transmission of the virus from mother-to-

child via the utero (during pregnancy), during labor and 

delivery as well as through breastfeeding, [5-7]. 

1.2. Literature Review on HIV Mathematical Models 

The problem of human immunodeficiency virus (HIV) 

remains an important component of mankind and the solutions 

are often based on the role of mathematical modeling in 

understanding of the mechanism of the spread of the virus 

among the population. For instance, taking from early 

investigation, mathematical model had been used to conduct 

preliminary study of the transmission dynamics of HIV as the 

causative agent of AIDS as well as the discussion of 

transmission model for AIDS, [8, 9]. The effort of these 

researchers were further strengthened following the 

extensively studied of the transmission dynamics of HIV 

infection, [10]. Since then, several mathematical models on 

HIV transmission and treatment methodologies have been 

developed. Using ordinary differential equation, HIV/AIDS 

treatment with the incorporation of sexual behavioral change, 

condom use and avoidance of high-risk sexual practices as 

indicators have been investigated, [11]. Result here showed 

that lowering sexual behavior lowers’ prevalence and 

incidence rate. Moreso, the ability of condom to stop AIDS 

epidemic was studied, [12. Latin hypercube sampling and 

partial rank correlation coefficient was adopted with result 

showing that preventability has negative effect on the epidemic. 

It is known that mathematical modeling have been used to 

study the contributive role of condom use and antiretroviral 

therapy (ART) and the results analyzed using known and 

modern numerical methods. For instance, a two-sex 

mathematical model was formulated to investigate the 

prevention of HIV/AIDS in a varying population, [13]. This 

study was further extended following the investigation of the 

impact of non-compliance in condom use as preventive 

measure among heterosexual population, [14]. Attributing 

knowledge, attitude, practice and determinant as indicators, 

random sampling technique was explored to study the use of 

condom for the control of HIV/AIDS in Northern West 

Ethiopia, [15]. The results indicated that 78.9% of infected 

patients exhibited knowledgeable and consistent condom use 

for the prevention of the spread of HIV/AIDS alongside 

unwanted pregnancies. Other related mathematical models 

for the use of condom only, as preventive measure include 

those of models [6, 16, 17]. In using multiple preventive and 

suppressive measures, other several mathematical models 

comes into focus. For example, condom use and 

antiretroviral therapy incorporating male and female in the 

use of condom have been studied, [18]. Moreso, 

mathematical investigation for the application of counseling 

and ART for the transmission dynamics of HIV infection was 

conducted, [19]. In the model [20], the author resorted to 

explore condom use and counseling for the eradication of the 

spread of the deadly disease. 

As a motivating factors to the present investigation, recent 

innovative findings have been considered. For instance, using 

mathematical model, the effect of screening of unaware 

HIV/AIDS infectives on the spread of HIV infection without 

any control function (treatments) have been investigated, [21]. 

Improving on the above finding while sustaining the screening 

method, similar model with the incorporation of condom use 

by the susceptible and application of control function (ART) 

by aware infective class was proposed and studied, [22]. 

Notably, a review of these models shows that the behavioral 

attitude to treatment consistency by those who were screened 
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to become aware and receiving treatment was not considered. 

Moreso, the inconsistency following avoidable treatment 

truncation and possible resumption of treatment by these 

classes of infectives, which could lead to colossal drug abuse 

was not accorded the desired attention. Therefore, this present 

study motivated by the aforementioned limitations, seek to 

formulate as an extended version, a 6-dimensional 

deterministic compartmental HIV/AIDS mathematical 

dynamic model with the incorporation of aware infective class 

not ready to receive treatment, aware infective on consistent 

ART treatment and those that are inconsistent with ART 

(leading to ART abuse), while sustaining the screening method 

and treatment control functions. That is, using mathematical 

model, the present study is anticipated to enhance new 

pathways and to proffer compactible treatment schedule for the 

fight against the deadly disease. Moreso, the study is intended 

to provide insight to the global stability analysis and to 

evaluate its impact with a view to possibly overturn the 

adverse role of ART abuse, using non-linear differential 

mathematical dynamic model. 

Resourcefully, the entire study is partitioned into 7 

sections with section 1 devoted to the introductory aspect. 

Section 2 consider quantitatively, the material and methods 

adopted for the study, which routinely include: the basic 

mathematical problem statement and formulation of proposed 

model. In section 3, we investigate the mathematical well-

posedness characterized by system invariant region and 

system positivity of solutions. The existence of model 

equilibria and global stabilities conditions is treated in 

section 4. In section 5, we conducted numerical validity of 

our theoretical predictions and analytical results. Obtained 

results are then discussed and analyzed in section 6 and 

finally, section 7 is devoted to succinct observed conclusion 

and remarks. Objectively, the present study propose to 

project an insight to the behavioral attitude of aware 

infectives under consistent and inconsistent treatment control 

functions using stability analysis. 

2. Material and Methods 

In this section, we quantitatively consider the material and 

methods adopted for the study. This routinely include: the 

basic mathematical problem statement and the formulation of 

proposed model. 

2.1. Problem Statement and Mathematical Formulation of 

Model Equations 

The present study bring to bear, two closely related models 

as a lead-way for the smooth formulation of our present 

model. Concisely, the effect of screening of unaware 

infectives on the spread of HIV infection was investigated, 

[20]. The model considered four stages of the population in 

HIV/AIDS progression following the absence of treatment 

and post-exposure intervention. These sub-populations 

include: the susceptible or HIV negative population ( )S t , 

HIV positives or infectives that do not know they are infected

1( )I t , HIV positives that know they are infected 2 ( )I t and 

the full-blown AIDS population ( )A t . The epidemiological 

derived equations of the model is given as: 

1 1 2 2
0

1 1 1 2 2
1

2
1 2

1 2

( )

( )

( )

SI SIdS
Q dS

dt N

dI SI SI
d I

dt N N
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I d I

dt
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I I d A

dt

β β

β β θ δ

θ δ

δ δ α

+ = − − 
 

= + − + +

= − +

= + − +

,         (1) 

with 0 1 1(0) 2 2(0) 0(0) 0, (0) 0, (0) 0, (0) 0S S I I I I A A= > = ≥ = ≥ = ≥

and having population under consideration defined by

1 2N S I I A= + + + . For further details of the model descriptions 

and assumption, we refer readers to the cited authors. 

Presumably, taking into account of the fact that the above 

model was developed in the absence of treatment and post-

exposure intervention but rather with the effect of screening of 

unaware infectives, similar model with the introduction of 

treatment functions both at the susceptible stage (condom use) 

and those who were screen and placed under ART treatment was 

proposed and studied, [22]. For clarity of presentation, while 

urging readers to access the model details and assumptions, the 

differential equations for the model was derived as: 
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
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,              (2) 

where, 

1 1 1 2 2 2 3 3
1(1 )

( )
i

c I c I c A
u

N t

β β ββ  + +
= −  

 
.                (3) 

Equation (3) is called the model force of infection 

otherwise known as the system mass action. 

A clear analysis of the above two proposed motivating 

models paves the way for our proposed investigation. 

From epidemiological point of view, equation (2) used 

stability theory of differential equations and had dwelled on the 

effect of screening of the unaware HIV/AIDS infectives on the 

spread of HIV infection. Here, no direct incorporation of 

treatment function, noting that upon been screened and 

becoming aware, sexual interaction were bound to change 

resulting to reduction of the endemicity of the infection. On the 

other hand, improving on the above findings led to a study of 

similar model with the incorporation of condom use by the 

susceptible and application of treatment control function (ART) 

by the aware infectives class, while sustaining the screening 
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method, [22]. The model was analyzed using the theory of 

Volterra-Lyapunov stable matrices on classical method of 

Lyapunov functions. The result lead to the fundamental 

understanding of the mechanism in HIV/AIDS infection. 

None-the-less, review of these models indicated the 

obvious of the fact that the behavioral attitude to treatment 

consistency by those who had been screened to become 

aware and receiving treatment was not considered. Moreso, 

the inconsistency by avoidable truncation of treatment 

measures and possible resumption of treatment by these 

classes of infectives, which could lead to colossal drug abuse 

was not accorded the desired attention by these studies. Thus, 

on the account of overcoming these scientific limitations 

from the aforementioned two motivating models, the present 

study is necessitated. 

2.2. Formulation of Proposed (Extended) Model 

Captivated by the innovative findings of the above two 

motivating models and its associated limitations, the present 

study seeks to present an extended version of these two 

models. That is, we formulate a deterministic compartmental 

model that comprehensively account for the transmission 

dynamics of HIV/AIDS infection with the incorporation of 

aware infectives class but not ready to receive treatment, 

those who are consistent in ART treatment and those who are 

inconsistent with ART treatment, leading to abuse of the 

therapy (ART). Thus, the present study in addition to the 

existing assumptions, proposes the following assumptions, 

which completely enhance the present extended model. 

Assumption 1 

i. The state variable 2I is redefined to be HIV positive 

individuals who are aware of their infection but are not 

ready to take the ART. 

ii. ART abuse individuals are those receiving the therapy 

but stop at a time and then resume later. 

iii. The contact rate of susceptible with full-blown AIDS is 

much less than ART abuse infectives which in turn is 

much less than those ART none abusers; and 

subsequently much less than aware infectives and 

which is much less than the unaware HIV infectives 

(i.e., 5 4 3 2 1β β β β β< < < < ). 

iv. Clearance rate due to infection only occur at full-blown 

up AIDS, i.e., 0α > for AIDS population at time t . 

v. Resumption rate for use of ART is less than rate at 

which those that use ART and then stop the therapy 

(abuse) and in turn less than those receiving ART (i.e.,

3 2 1a a a< < ). 

Of note, following the introduction of a new concept with 

incorporated state variables, the population under 

investigation is subdivided into the following 6 

compartments: susceptible individuals who are not HIV 

positive but may be infected if exposed ( )S t , HIV positive 

(infective) individuals who are unaware of their HIV status at 

time t 1( )I t , number of HIV positive individuals who are 

aware of their infection but not ready to receive ART 2 ( )I t , 

number of HIV positive (infective) individuals receiving 

ART ( )T t , number of HIV positive (infective) individuals 

under ART who have stop receiving the therapy but later 

resume treatment ( )AT t and full-blown AIDS population at 

time t ( )A t . The epidemiological differential equations for 

the system basic model is derive as: 
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where 

1 1 1 2 2 2 3 3 4 4 5 5
( 1,...,5) 1(1 )

( )

A
i i

c I c I c T c T c A
u

N t

β β β β ββ =
 + + + +

= −  
 

, (5) 

with 1 2( ) AN t S I I T T A= + + + + + . 

It can then be said that with equation (5) depicting the 

system mass action (force of infection), equation (4) is an 

inert epidemiological equation representing the mathematical 

expression for the transmission dynamics of HIV/AIDS 

population under ART abuse model. Schematically, system 

(4) is depicted by Figure 1 below: 

 

Figure 1. Schematic diagram of HIV/AIDS transmission dynamics with ART 

abuse (misuse). 

The parameters associated with equation 4 (as used in 

figure 1) are defined as follows: 0ϕ - recruitment rate 

(population source), 1,...,5iβ = - probability of interaction by 

susceptible with various infectives, 1,...,5ic = - sexual contact by 

susceptible with various infectives, λ - successful condom 

use, θ - rate at which the unaware becomes aware, π - 

progression rate of aware infective to AIDS, δ - rate at which 

infectives develops AIDS. Others include: α - AIDS induce 
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death rate, µ - natural death rate, 1a - rate of ART receive by 

( )T t , 2a - rate of abuse of ART by ( )AT t and 3a - resumption 

rate of ART by ( )AT t . 

Since the present model is a complete representation of a 

set of living organism, then we must show that the model is 

mathematically well-posed. That is, we establish in the next 

section, the mathematical properties and model analysis for 

our derived equations. 

3. Mathematical Properties and Analysis 

of Model 

To show that the characteristic properties of the model 

equation is mathematically well-posed, is to determine the 

invariant region representing the entire system as non-

negative and the existence of positivity of the system 

solutions. We initiate this investigation by showing that the 

differential sum of the equations of model (4) is a function of 

natural birth and death rates as well as the clearance rate due 

to infection at full-blown AIDS. 

Thus, from equation (4) the differential sum is given by 

1 2 AdI dI dTdN dS dT dA

dt dt dt dt dt dt dt
= + + + + +  

( ) ( )0 1 1 1 2i iS S S I I a Iϕ β µ β µ δ θ θ µ δ= − − + − + + + − + +  

( ) ( )
( ) ( )

1 2 3 2 2 3

1 2

A A

A

a I a T a T a T a T

I I T T A

µ π µ δ

δ π µ α

+ + − + + + − + +

+ + + + − +
. 

Simplifying, we obtain 

0 1 2 A

dN
S I I T T A A

dt
ϕ µ µ µ µ µ µ α= − − − − − − − ,

 

( )0 1 2 AS I I T T A Aϕ µ α= − + + + + + − .
 

0

dN
N A

dt
ϕ µ α= − − ,                           (6) 

since, 1 2( ) AN t S I I T T A= + + + + + . 

Equation (6) is an index with which we can then show that the 

invariant region representing the entire system are all positive. 

3.1. System Invariant Region 

Remarkably, it can be said that all the state variables and 

parameters are non-negative for 0t > , since the system (4) 

represent a set of human population. Invariably, this region 

can be investigated using the result of the following theorem. 

Theorem 1 The closed set

( ) 6 0
1 2, , , , , :D AS I I T T A N

ϕ
µ+

 
ℜ = ∈ ≤ 

 
ℝ  is positively 

invariant and attracting with respect to the system (4). 

Proof 

Here, we invoke the classical approach adopted in existing 

proves of invariant region [23]. Then, if we consider equation 

(6), we have 

0

dN
N A

dt
ϕ µ α= − − . 

In the absence of mortality due to HIV/AIDS infection, 

where the population is completely free from HIV/AIDS 

infection i.e., 0α = , we obtain 

0

dN
N

dt
ϕ µ≤ − . 

It follows that 

0

dN
N

dt
µ ϕ+ ≤ . 

This is a first order homogenous differential inequality. We 

solve the above equation by finding the integrating factor 

(IF) i.e., 
dt t

e e
µ µ

=∫ . 

Then, multiplying through by the integrating factor, we 

have 

0

t t tdN
N

dte e e
µ µ µµ ϕ+ ≤ , 

or 

0

t td
N

dt e e
µ µ ϕ  ≤

  
. 

Integrating both sides yields 

0t t
N Ce e

µ µ ϕ
µ

≤ + , 

where C is a constant of integration. Simplifying gives 

0( )
t

N t Ce
µϕ

µ
−≤ + . 

Now, applying initial condition when 0t = , i.e.,

( ) (0)N t N= , we have 

0(0)N C
ϕ
µ

≤ + , 

or 

0(0)N C
ϕ
µ

− ≤ . 

Substituting for C , we obtain 

0 0( ) (0) tN t N e µϕ ϕ
µ µ

− 
≤ + − 

 
,                      (7) 
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where (0)N is the initial population at time 0 0t t= = . This 

gives ( ) (0)N t N≤  as 0t → and 0( )N t
ϕ
µ

≤ as t →∞ . 

Applying the Birkhof and Rota’s theorem on differential 

inequality when t →∞ , we arrive at 00 ( )N t
ϕ
µ

≤ ≤  for all

0t ≥ , [24]. But from the system (4), we have, 

1 2 0AdI dI dTdS dT dA

dt dt dt dt dt dt
+ + + + + = , 

which imply that 

0
dN

dt
= . 

Integrating on both sides yields 

N C= . 

Since, 

1 2 1AN S I I T T A= + + + + + = . 

It follows that 1C = , implying that the population is 

constant, positive and equal to 1. Hence, all the feasible 

solutions of the system (4) enter the region 

( ){ }6
1 2 1 2, , , , , : 1D A AS I I T T A S I I T T A+ℜ = ∈ℜ + + + + + = . 

Therefore, the region is positive and attracting, implying 

that the model is both mathematically well-posed in the 

region Dℜ and epidemiologically meaningful. 

3.2. Positivity of Solutions 

The following theorem give the required verification for 

the positivity of solutions of the system variables.  

Theorem 2 Assume the initial conditions

{ } 6
1 2(0), (0), (0), (0), (0), (0)AS I I T T A +∈ℜ . Then the solution 

set { }1 2( ), ( ), ( ), ( ), ( ), ( )AS t I t I t T t T t A t of the model (4) 

remain positive for all 0t ≥ . 

Proof 

We invoke existing results for positivity of solutions [25, 

26]. Then, from the first equation of system (4), we have 

0 0 ( )i i

dS
S S S

dt
ϕ β µ ϕ β µ= − − = − + . 

Taking the differential, we have 

0 ( )i

dS
S

dt
ϕ β µ≤ − + . 

It follows that 

0( )i

dS
S

dt
β µ ϕ+ + ≤ . 

Again, this is a first order homogeneous differential inequality. 

Solution of the equation is obtained by applying the integrating 

factor
( ) ( )i idt t

IF e e
β µ β µ+ +

= =∫ . Therefore, the positivity of 

solution for the susceptible population is derived as: 

( )0 0( ) (0)
( ) ( )

i t

i i

S t S e
β µϕ ϕ

β µ β µ
− + 

≤ + − + + 
. 

or 

( ) ( )0( ) (0) 1
( )

i it t

i

S t S e e
β µ β µϕ

β µ
− + − + ≤ + − +

. 

Then, we see that since ( ) 0S t > as 0t =  and ( ) 0S t > as

t →∞ , implying that ( ) 0S t > , 0t∀ ≥ . 

Similarly, from the second to the sixth equations of model 

(4), the positivity of solutions for the state variables are 

derived as follows: For unaware infectives 1( )I t , we have, 

( )
1 1( ) (0)

t
I t I e

µ δ θ− + +
≥ . 

We observed that since ( ) 0µ δ θ+ + > then 1 0I ≥ as

0t = , and 1( ) 0I t ≥ as t →∞ . Therefore, 1( ) 0I t ≥ , 0t∀ ≥ . 

The positivity of solution for the aware infectives but not 

ready to receive is derived as 
( )1

2 2( ) (0)
a t

I t I e
µ δ− + +

≥ . 

Obviously, since ( )1 0aµ δ+ + > then 2 0I ≥ as 0t =  and

2 ( ) 0I t ≥ as t →∞ . Therefore, 2 ( ) 0I t ≥ , 0t∀ ≥ . 

Furthermore, for HIV positive (infectives) individuals 

receiving ART, the positivity of solution is derived as: 
( )2

( ) (0)
a t

T t T e
µ π− + +

≥ , 

where ( )2 0aµ π+ + > . Then 0T ≥ if 0t =  and ( ) 0T t ≥ as

t →∞ . Therefore, ( ) 0T t ≥ , 0t∀ ≥ . 

For the positivity of solution for HIV infectives that abuse 

the use of therapy (ART), we have 
( )3

( ) (0)
a t

A AT t T e
µ δ− + +

≥ , 

which represents the aware infective who had initiated 

treatment but discontinue this treatment with probability of 

resuming such treatment later. Since ( )3 0aµ δ+ + > , then

0AT ≥ provided 0t = and ( ) 0AT t ≥ as t →∞ . Therefore,

( ) 0T t ≥ , 0t∀ ≥ . Finally, the positivity of solution for the 

infectious virus (full-blown AIDS) is derived as 
( )

( ) (0)
t

A t A e
µ α− +

≥ , 

which implies that ( ) 0A t ≥ , 0t∀ ≥ . Hence, we conclude that

1 2( ) 0, ( ) 0, ( ) 0, ( ) 0,S t I t I t T t> ≥ ≥ ≥ ( ) 0, ( ) 0AT t A t≥ ≥
0t∀ ≥ , implying that all the state variable are all positive. 

This completes the proof. 

Next, we investigate the stability analysis of our extended 

basic model, which is revolve around the existence of 

equilibrium points of the system and computation of the 
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system reproduction number. This is obvious as it serves as a 

tool for the determination of HIV/AIDS transmission 

dynamics under ART abuse. 

4. Stability Analysis of the Extended 

Model 

In this section, we investigate the existence of model equilibria 

and further study quantitatively, their stabilities conditions. 

4.1. Existence of Equilibrium States 

For the existence of an equilibrium state, it is assumed that 

model (4) is at its steady state i.e., 

1 2 0AdI dI dTdS dT dA

dt dt dt dt dt dt
+ + + + + = . 

This implies that we equate the right-hand side derivatives 

to zero as presented hereof: 

( )

( )

0

1 1

1 2 2

1 2 3 3

2 4

1 2 5

0 ,

0 ,

0 ,

0 ,

0 ,

0

i

i

A

A

A

S

S m I

I m I

a I a T m T

a T m T

I I T T m A

ϕ β µ
β
θ

δ π

 = − +


= −
 = −
 = + −
 = −


= + + + −

.                    (8) 

Equivocally, from equation (8), disease-free equilibrium 

(DFE) for system (4) exists if 1 0u = with other controls held 

constant. Then, in computing the DFE, we let 0H denote the 

DFE such that each of the equations of model (4) is equated 

to zero i.e. at disease-free equilibrium, no infection and no 

recovery. The implication is that 

0 00 0 0
1 2 00, 0, 0, 0,AI I T T A == = = =           (9) 

and 

0 0 0 00 0 0
1 2( , ) 0, , , ,AH S I I T T A= = .              (10) 

Thus, using equations (8) and (9) to solve for 0H  yields 

( )00 i Sϕ β µ= − + , 

i.e., 

( ) 0i Sβ µ ϕ+ = . 

This imply that 

( )
0 0

*
i

S
ϕ

β µ
=

+
. 

Also, from the second equation, we have, 

1 10 iS m Iβ= − , 

which implies that 

1 1 im I Sβ= , 

i.e., 

* 0
0
1

1

i S
I

m

β
= . 

Substituting the value of 
0S into the above, we obtain 

* 0

*
0
1

1

i

i
I

m

ϕβ
β µ

 
  + = . 

Simplifying, we have, 

*
0 0
1 *

1

i

i

I
m

ϕ β
β µ

 
=  

+ 
. 

Similarly, from the third equation of (8), we have, 

1 2 20 I m Iθ= − . 

This imply that 

2 2 1m I Iθ= , 

i.e., 

0
0 1
2

2

I
I

m

θ
= . 

Using the value for
0
1I , we obtain 

*
0

*
10

2
2

i

i
m

I
m

ϕ βθ
β µ

   
  

+   = . 

Simplifying, we have, 

*
0 0
2 *

1 2

i

i

I
m m

ϕ θ β
β µ

 
=  

+ 
. 

In similar approach, we solve for
0 0, AT T and 0A , which 

comprehensively yields the corresponding values for 0H  i.e., 

0 0

*

*
0 0
1 *

1

*
0 0
2 *

1 2

*
0 0 4 1

*
3 4 2 3 1 2

*
0 0 1 2

*
3 4 2 3 1 2

*
0 4 1 1 2 2 3 4 2 3

0
3 4 2 3 1 2 5

( )

( )

( )( )

( )

i

i

i

i

i

i

i

i
A

i

i

S

I
m

I
m m

m a
T

m m a a m m

a a
T

m m a a m m

m a a a m m m a a
A

m m a a m m m

ϕ
β µ

ϕ β
β µ

ϕ θ β
β µ

ϕ θ β
β µ

ϕ θ β
β µ

πθ δθ δ θ βϕ
β

=
+

 
=  

+ 

 
=  

+ 

 
=  − + 

 
=  − + 

 + + + −
=  − 

*
i µ




















 +

,      (11) 
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where 

1 2 1

3 2 4 3

5

, ,

, ,

.

m m a

m a m a

m

µ δ θ µ δ
µ π µ δ

µ α

= + + = + +
 = + + = + +
 = +

        (12) 

Now, since 
* 0iβ = define the point at which HIV/AIDS 

free equilibrium (HAFE) exists, then using equations (8) and 

(10), equation (11) representing the equilibrium point 

denoted by 0H  becomes 

0 0 0 0 0 0 0 0
1 2( , ) ,0,0,0,0,0, , , ,AH S I I T T A

ϕ
µ

 
= =  

 
. (13) 

Equation (13) clearly defines the equilibrium point of the 

system, where no infection exists. Now, with the introduction 

of virus infection into the system, we are required to 

determine the pattern of the transmission dynamics. This 

process demands that we establish the system reproduction 

number denoted by 0R . 

4.2. Computation of HIV/AIDS Control Reproduction 

Number, R0 

The basic reproduction number, R0 of an infectious system 

is the expected number of secondary cases produced in a 

completely susceptible population by a typical HIV/AIDS 

infectious individual, [27]. It is a threshold quantity that 

determines the elimination or spread of HIV/AIDS in a 

population. That is, if 0 1R < , then the implication is that on 

average, an infected individual can generate less than one 

HIV/AIDS infective, thus, the disease cannot spread. On the 

contrary, when 0 1R > , it leads to outbreak of disease 

epidemic. Therefore, in this present study, we adopt existing 

approach in finding the HIV/AIDS control reproduction 

number, R0 in an ART abuse scenario, [27]. Thus, by such a 

method, and taking equation (12) into account, the system (4) 

is rearranged with the infected components first as presented 

hereof: 

( )

1
1 1

2
1 2 2

1 2 3 3

2 4

1 2 5

0

,

,

,

,

,

i

A

A
A

A

i

dI
S m I

dt

dI
I m I

dt

dT
a I a T m T

dt

dT
a T m T

dt

dA
I I T T m A

dt

dS
S S

dt

β

θ

δ π

ϕ β µ

 = −

 = −

 = + −


 = −


 = + + + −


 = − −


.           (14) 

From equations (5) and (14), we adopt the Next 

Generation matrices defined by 

1

0 0( ) ( )i i

j j

F V
H H

x x

−
   ∂ ∂

⋅   
∂ ∂       , 

where the notations iF and iV , denotes the matrices of new 

infections in compartment i and the transfer terms at 

HIV/AIDS free equilibrium into compartment i while 0H  is 

the HAFE. That is, 

1 1 2 2 3 3 4 4 5 5

1,..,5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i

c c c c c

F

λβ λβ λβ λβ λβ

=

 
 
 
 =
 
 
 
   

and 

1

2

1,...,5 1 3 3

2 4

5

0 0 0 0

0 0 0

0 0

0 0 0

i

m

m

V a m a

a m

m

θ

δ δ π δ

=

 
 − 
 = − −
 

− 
 − − − −   

with 

1

1 2 21

1 2 3 4

5 6 7 8

9 10 11 12
5

1
0 0 0 0

1
0 0 0

0

0

1

m

m m m
V

D D D D

D D D D

D D D D
m

θ

−

 
 
 
 
 
 =
 
 
 
 
  
  , 

where 

4 1 4 1 4
1 2 3

1 2 3 4 2 3 2 3 4 2 3 3 4 2 3

, , ,
( ) ( )

m a m a m
D D D

m m m m a a m m m a a m m a a

θ
= = =

− − −
 

3 1 2 1 2
4 5 6

3 4 2 3 1 2 3 4 2 3 2 3 4 2 3

, , ,
( ) ( )

a a a a a
D D D

m m a a m m m m a a m m m a a

θ
= = =

− − −
 

3 4 1 2 3 4 2 3 22
7 8 9

3 4 2 3 3 4 2 3 1 2 5 3 4 2 3

( )( )
, , ,

( )

m m a a m m a a ma
D D D

m m a a m m a a m m m m m a a

πθ δθ θ δ+ + − +
= = =

− − −
 

1 4 1 2 3 4 2 3 4 2
10 11

2 5 3 4 2 3 5 3 4 2 3

( )
,

( ) ( )

a m a a m m a a m a
D D

m m m m a a m m m a a

π δ δ π δ+ + − += =
− −

and 
3 1 2 3

12
5 3 4 2 3( )

a a a m
D

m m m a a

π δ δ+ +
=

− , 

define the indicated matrix entries as seen in the vector
1V −

and ( 1,...,5)i im =  represented by equation (12). 

Thus, the HIV/AIDS control reproduction number 0R  with 

ART abuse as establish by the next generation matrix
1FV −

 is 
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derived and computed as: 

1 1 1 2 2
0 3 3 1 4 4 5 5 5 9

1 1 2

( )
c c

R FV c D c D c D
m m m

λβ λβ θρ λβ λβ λβ−= = + + + + . 

Or 

5

0

1

( )j

j

R Rλ
=

=∑ ,                         (15) 

where 1,...,5j = represents the reproduction numbers for

1 2, , , AI I T T  and A respectively. This is to say that 

1 1 2 2
1 2 3 3 3 1 4 4 4 5

1 1 2

, , ,
c c

R R R c D R c D
m m m

λβ λβ θ λβ λβ= = = = and 

5 5 5 9R c Dλβ=  with 11 uλ = − . 

At this point, it will be more explicit if we could define our 

reproduction number and its implications in terms of off-

treatment and during onset-treatment scenarios. Let 0(1)R

denote the reproduction number for off-treatment scenario, 

such that all control functions are all zeros i.e. 

1 1 30, 0, 0u a a= = = . Then, equation (15) can be redefine as: 

2

0(1)

1

( )j

j

R R

=

=∑ , 

or 

1 1 1 2 2
0(1)

1 1 2

( )
c c

R FV
m m m

β β θρ −= = + ,             (16) 

since, 1 51, 0, 0D Dλ = = = and 9 0D = . By computation,

0(1) 0.343R = , i.e. 0(1) 1R < , implying that the HAFE is 

locally asymptotically stable (LAS – relatively high). On the 

other hand, if we let 0(2)R denotes the system reproduction 

number for onset-treatment scenario such that

1 1 30, 0, 0u a a> > > , then equation (15) holds and can be re-

define as: 
5

0(2)

1

( )j

j

R Rλ
=

=∑ , 

or 

1 1 1 2 2
0(2) 3 3 1 4 4 5 5 5 9

1 1 2

( )
c c

R FV c D c D c D
m m m

λβ λβ θρ λβ λβ λβ−= = + + + + , (17) 

where, 1 1 5 9(1 ), 0, 0, 0u D D Dλ = − > > > and 1 0u > . 

Computing equation (17) shows that 0(2) 0.271R = , i.e.,

0(2) 1R < , indicates that the HAFE is locally asymptotically 

stable (LAS – relatively low). 

From the above, it is clear that the HAFE for the 

transmission dynamics of HIV/AIDS model (4) with ART 

abuse in the presence of onset-treatment is locally 

asymptotically stable since 0 1R < and will be unstable if

0 1R > . From equation (15), it is obvious that we can access 

the contributions of 1 2, , , AI I T T  and A in terms of

1 2 3 4, , ,β β β β and 5β respectively. Of note, equation (15) 

defines , ( 1,...,5)jR j = as the respective reproduction 

numbers of each of the infectives with corresponding values 

computed as follows: 

1 1
1 1

1

0.092,
c

I R
m

λβ
= =≃

2 2
2 2

1 2

0.053,
c

I R
m m

λβ θ
= =≃  

4
3 3 3 1 5.763 10 ,T R c Dλβ −= = ×≃

3
4 4 4 5 1.107 10AT R c Dλβ −= = ×≃ and 

5 5 5 9 0.124A R c Dλβ= =≃ , 

where 

0(2) 1 2 3 4 5 0.271 1R R R R R R= + + + + = < ,      (18) 

which further explain the varying contributions of the 

asymptomatic, symptomatic and full-blown AIDS 

compartments to the overall model reproduction number 0R . 

Then, it is seen from the above equations for jR  that

5 1 2 4 3R R R R R> > > > , implying that for large infective 

population, the full-blown AIDS population contributes more 

to viral load transmission when compared to the contribution 

from the unaware infectives 1I , with declining contributive 

trend down to those of ( )T t , which imperatively sustain the 

disease endemicity in the population with 0iβ > . That is 

HAFE is asymptotically stable (i.e. 0 1R < ). Moreso, the 

above evaluation completely agrees with our assumptions, 

where 5 4 3 2 1β β β β β< < < < and as well 3 1a a< . 

Furthermore, since the class that abuse the use of therapy are 

much more than the class that eventually resume ART 

treatment (i.e. 3 2a a< ), then the contribution from the 

population of ART abuse ( )AT t  to the sustenance of HIV 

endemicity is evidently higher when compared with those of

( )T t . Compartments of these two infectives from Figure 1, 

clearly depict the aforementioned analysis. 

Now, having explicitly defined 0R and its contributive role 

to HIV/AIDS transmission dynamics with ART abuse, we 

consider next, the system stability analysis. 

4.3. Local Stability of HIV/AIDS Free Equilibrium (HAFE) 

Here, we digest the local stability of HAFE using the 

linearization process. Of note, local stability of HAFE is 

often investigated using the eigenvalues or trace-determinant 

criteria of linearization process. This approach is known as 

the Jacobian matrix or simply “The Jacobian.” The Jacobian 

matrix is defined as the matrix of all first-order partial 

derivative of a vector-valued function, [28]. In more clear 

terms, equilibrium point of a system is said to be locally 

asymptotically stable if the Jacobian matrix evaluated at that 

point has a negative trace and a positive determinant or has 

negative eigenvalues, [29]. From mathematical point of view, 
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local asymptotic stability implies the start of an arbitrary 

trajectories, which are close to the equilibrium point but 

never meet the equilibrium point. Hence, the local stability of 

the HAFE is determined by using the result of the following 

theorem. 

Theorem 3 The HIV/AIDS free equilibrium of the system 

(4) is locally asymptotically stable when 0 1R < and unstable 

for 0 1R > . 

Proof 

Consider the system model (4) and let 

1 2
1 2, , , , A

A

dI dI dTdS dT
s i i t t

dt dt dt dt dt
= = = = = and

dA
a

dt
=⌢ . 

Then, the model equation (4) becomes 

( )

( )
( )

( )
( ) ( )

1 1 1 2 2 2 3 3 4 4 5 5
0 1

1 1 1 2 2 2 3 3 4 4 5 5
1 1 1

2 1 1 2

1 2 3 2

2 3

1 2

(1 ) ,
( )

(1 ) ,
( )

,

,

,

.

A

A

A

A A

A

c I c I c T c T c A
s u S S

N t

c I c I c T c T c A
i u S I

N t

i I a I

t a I a T a T

t a T a T

a I I T T A

β β β β βϕ µ

β β β β β µ δ θ

θ µ δ
µ π

µ δ

δ π µ α

  + + + +
= − − −  

 
  + + + + = − − + + 
  
 = − + +

= + − + +

= − + +

= + + + − +⌢








 (19) 

By applying classical linearization process to equation 

(19), the steady state defined by the Jacobian matrix J , is 

given by 

1 2

1 1

1

2 2

2

. . . .

. . . .

. . . . .

. . . . .

. . . .

A

A

A

s s s s s s

S I I T T A

i i

S I

i i

S I
J

t

T

t

T

a a

S A

∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂
 ∂ ∂ 
 ∂ ∂
 

∂ ∂ =
 ∂
 

∂ 
 ∂
 

∂ 
 ∂ ∂
 

∂ ∂ 

⌢ ⌢

, 

which imply from equation (19) that 

1 1 2 2 3 3 4 4 5 5

1 1 2 2 3 3 4 4 5 5

2

1 3 3

2 4

5

( )

0 0 0 0

0 0 0

0 0 0 0

0

i

i

S S S S S
c c c c c

N N N N N

S S S S S
c c c c c

N N N N N
J

m

a m a

a m

m

µ β λβ λβ λβ λβ λβ

β λβ λβ λβ λβ λβ

θ

δ δ π δ

 − + − − − − − 
 
 
 
 = − 
 −
 

− 
 − 

, (20) 

with the corresponding upper triangular matrix obtained from 

the elementary row-operation for HAFE given by 

1 1 2 2 3 3 4 4 5 5

1 1 1 2 2 3 3 4 4 5 5

1 3 3 4 4 5 5

1 2 1 5 5

1 1 2 5 5

0 ( )

0

0 0 0

0 0 0 0

0 0 0 0 0

T

c c c c c

m c c c c c

W c c c
J

a c

q a a c

µ λβ λβ λβ λβ λβ
λβ λβ λβ λβ λβ

θ θλβ θλβ θλβ
ξ ξ θλβ

θλβ
ζ

°

− − − − − − 
 − − 
 −

=  
− 

 −
  − 

, (21) 

where 
1 2 1 1 1 2 2( )W m m c cλβ θλβ= − − , [ ]1 3 2 1 1 1 2 2 1 3 3( )m m m c c a cξ λβ θλβ θλβ= − − − , 

2 2 1 1 1 3 1 4 4 2 1 1 1 3 1 4 4( ) (1 ) 0m m c a a c m m c a a cξ λβ θλβ λβ θλβ= − + = − + > , 

1 4 3 2 1 1 1 3 1 3 3 2 2 1 1 1 3 1 4 4( ) ( )q m m m m c a a c a m m c a a cλβ θλβ λβ θλβ= − − − − +       , 

1 3 2 1 2 5 5q q q a a cζ θλβ= −  

with 

( )2 1 1 1 4 4 2 1 1 1 2 2 4 4 1 1 2 2( ) ( ) ( )q c c m m c c c c cξ δ λβ λβ λβ θλβ δθλβ λβ λβ = + − − + + 
 

( )2 2 1 1 1 2 2 1 1 3 3 3 3 1 1 2 2( ) ( ) ( )m m c c c c c c cξ λβ θλβ πλβ δλβ δθλβ λβ λβ + − − + + + 
 

and ( )3 1 1 5 1 1 1 5 5 5 5 1 1 2 2( ) ( )q W m m c c c c cξ λβ δλβ δλβ λβ λβ = − − − +   

( )1 2 5 5 1 1 1 1 3 3 3 3 1 1 2 2( ) ( )a a c W m c c c c cθ λβ π λβ δλβ δθλβ λβ λβ − − + + +  . 

Of note, the above quantities are simply the expansions for 

the entries (elements) as contain by the Jacobian matrix (21). 

Form equation (21), we observed from the upper triangular 

matrix that the major diagonal elements ultimately remain the 

eigenvalues of the characteristic equation
0det( ) 0TJ Iλ− = , 

[24]. Thus, 

1λ µ= − , 

2 1 1 1 1 1( ) (1 ) 0m c m Rλ λβ= − − = − − < , 1 1iff R < , 

( )3 2 1 1 1 2 2 2 1 1 2( ) (1 ) 0m m c c m m R Rλ λβ θλβ= − − − = − − − < ,

1 2 1iff R R+ < , 

( )4 3 2 1 1 1 2 2 1 3 3[ ( ) ]m m m c c a cλ ξ λβ θλβ θλβ= − = − − − − , 

3 4 2 3
4 3 2 1 1 2 3

3 4

1 0
m m a a

m m m R R R
m m

λ
  −

= − − − − <   
  

,

3 4 2 3
1 2 3

3 4

1
m m a a

iff R R R
m m

 −
+ + < 

 
, 

5 2 1 3 4 2 3 1 2 3 4( )(1 ) 0m m m m a a R R R Rλ ζ= = − − − − − − < , 

provided 

4

1

1j

j

R

=

<∑  

and 

2
6 2 1 3 4 2 3 3 1 2 3 4 5

3

( ) 1 0
q

m m m m a a q R R R R R
q

λ ζ φ
 

= = − − − − − − − < 
 

, 

where ( )
1 2 5

1 4 1 2 2 3 4 2 3( )( )

a a m

a m a a m m m a a
φ

πθ δ θ θ
=

+ + + −
. 

Therefore, 
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6 1 2 3 4 2 3 0( ) (1 ) 0m m m m a a q Rλ = − − − < , 0 1iff R < , 

noting that 

4
2

5 0
31

j

j

q
R R R

q
φ

=

+ =∑ . 

Therefore, we have shown that the eigenvalues are all 

negative. Hence, we prove that the HAFE of system (4) is 

LAS for all 0 1R < .          

Next, if infection persists in the population, then endemic 

equilibrium point is bound to exist. This, we have to verify in 

the following subsection. 

4.4. Existence and Stability of HIV/AIDS Endemic 

Equilibrium (Haee) Point 

Obviously, with the presence of the disease in the 

population i.e. 1 20, 0, 0, 0, 0AI I T T A≠ ≠ ≠ ≠ ≠ , then the 

model equation (4) has an equilibrium point known as 

endemic equilibrium point. It is the existence of this 

equilibrium point we shall consider hereof. 

4.4.1. Existence of HAEE Point 

Assume * * * ** * *
1 2( , ), , , ,AH S I I T T A= be the HIV/AIDS 

endemic equilibrium of the system (4). If we equate equation 

(6) to zero and using the result of equation (11), we see that 

the differential sum of the system model (4) at HAEE ( *H ) 

is derived as, [22]  

0 0N Aϕ µ α− − = . 

This implies that at HAEE, the differential sum of 

population understudy is obtain as 
* *

0N Aµ ϕ α= − . 

Or 

*
* 0 A

N
ϕ α

µ
−

= ,                                  (22) 

which corresponds to the fact that at equilibrium,
* 0iβ = . If

* 0iβ > , then there exists disease endemicity and system (4) 

can be define in terms of disease control reproduction 

number 0R of equation (15) as: 

( )* *
2 01 0i i Rβ β ϕ+ − = , 

from which we obtain 

* 0

2

1
i

Rβ
ϕ

−
= .                                  (23) 

The quantity 2ϕ in equation (23) is defined using equation 

(12) as: 

4 1 1 2
2 1

1 1 2 1 2 3 4 2 3 1 2 3 4 2 3

1

( ) ( )

m a a a

m m m m m m m a a m m m m a a

θ θθϕ ϕ= + + + +
− −

, (24) 

with 

4 1 1 2 2 3 4 2 3
1

3 4 2 3 1 2 5

( )( )

( )

m a a a m m m a a

m m a a m m m

πθ δθ δ θϕ + + + −
=

−
, 

noting that 3 4 2 3 2 3( ) ( )m m a a a aµ δ µ δ− = + + + + . 

Thus, substituting the value of 
*
iβ  in (11), defines the 

HIV/AIDS endemic equilibrium. Clearly, equation (23) 

further affirm the definition of the system force of infection 

in terms of the model reproduction number. Hence, the 

following result holds. 

Theorem 4 The system (4) exhibits a HIV/AIDS endemic 

equilibrium in the population if and only if 0 1R > . 

4.4.2. Local Stability of HAEE 

Using existing approach as obtain in local stability analysis 

of HAFE, we transformed the Jacobian matrix (20) with 

upper triangular matrix given as: 

1 1 1 2 2 3 3 4 4 5 5

2 2 2 3 3 4 4 5 5

3 3 3 4 4
5 5

3 3 1
4

5 51 4 4

1 2
5

5 5

6

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ0

ˆ ˆ0
ˆ

0 0 0
ˆˆ

0 0 0 0
ˆ

0 0 0 0 0

T

X c c c c c

X c c c c

X c c
c

a X aJ
X

ca c

a a
X

c

X

λβ ψ λβ ψ λβ ψ λβ ψ λβ ψ
µλβ ψ µλβ ψ µλβ ψ µλβ ψ

µθλ
θ µθλβ ψ µθλβ ψ

β ψ
µθ

λβ ψµθ λβ ψ
µθ

λβ ψ

− − − − − −
 − − − − −
 −

− − −

 + −=   − − 

 

−
−

−










 
 
 
 
 
 



, (25) 

where ˆ
S

N
ψ =  and 1,....6iX =  defined as follows: 

1 mX µ β= + , ( )( )2 1 1 1 1
ˆ ˆ

m mX c cµ β λβ ω β λβ ω= + + , 

3 2 2 2 2
ˆX m X cµθλβ ω= − , 4 3 3 1 3 3

ˆX m X a cµθ λβ ω= − , 

( )5 4 4 2 3 3 1 4 4
ˆX m X a a X a cµθ λβ ω= − + , 

( )( )6 2 1 5 5 2 4 1 3 3 1 4 4
ˆ ˆX a a c d X d a X a cµθλβ ω µθ λβ ω= − + +  

( )( ) ( )4 4 2 3 3 1 4 4 3 4 1 1 5 5
ˆ ˆm X a a X a c d X d a cµθ λβ ω µθ λβ ω+ + + − , 

with 

( ) ( )1 3 2 3 3 5 5 2 2 2
ˆ ˆ ˆd X X c c X cπ δµλβ ω δµλβ ω δµλβ ω= + + +

,
 

( ) ( )2 3 2 4 4 4 4 2 2 2
ˆ ˆ ˆd X X c c X cµλβ ω δµθλβ ω µλβ ω= + + +  

and 

( ) ( )3 5 5 2 2 2 3 3 2 5 5
ˆ ˆ ˆd c X c X m X cδµθλβ ω µλβ ω µλβ ω= − + + − . 

Therefore, we observed from the upper triangular matrix 

that all the diagonal elements ultimately remain the 

eigenvalues of the matrix (25) with 1,...,6iλ = defined as follows: 

( ) 0
1 1

2

1
0i

R
Xλ µ β µ

ϕ
 −

= − = − + = − + < 
 

, 0 1iff R > , 
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( ) ( )0
2 2 1 1 1

2

1
ˆ ˆ1 2 1 0

R
X m R Rλ µ ω ω

ϕ
  − = − = − − + − <  
   

, 

0 1 1iff R R> > , 

( )( )

( )

1 2

3 3 1 2 0
1

2

ˆ 1

01
ˆ2 1

R R

X m m R
R

µ ω
λ

ω
ϕ

 − −
  = − = − <  −

+ −  
   

, 

0 1 2 1iff R R R> > > , 

( )0
1

2

4 4 1 2 3

3 4 2 3
1 2 3

3 4

1
ˆ2 1

0

ˆ 1

R
R

X m m m
m m a a

R R R
m m

ω
ϕ

λ
µ ω

  −
−  

   = − = − < 
   − + − − −           

, 

0 1 2 3 1iff R R R R> > > > , 

( )
( )

( )

0
1

25 5 1 2 3 4 2 3

1 2 3 4

1
ˆ2 1

0

ˆ 1

R
R

X m m m m a a

R R R R

ω
ϕλ

µ ω

  −
−   = − = − − <  

  + − − − −   

, 

0 1 2 3 4 1iff R R R R R> > > > >  

and 

6 6 0Xλ = − < , 6 0iff R > . 

Thus, since all the eigenvalues are negative, we conclude 

as stated in the theorem below: 

Theorem 5 The HIV/AIDS endemic equilibrium of the 

system (4) is locally asymptotically stable provided that

0 1R > and unstable otherwise. 

4.5. Global Stability Analysis 

In this sub-section, we identify some basic concepts and 

notations necessary for the discussion of the system global 

stability, which include: HIV/AIDS free equilibrium (HAFE) 

and the global stability of the HIV/AIDS endemic 

equilibrium (HAEE) under ART abuse for 0α =  

4.5.1. Identification of Basic Concepts and Notations 

In order to show that system endemic equilibrium is 

globally asymptotically stable, it becomes necessary to 

introduce some basic concepts and notations aimed at 

facilitating our global stability analysis. 

Notation 1 

We write a matrix 0( 0)A > < , if A  is symmetric positive 

definite (or symmetric negative definite). Then, the following 

fundamental result on matrix stability holds. 

Lemma 1 Let A be a n n× real matrix. Then all the 

eigenvalues of A  have negative (positive) real parts if and 

only if there exists a matrix 0H > such that

0( 0)T THA A H+ < > . 

Lemma 2 Consider a disease model system written in the 

form: 

1
1 2

2
1 2

( , )

( , )

dX
F X X

dt

dX
G X X

dt

 =

 =


                        (26) 

with 1 2( , ) 0G X X = , where 1
mX ∈ℜ denotes (by its 

components) the uninfected populations and 2
nX ∈ℜ

denotes (by its components) the infectious population; 

( )0 1 ,0EX X= denotes the HAEE of the system. Also, assume 

the following conditions: 

(C1) For 1
1 1( ,0),

EdX
F X X

dt
=  is globally asymptotically 

stable, 

(C2) 1 2 2 1 2
ˆ( , ) ( , )G X X AX G X X= − with 1 2

ˆ ( , ) 0G X X ≥
for 1 2( , )X X ∈Ω , where the Jacobian matrix 

1
2

( ,0)
EG

A X
X

∂=
∂

has all non-negative off-diagonal elements 

and X is the region where the model makes biological sense. 

Then, the HAEE, ( )0 1 ,0EX X= is globally asymptotically 

stable provided that 0 1R < . 

Lemma 3 Let 
11 12

21 22

d d
D

d d
= be a 2 2× matrix. Then, D is 

stable iff 11 220, 0d d< < and 11 22 12 21det( ) 0D d d d d= − > . 

The above lemma 3 is explained by the following 

definition for higher dimension matrix. 

Definition 1 A non-singular n n×  matrix A  is diagonally 

stable (or positive stable) if there exists a positive diagonal 

n n×  matrix M  such that 0T TMA A M+ > . 

4.5.2. Global Stability of HAFE 

We prove the system global stability for HAFE by 

invoking existing theorem and its result, [30]. 

Theorem 6 The fixed point
0 0 ,0,0,0,0,0H

ϕ
µ

 
=  
 

 is global 

asymptotically stable equilibrium of system (4) provided that

0 1R < and the assumption of equation (26) satisfied. 

Proof 

Applying lemma 3 to model (4), then we consider 

1

2

1 2,

A

I

I

X S X T

T

A

 
 
 
 = =
 
 
  

. 

When 1 2 0AI I T T A= = = = = , the uninfected subsystem 

(i.e. the equation S ) becomes 
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0

dS
S

dt
ϕ µ= − ,                            (27) 

which has the solution 

0 0( ) (0)
t

S t S e
µϕ ϕ

µ µ
− 

≤ + − 
 

.                   (28) 

Clearly, 0( )S t
ϕ
µ

→  as t →∞ regardless of the initial value

(0)S . Therefore, it shows that condition C1 (of lemma 2) 

holds for our model. 

Next, the right-hand side of the infectious subsystem (i.e. 

equations for 1 2, , , AI I T T and A ) can be written as: 

01
1 1 1 1

0 01 1
2 2 2 3 3

0 01 1
4 4 5 5

2
1 2

0

1 1 2

1 2 3 2

2 3

1 2

1
( )

1 1

1 1

( , )

( )

( )

( )

( )

A

i i

A

A

A

u
I c I

N

u u
c I c T

N N

u u
c T c A

N NdX
G X X

dt
S

I a I

a I a T a T

a T a T

I I T T A

ϕδ µ θ β
µ

ϕ ϕβ β
µ µ

ϕ ϕβ β
µ µ

ϕβ β
µ

θ δ µ
µ π

δ µ
δ δ δ π µ α

− − + + + 
 
 − −
+ +

 − −+ +
= =

− +

 − + +


+ − + +
 − + +


+ + + − + 
















, 

0
2 3 4 5 1

1
2

1

1 2 3

2 3

( )

0( ) 0 0 0

00 ( ) 0

00 0 ( ) 0

0( )

i i

A

SI

I
a

T
a a a

T
a a

A

δ µ θ ϕβ βω ω ω ω
ω µ

θ δ µ
µ π

δ µ
δ δ π δ µ α

− + +   −    +     
    − + +
 = −   − + +     
    − + +      − +      

, 

where 
01

1 1 1

1 u
c

N

ϕω β
µ

 −
=  

 
, 

01
2 2 2

1 u
c

N

ϕω β
µ

 −
=  

 
, 

01
3 3 3

1 u
c

N

ϕω β
µ

 −
=  

 
, 

01
4 4 4

1 u
c

N

ϕω β
µ

 −
=  

 
and

01
5 5 5

1 u
c

N

ϕω β
µ

 −
=  

 
. 

This implies that 

2
2 1 2

ˆ ( , )
dX

AX G X X
dt

= − , 

with 

0 0 0 01 1 1 1
2 2 3 3 4 4 5 501

1 1

1

1 2 3

2 3

( )
1 1 1 1

1

( ) 0 0 0

0 ( ) 0

0 0 ( ) 0

( )

u u u u
c c c cu

c N N N N
N

A a

a a a

a a

δ µ θ
ϕ ϕ ϕ ϕβ β β βϕβ µ µ µ µ

µ
θ δ µ

µ π
δ µ

δ δ π δ µ α

− + + 
       − − − − 

 −         +             
= − + + 
 − + +
 
 − + +
 − + 

 

and 

0

1 2

0
ˆ ( , )

0

0

0

i iS

G X X

ϕβ β
µ

 − 
 
 

=  
 
 
 
  

. 

Then, it is obvious that 0S
ϕ
µ

≤ , hence it is clear that

( , ) 0G X Y ≥ for all
6( , )X Y +∈ℜ . We also notice that the 

matrix A is an M - matrix, since its off-diagonal elements are 

non-negative. Hence, this proves the global stability of the 

HAFE
0( )H . 

4.5.3. Global Stability of the HAEE 

Notably, the study of the endemic global stability is not 

only mathematically important, but also essential in 

predicting the evolution of the disease on the long run 

leading to prevention and intervention strategies. Achieving 

this goal, a number of methods in the range of monotone 

dynamical systems, the geometric approach and Lyapunov 

functions are used in conducting the global stability analysis 

of epidemic model, [22]. Here, to completely satisfy our aim 

of proving that the system HAEE for 0α = is globally 
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asymptotically stable, i.e., 0 1R > , we shall adopt the later 

method – Lyapunov function with the incorporation of 

LaSalle’s invariant principle, [29, 31].  

In this regard, the following definitions and theorems 

(without proofs) are necessary: 

Definition 2 (Lyapunov function) 

A function ( )V x  on a region Dℜ  of state space and 

containing an equilibrium point *X  is called a Lyapunov 

function, if is satisfies the following conditions: 

i. ( )V x  is continuous and has continuous first order 

partial derivatives, 

ii. ( )V x  has a unique minimum at *X  with respect to all 

other points in the region Dℜ , 

iii. the function ( ( )) ( ) ( )V x t VV x f x′ =  satisfies

( ( )) 0V x t′ ≤ for all ( ) Dx t ∈ℜ  [23, 32]. 

Theorem 7 If there exists a Lyapunov function for an 

equilibrium point *X , then *X is a stable equilibrium point. 

If further, the function ( ( )) 0V x t′ ≤ for every point

( ) Dx t ∈ℜ , then the stability is asymptotic (Lyapunov, 1992). 

Theorem 8 Let ( )x f x′ =  be autonomous system. Suppose 

there is a neighborhood satisfies X  of 0 and continuously 

differentiable (time-independent) positive function

:V X → ℜ , whose orbital derivative V ′ is negative semi-

definite. Letτ  be the union of all complete orbits contained 

in { }\ ( ) 0x X V x′∈ = . Then, there is a neighborhood U  of 

0 such that for every 0 0( )x xω τ∈ ≤  [31]. 

Now, let us recall our basic model (4) in its biological 

feasible domain 

( ) 6 0
1 2 1 2, , , , , : ( ) ( ) ( ) ( ) ( ) ( )D A AS I I T T A N S t I t I t T t T t A t

ϕ
µ+

 
ℜ = ∈ℜ = + + + + + ≤ 

 
, 

which is clearly a positively invariant set in
6ℜ . Furthermore, since at the point 0α = , we see that * 0N N

ϕ
µ

= =  as t →∞ , 

then we have the following limiting system: 

( )

( ) ( )

( )

( )

( )

( )

1
0 1 1 1 2 2 2 3 3 4 4 5 5*

1 1
1 1 1 2 2 2 3 3 4 4 5 5 1*

2
1 1 2

1 2 3 2

2 3

1 2

1
,

1
,

,

,

,

.

A

A

A

A
A

A

udS
c I c I c T c T c A S S

dt N

dI u
c I c I c T c T c A S I

dt N

dI
I a I

dt

dT
a I a T a T

dt

dT
a T a T

dt

dA
I I T T A

dt

ϕ β β β β β µ

β β β β β µ δ θ

θ µ δ

µ π

µ δ

δ π µ

− = − + + + + −


− = + + + + − + +

 = − + +

 = + − + +


= − + +

= + + + −









                          (29) 

To prove global stability result, we propose the following Lyapunov function 

* 2 * 2 * 2 * 2
1 2 1 1 3 2 2 4( ) ( ) ( ) ( )V w S S w I I w I I w T T= − + − + − + − * 2 * 2

5 6( ) ( )A Aw T T w A A+ − + − , 

or 

6
* 2

1

( )i i i

i

V w N N

=

= −∑ .                                                                           (30) 

where ,...,6 0i iw = >  are positive Lyapunov constants, iN is the population of thi compartment,
*

iN is the equilibrium of iN  and V , 

a continuous and differentiable function. Computing the time derivative of V along the trajectories of the system (4), we 

obtain: 

* * * *
1 2 1 1 1 3 2 2 2 42 ( ) 2 ( ) 2 ( ) 2 ( )V w S S S w I I I w I I I w T T T= − + − + − + −ɺɺ ɺ ɺ ɺ * *

5 62 ( ) 2 ( )A A Aw T T T w A A A+ − + − ɺɺ .   (31) 

Substituting the derivative of equation (29) into equation (31), we have, 
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* * * * * *
1 1 1 1 2 2 2 2 3 3* *1

1 * * * * *
4 4 5 5

( ) ( ) ( )1
2 ( ) ( )

( ) ( )A A

c I S I S c I S I S c TS T Su
V w S S S S

N c T S T S c AS A S

β β β
µ

β β

  − − − − − −−
  = − − −

  − − − −  

ɺ  

* * * * * *
1 1 1 1 2 2 2 2 3 31

* * * * * *
2 1 1 4 4 5 5

*
1 1

( ) ( ) ( )1

2 ( ) ( ) ( )

( )( )

A A

c I S I S c I S I S c TS T Su

w I I N c T S T S c AS A S

SI I

β β β

β β

µ δ θ

  − − − − − −−
  

  + − − − − − 
 
 − + + − 

 

* * *
3 2 2 1 1 1 2 22 ( ) ( ) ( )( )w I I I I a I Iθ µ δ + − − − + + −   

* * * *
4 1 2 2 3 22 ( ) ( ) ( ) ( )( )A Aw T T a I I a T T a T Tµ π + − − + − − + + −   

* * *
5 2 32 ( ) ( ) ( )( )A A A Aw T T a T T a T Tµ δ + − − − + + −   

* * * * * *
6 1 1 2 22 ( ) ( ) ( ) ( ) ( ) ( )A Aw A A I I I I T T T T A Aδ δ δ π µ + − − + − + − + − − −  . 

Then, we add the expression
* * * *

1 1 1 2 2 2 3 3 4 4, , , Ac I S c I S c TS c T Sβ β β β and 
*

5 5c ASβ into the first and second square brackets to 

obtain the result 

* * * * * *
1 1 1 1 1 1 1 1 1 1 2 2 2 2

* * * * * *
2 2 2 2 2 2 3 3 3 3 3 31

* * * * * *
1 4 4 4 4 4 4

* * * *
5 5 5 5 5 5

( ) ( )

( )1

2 ( ) ( )

( )

(

A A A A

c I S I S c I S c I S c I S I S
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Then, to discuss the global asymptotic stability of Q , we 

have to show that the matrixY of equation (34) is Lyapunov 

stable or Y−  is diagonal stable. Thus, the following lemmas 

and theorem completely absorbed the required proof. 

Lemma 4 For the matrixY defined by equation (34), let us 

consider D Y= − , and then D  is diagonal stable. 

Lemma 5 For the matrix Y defined by equation (34), the 

matrix 1E Y −= − is diagonal stable. 

We prove lemmas 4 and 5 using the following lemma: 

Lemma 6 Let [ ]ijD d= be a non-singular n n×  matrix 

( 2)n ≥ and 1( ,......, )nM diag m m= be a positive diagonal 

n n×  matrix. Let 1E D−= . Then, if 0nnd > , 

� �( ) 0TME ME+ > and � �( ) 0TMD MD+ > , it is possible to 

choose 0nm > such that� 0T TMD D M+ > . 

Hence, the following theorem holds. 

Theorem 9 The matrix Y defined by equation (34) is 

Lyapunov stable. 

Proof 

Based on lemmas 5 and 6, and since 66 0Y− > i.e.,

( ) 0µ− − > , there exists a positive diagonal matrix 

( ) ( ) 0T TZ Y Y Z− + − > . Thus, 0T TZY Y Z+ < .    

Therefore, using the LaSalle’s invariant principle, the 

proof for the global stability of the system endemic 

equilibrium follows from the next theorem. 

Theorem 10 The endemic equilibrium 

( )* * * * * * *
1 2, , , , ,AH S I I T T A= of model (4) is globally 

asymptotically stable in 0H if 0 1R > and unstable otherwise. 

Proof 

Based on lemmas 5, 6 and theorem 9, we obtain 0
dV

dt
<  

when 0 *H H≠ and 0H is not on S axis− (a set of measure 

zero Therefore, the largest invariant set in 0H such that

0
dV

dt
= is the singleton *H , which is our endemic 

equilibrium point. Then, by LaSalle’s invariant principle 

(Theorem 8), it follows that *H (endemic equilibrium of the 

system model (4)) is globally asymptotically stable (GAS) in 

Dℜ  if 0 *H H≠ . This complete the proof. □  

Now, having shown that our model state variables are all non-

negative with known stability behavioral pattern, it becomes 

paramount to numerically illustrate our theoretical predictions. 

5. Numerical Simulations and Results 

We devote this section to the simulations of derived system 

model and some key parameter variables to illustrate the 

ingenuity of our theoretical examination of system set goals. For 

simplicity and to completely exhaust insight into the intense of 

the study, the numerical simulations is considered in stepwise 

sequence for the derived model equations. That is, we first 

demonstrate our extended basic model (4) when both control 

functions are at zeros (i.e. 1 1 30, ( ) 0u a aη= = + = ) and then the 

stability dynamics following onset application of control 

functions i.e. 1 0, 0u η> > . This is followed with the simulation 

of the system reproduction numbers under off-treatment 

scenario, i.e. 0 0(1)R R= and when onset-treatment was observed 

i.e., 0 0(2)R R= . The essence is to explicitly define the impact of 

application of global stability theory on the role of ART abuse in 

the treatment dynamics of HIV/AIDS infection. Notably, the 

entire simulations are computed using an in-built rkfixed 

function of Runge-Kutta of order of precision 4 in a Mathcad 

surface. To this effect, we generate system data from verified 

models as depicted by (Table 1) below, [33-37]. 

Table 1. Variables, parameters and their values for model (4). 

Variables 
Dependent State variables 

Initial Values Units 
Description 

( )S t  Susceptible population 0.5 

3/cells mm  
1( )I t  Unaware infectives 0.1 

2 ( )I t  Aware infectives but not receiving treatment 0.1 

( )T t  Aware infectives receiving treatment 0.1 
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Variables 
Dependent State variables 

Initial Values Units 
Description 

( )AT t  Aware infectives under ART abuse 0.1 

( )A t  Full-blown AIDS population 0.1 3 1mm d −  

 
Parameters and Constants 

 
Description 

0ϕ  Recruitment rate (population source) 0.5 3 1mm d −  

1,...,5iβ =  Probability of interaction by susceptible with various infectives 0.32; 0.27; 0.175; 0.125; 0.05 3 1 1mm vir d− −  

1,...,5ic =  Sexual contact by susceptible with various infectives 0.5; 0.4; 0.3; 0.2; 0.1 

1day−
 λ  Successful condom use 1 [0,1]u ∈  

θ  Rate at which the unaware becomes aware 0.04 

π  Progression rate of aware infective to AIDS 0.028 
3 1mm d −  δ  Rate at which infectives develops AIDS  0.5 

α  AIDS induce death rate 0.3 
µ  Natural death rate 0.002 

1day−
 

1a  Rate of ART receive by ( )T t  0.45 

2a  Rate of abuse of ART by ( )AT t  0.37 

3a  Resumption rate of ART by ( )AT t  0.14 

Note: Table 1, is a reflection of verified data modified to accommodate the present study [33-37]. 

5.1. Simulation of System Basic Model (Without Control 

Functions) 

We recall that our goal is to investigate the application of 

global stability analysis of the role of ART abuse on multi-

treatment functions (condom use and ART). That is, we 

simulate as leverage to system set goal, the system derived 

basic model equation (4) in a completely off-treatment 

scenario (i.e., 1 1 30, 0u a a= = = ). In reality, the essence of 

this simulation is to allow us ascertain the magnitude of 

HIV/AIDS infection transmission dynamics at off-treatment 

and when compared to the accessibility of control functions. 

Therefore, invoking basic model (4), for all 

1 1 30, 0u a a= = = and recalling (Table 1), we simulate the six 

subgroups from which the following results are derived as 

depicted by Figure 2(a-f) below: 

 

a) Dynamics of susceptible population under off-treatment 

3 1
0 0.5mm dϕ −=  

 

b) Dynamics of unaware infective under off-treatment
10.02dµ −=  

 

c) Dynamics of aware infective not ready for treatment under off-treatment

10.02dµ −=  

 

d) Dynamics of aware infective on treatment under off-treatment

10.02dµ −=  

 

e) Dynamics of aware infective with ART abuse under off-treatment

10.02dµ −=   



 Pure and Applied Mathematics Journal 2021; 10(1): 9-31 27 

 

 

f) Dynamics of full-blown AIDS infection under off-treatment
3 10.3mm dα −=  

Figure 2. (a-f). Schematic representation of off-treatment of HIV/AIDS 

dynamics under of ART abuse scenario with 0(1) 0.343R =
.
 

Obviously, Figure 2(a-f) represents the dynamical flow of 

HIV/AIDS transmission with ART abuse and in particular 

under off-treatment scenario. Notably, Figure 2(a) depicts an 

undulating declination of the susceptible population with 

value of 0.5 ( ) 0.305S t≤ ≤ 3/cells mm at 30ft ≤ months. 

Moreso, this decline in the susceptible population is seen in 

the upsurge of the unaware infected population attaining 

stability with value range of 10.1 ( ) 0.948I t≤ ≤ 3/cells mm at

30ft ≤ months – see Figure 2(b). Figure 2(c) represent the 

screened infective that become aware of their HIV status, 

which exhibited some significant behavioral attitude that 

resulted to early stability after initial decline in population 

with varying range of 20.1 ( ) 0.053I t≤ ≤ 3/cells mm at 

3ft ≤ months and then to 2 ( ) 0.07I t ≤  for all 3 30ft≤ ≤
months. 

From Figures 2(d & e), we see the aware infectives that are 

on treatment compartments but have no access to treatment 

(i.e. off-treatment) exhibiting sequential near population 

extinctions leaving their varying population at
70.1 ( ) 0.581 10T t −≤ ≤ × for all 12 30ft≤ ≤  and

60.1 ( ) 0.255 10AT t −≤ ≤ × for all 16 30ft≤ ≤ months 

respectively. Finally, the depletion in the susceptible 

population and the increasing population of the unaware 

infectives is seen to transmute rapidly to full-blown AIDS as 

vindicated by Figure 2(f) with value at 0.1 ( ) 1.483A t≤ ≤ for 

all 30ft ≤ months. 

5.2. Simulation of System Endemic Equilibria (with  

Onset-treatment Control Functions) 

To improve on the outcome of sub-section 5.1, the study 

introduced two control functions (condom use and ART) with

1 1 30.5, 0.45, 0.14u a a= = = , allowing other parameters as in 

(Table 1) unchanged. Thus, we verify the model by 

simulating the system endemic equilibria under bilinear 

control functions with
0 0(2) 0.271R R= =  as follows: 

 

a) Dynamics of susceptible population under initial treatment with

3 1
0 0.5mm dϕ −=  

 

b) Dynamics of unaware infective under initial treatment with 

3 1 1
1 0.32mm vir dβ − −=  

 

c) Dynamics of aware infective not ready for treatment but under initial 

treatment with 
3 1 1

2 0.27mm vir dβ − −=
 

 

 d) Dynamics of aware infective on treatment under initial treatment with 

3 1 1
3 0.175mm vir dβ − −=  

 

e) Dynamics of aware infective with ART abuse under initial treatment with 

3 1 1
4 0.125mm vir dβ − −=
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f) Dynamics of full-blown AIDS infection under initial treatment with 

3 1 1
5 0.05mm vir dβ − −=  

Figure 3. (a-f). Schematic representation of HIV/AIDS endemic model with  

onset-treatment under ART abuse scenario and 0(2) 0.271R =  

Figure. 3(a-f) above portrait the administration of onset-

treatment in the dynamic flow of HIV/AIDS infection under 

ART abuse. Precisely, from Figure 3(a), we observe initial 

spontaneous increase in the susceptible population with value

0.5 ( ) 1.203S t≤ ≤ 3/cells mm for 3ft ≤ months and then 

decline to initial value of 
3( ) 0.5 /S t cells mm≤  at 8ft ≤

months. The susceptible population then attain gradual 

stability of ( ) 0.62S t ≤ 3/cells mm at 12 30ft≤ ≤ months. 

Notably, the undulating curve of Figure 3(a) is reciprocated 

by the rapid initial inclination of infection for the unaware 

infectives with peak value at 10.1 ( ) 1.054I t≤ ≤ 3/cells mm  

for all 7ft ≤ months. The dynamics of this subgroup exhibit 

slight decline with relative stability value of 1( ) 0.85I t ≤  

3/cells mm for all 10 30ft≤ ≤ months – see Figure 3(b). The 

aware infection not ready for treatment depicted by Figure 

3(c) exhibit initial decline in the range of 20.1 ( ) 0.034I t≤ ≤
3/cells mm at 3ft ≤ months, only to surge with relative 

stability value 2 ( ) 0.62I t ≤  
3/cells mm for all 10 30ft≤ ≤

months. 

Interestingly, the compartment designating the aware 

infective under onset-treatment as depicted by Figure 3(d), 

shows tremendous decline in the rate of aware infectives with 

value 
38.186 10 ( ) 0.1T t−× ≤ ≤  

3/cells mm for all 10ft ≤
months and thereafter attain gradual stability all through

12 30ft≤ ≤ months. For the aware infectives on initial 

onset-treatment with drug abuse tendency as depicted by 

Figure 3(e), the curve shows similar dynamics to that of 

Figure 3(d) but with intense decline through 10ft ≤ following 

later resumption of treatment with diminishing range of 
34.598 10 ( ) 0.1AT t−× ≤ ≤  

3/cells mm from compartment

( )AT t  to compartment ( )T t for all 22 30ft≤ ≤ months. On 

the other hand, the manifestation of the ART abuse is seen by 

the relatively persistence of the virus in the incline rate of 

full-blown AIDS population with stability trend of 

0.85 ( ) 0.966A t≤ ≤ 3/cells mm for all 10 30ft≤ ≤ months. 

Thus, from the simulations of model (4) at off-treatment 

and at endemic stability equilibria for onset-treatment 

dynamics, it is obviously that the respective rate of infection 

transmission is a function of the system reproduction 

numbers. Therefore, our study will be biologically more 

meaningful, if the numerical simulations of these respective 

reproduction numbers are analyzed. 

5.3. Numerical Simulations of System Reproduction 

Numbers ( 0(1) 0(2),R R ) 

Of note, in subsection 4.2, we had defined and evaluated 

the system reproduction number for both the off-treatment 

and onset-treatment scenarios. To further ascertain the impact 

and relationship of these varying reproduction number to our 

study, we simulate the reproduction number for off-treatment 

0(1)R and the reproduction number for onset-treatment 0(2)R as 

seen below:
 

 

a) Basic reproduction number for off-treatment with 1 20, 0W W= =  

 

b) Basic reproduction number for onset-treatment with 1 20, 0W W= =  

Figure 4. (a & b). Comparison of system reproduction numbers for off-

treatment and onset-treatment scenarios. 

From Figure 4(a & b), it is explicitly obvious that at off-

treatment scenario, the reproduction number with initial 

value 0 0(1) 0.343R R= = is seen to snowball to 0(1) 10.298R = , 

through 30ft ≤ months – see Figure 4(a). On the other hand, 

following the initiation of multiple control functions, it is 

observe that the reproduction number ( 0 0(2) 0.271R R= = ) 

for the system (4) with accessibility to treatment but 

truncated following ART abuse, incline to value 

0(2) 7.806R = for all 30ft ≤ months – see Figure 4(b). The 

implication were that under off-treatment scenario, the spread 

of the virus is bound to escalate to an endemic proportion as 

to when compared to the situation where infection could be 

within controllable proportion following accessibility of 
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control functions though truncated by abuse of therapy. 

6. Discussion of Results 

In this study, two compactible non-linear models have 

been extended and analyzed to study the role of antiretroviral 

therapy (ART) abuse for the treatment of HIV/AIDS 

epidemic, [21, 22]. That is, the present study sought to 

determine the mathematical importance in predicting the 

evolution of HIV/AIDS, which would lead to prevention and 

intervention strategy in the presence of ART abuse. 

Of note, the main objective of the study is the application 

of global stability theory for the assessment of the role of 

ART abuse for the treatment of HIV/AIDS epidemic. 

Moreso, in addition to existing assumptions of motivating 

factors the main assumptions of the present study was the re-

classification and incorporation of the aware infectives not 

ready to receive ART and those that are aware but with 

truncated (incoherent) treatment schedule. Also, it was 

assumed that the resumption rate for the use of ART is less 

compared to those that use ART and stop completely (abuse) 

the therapy (i.e. 3 1a a< ). 

From the material and methods adopted for this study, the 

entire investigation involved quantitative formulation of 

untreated 6-Dimensional ODE model consisting of 

interaction between susceptible, unaware infective, aware 

infectives not on treatment, aware infectives on treatment 

schedule, aware infectives with ART abuse and the full-

blown AIDS population. The mathematical well-posedness of 

the basic model was investigated and existence of model 

equilibria established. Furthermore, quantitative analyzes of 

model was extended by using the next generation operator 

approach to compute the system reproduction number, which 

was defined in terms of off-treatment 0(1)R and reproduction 

number for onset-treatment denoted by 0(2)R . It is founded 

that the model has two equilibria: HIV/AIDS free 

equilibrium (HAFE), which was locally asymptotically stable 

whenever 0 1R <  and unstable whenever 0 1R > , resulting to 

endemic equilibrium (HAEE). Global stability analysis of 

model (4) was determined using classical method of 

Lyapunov function in conjunction with the LaSalle’s 

invariant principle. It was also established noting that if the 

basic reproduction number 0 1R > , the unique endemic 

equilibrium is globally asymptotically stable. 

In line with study set goal, a number of numerical 

simulations were performed. First, the simulation was 

considered for an off-treatment scenario with infectives and 

full-blown AIDS population inclined to an alarming 

proportion as evident by the near population extinction of the 

susceptible. An investigation that agrees with those of 

existing models for untreated HIV infection transmission 

dynamics, [36, 38]. Furthermore, the model was simulated 

following the application of onset-treatment devoid of 

optimal control approach with which the results clearly 

showed some significant departure when compared with 

those of off-treatment situation. That is, though infection was 

not completely eliminated, there was considerable reduction 

in the level and spread of the infection. This low-moderate 

outcome can be attributed to the significant abuse of ART by 

the aware infective that exhibited incoherent application of 

control functions. None-the-less, the present result is rather 

an improvement against system motivating models, where 

abuse of ART were not identified and given the desired 

attention [21, 22]. Notably, the severity of virions spread as 

indicated by aware infectives with ART abuse under off-

treatment was rapid and high, reducing the population to 
60.1 ( ) 1.255 10AT t −≤ ≤ × 3/cells mm when compared to the 

rate of infection proportion under onset application of control 

functions with 
30.1 ( ) 4.598 10AT t −≤ ≤ × 3/cells mm . That is, 

under off-treatment, we observed near population extinction 

for ( )AT t . The corresponding susceptible population for these 

two simulations stood at 0.5 ( ) 0.35S t≤ ≤ 3/cells mm

(decline in population) for off-treatment as against the value 

of 0.5 ( ) 1.203S t≤ ≤ 3/cells mm for the onset-treatment 

(relatively inclined population). 

Furthermore, the varying outcomes from off-treatment and 

onset-treatment scenarios was affirmed by the simulations of 

the system reproduction numbers for off-treatment, which 

stood at 0(1) 0.343 1R = < and for onset-treatment computed 

as 0(2) 0.271 1R = < . The implication are that the disease-free 

equilibrium for our model is locally asymptotically stable 

(LAS) with low infection transmission rate for onset-

treatment as against high infection transmission rate when 

compared to off-treatment schedule. In comparative terms, 

the present results in relation to those of our motivating 

models proved that our control does behave somewhat 

differently from drug used to control systems not explicitly 

modeling the role ART abuse, [21, 22]. 

7. Conclusion 

Motivated by unaccounted consequential role of ART 

abuse in the transmission and treatment of HIV/AIDS 

epidemic, the present study have been formulated to 

explicitly access the mathematical modeling of the role of 

ART abuse for the treatment of HIV/AIDS epidemic using 

global stability analysis. Giving an insight to the study, a 6-

dimenional deterministic non-linear mathematical model was 

derived and analyzed quantitatively. 

With the incorporation of three infectious compartments to 

those of study motivating models, the study material and 

methods was quantitatively explored following the derivation 

of the system basic model and the system reproduction 

number for off/on treatment schedules, which was 

analytically investigated using next generation matrix 

approach. Furthermore, using the linearization process, we 

investigated the local stability conditions for HAFE and 

established the existence HAEE provided 0 1R > . Moreso, 

classical Lyapunov function in conjunction with LaSalle’s 

invariant principle was explored for the analytical 

investigation of the system global stability conditions in 

relation to its global asymptotic endemic equilibrium. The 
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study then conducted numerical simulations sequel to derived 

model equations and key parameter variables to numerically 

investigate the validity of the application of global stability 

conditions. Discussion following simulated results were 

exhaustively examined. Results showed that the system 

reproduction number, which defined the varying rate of 

infection transmission was determined for both off/on-

treatment. Clearly, 0(1)R  depicting off-treatment though less 

than 1, was relatively higher when compared to reproduction 

number at onset-treatment schedule 0(2)R . Notably, the onset-

treatment reproduction number for the present investigation 

( 0 0.271 1R = < ), was by far an improvement to the 

reproduction number computed by our motivating model 

with 0 0.903 1R = < , which is attributed to the onset 

identification and isolation of aware infectives with drug 

abuse clinical records. Furthermore, for off-treatment 

scenario, there exists rapid spread of infection leading to near 

extinction of the susceptible population. Moreso, application 

of onset-treatment functions with trend of ART abuse yield 

tremendous reduction in HIV/AIDS infection epidemic 

following the recovery rate of 0.5 ( ) 1.203S t≤ ≤ 3/cells mm

at 3ft ≤ months for susceptible population with attained 

stability of ( ) 0.62S t ≤ 3/cells mm through 20 30ft≤ ≤
months. This later decline is evidently a function of therapy 

(ART) abuse. 

Conspicuously, the result does not only demonstrated the 

role of ART abuse but by far depicts an improved outcome 

when compared to outcome of onset-treatment schedule from 

those of study motivating models. More visibly, is the fact 

that the controls of the present study does behaved somewhat 

differently from drugs used to control systems not explicitly 

modeling ART abuse. Thus, the present study have explicitly 

shown the overwhelming significant impact of global 

stability analysis for the control/treatment of HIV/AIDS 

under therapy abuse scenario. Nonetheless, for enhanced 

maximization of susceptible population, it is highly 

suggested that the study could be further subjected to 

classical application of optimal control strategy and its 

optimal conditions for optimum control of HIV/AIDS 

infection under ART abuse. 
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