
 

Pure and Applied Mathematics Journal 
2020; 9(1): 1-8 

http://www.sciencepublishinggroup.com/j/pamj 

doi: 10.11648/j.pamj.20200901.11 

ISSN: 2326-9790 (Print); ISSN: 2326-9812 (Online)  

 

 Methodology Article  

Partial Differential Equation Formulations from Variational 
Problems 

Uchechukwu Opara 

Department of Mathematics & Statistics, Veritas University, Abuja, Nigeria 

Email address: 

 

To cite this article: 
Uchechukwu Opara. Partial Differential Equation Formulations from Variational Problems. American Journal of Applied Mathematics.  

Vol. 9, No. 1, 2020, pp. 1-8. doi: 10.11648/j.pamj.20200901.11 

Received: August 3, 2019; Accepted: August 29, 2019; Published: January 4, 2020 

 

Abstract: The calculus of variations applied in multivariate problems can give rise to several classical Partial Differential 

Equations (PDE’s) of interest. To this end, it is acknowledged that a vast range of classical PDE’s were formulated initially from 

variational problems. In this paper, we aim to formulate such equations arising from the viewpoint of optimization of energy 

functionals on smooth Riemannian manifolds. These energy functionals are given as sufficiently regular integrals of other 

functionals defined on the manifolds. Relevant Banach domains which contain the optimal functional solutions are identified by 

preliminary analysis, and then necessary optimality conditions are discovered by differentiation in these Banach spaces. To 

determine specific optimal functionals in simple settings, smaller target domains are taken as appropriate subsets of the Banach 

(Sobolev) spaces. Briefings on analytical implications and approaches proffered are included for the aforementioned simple 

settings as well as more general case scenarios. 
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1. Introduction 

A wide class of Partial Differential Equations are 

formulated initially from problems in the calculus of 

variations. In the bid to estimate critical points of functionals 

on subsets of infinite dimensional linear spaces, PDE’s are 

often generated by formulation laws of the calculus of 

variations. Local and global minima of such functionals have 

profound implications in models of the physical universe. For 

instance, critical points of a functional usually correspond to 

the equilibrium stages of associated physical systems, and a 

non-exaggerated perturbation of a system from a state of 

equilibrium tends to return it to the same equilibrium state. 

Two energy functionals (Dirichlet and Perelman) are probed 

for their critical points in simple settings. The local minimum 

of Perelman’s Energy as included could have new 

contributions towards the collection of static Ricci solitons 

currently known. Hence, this paper serves as an appendage to 

the very modern study of Ricci Flow. The section on 

Dirichlet’s Energy probes into the very foundations of 

Sobolev and Lebesgue spaces. 

In due course, we will invoke two fundamental tools during 

formulation which are outrightly stated in this section. The 

first is a general theorem in functional optimization theory and 

the second is a lemma of variational calculus. 

Optimization Theorem [2] – Let E be a real reflexive 

Banach space, and the functional f: E �  �  ᴜ {+∞} be 

convex, lower semi-continuous and proper. Then, 

i.) For any non-empty subset K of E that is weakly compact 

(closed, convex and norm-bounded), there exists α � K such 

that ���	 
  min� �� ���	; 

ii.) If in addition f is coercive, there exists � � � such that 

���	 
  min� � � ���	. 

Lemma of The Calculus of Variations [6] – Let Ω �  �� be 

a regular, orientable and bounded submanifold-with-boundary. 

Let � � ��Ω	 and assume that 

��. � ��
Ω


 0 

for all � � ����Ω	 . Then �  0  on Ω , where Ω  is of 

dimension m and �� is the geometric m-volume on Ω. 
It is rather straightforward to prove the above stated lemma 

by contradiction, as hence shown. Assume |����	| " 0 for 
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some �� � Ω\$Ω, where $Ω is the boundary of the closure of Ω defined in the geometric sense. Then for some % > 0, we 

have �(��, $Ω) <  δ  and |ℎ(�)| ≥ |*(�+)|
,  ∀� ∈ .(��, δ) ∩Ω. Setting: 

�(�) = 0(%, − 2|� −  ��|2,),;  4� � ∈ .(��, δ) ∩ Ω0;  4� � ∈ Ω\.(��, δ)  

then � ∈ ���(Ω) . To confirm this claim, we justify 

differentiability of �  by first taking Ω to be ℝ�. 
Differentiability of this function is obvious everywhere but on $.(��, δ). The gradient of this function for � ∈ .(��, δ) is 

given by �5(�) = 4 72|� − ��|2,− %,8 . (� − ��). Thus, for 

any sequence {�:}:∈ℕ ⊂ ℝ�\ ∂.(��, δ)  approaching some 

point � ∈ ∂.(��, δ), we get �5>�:? to be approaching zero. 

This gives us that the gradient function �5 is continuous on ℝ�. Moreover, 

| �ℎ(�). �(�)��Ω | ≥ |ℎ(��)|
2 � �(�)�� >A(�+,B)∩Ω 0 

which contradicts our initial assumption. 

If Ω is not open, then it becomes expedient for us to define 

the gradient function intrinsically, using a covariant derivative 

for � on Ω. In this event, we take 

�5|CΩ =  ∇� = (E�5, ��F, E�5, �,F, … , E�5, �HF) ≔ (∇�J�)KL�H  

where {��, �,, … , �H} is an orthonormal basis of functions 

for the tangent spaces to Ω  at each point and 

[ ��, �,, … , �H]N  is the usual orientation for ONΩ at each P ∈ Ω.  We can draw the same conclusions by adjusting 

certain conditions of the lemma, such as taking Ω to be a 

submanifold-without-boundary and using � ∈ ��(ΩQ) as the 

test functions, when appropriate. 

The function spaces ��(ΩQ) and ���(Ω) are not reflexive, 

which will prompt us to consider instead weak formulations of 

the optimization problems during computations. That is to say, 

we will target solutions in larger reflexive Sobolev spaces, 

reckoning with the fact that ��(ΩQ) is dense in RS,N(Ω) for 

any natural k and for 1 < P < ∞.  Occasionally, weak 

solutions also turn out to be solutions of the classical problems. 

Following our presentation of the fundamental tools, we now 

give two methods of formulation of classical PDE’s associated 

to optimization of differentiable functionals. 

2. Methods of Formulation 

2.1. Method 1 [6] 

Let Ω ⊆ ℝ� be a connected, orientable and bounded 

submanifold of class �, , and we are to minimize the 

functional 

�: W ⟶ ℝ
Y ↦ �[(�, Y, ∇v)dμ Ω

 

on a subset W ⊆ ��(ΩQ) for a sufficiently regular function [. 
Let Y_ be a minimizer of � on W. Then for some real positive 

number r, we have 

�(Y_ ) ≤ �(Y) ∀Y ∈ W⋂.( Y_, b) 

We will choose W such that it accommodates appropriate 

tangent cones, which are variations of the form Y + d� for Y ∈ W and � ∈ ���(Ω) (resp ��(ΩQ)). There exists a positive 

real number % such that for any d ∈ (−%, %), we have 

Y_ + d� ∈ .( Y_, b) 

Defining e(d): = �(Y_ + d�), then 0 is a minimizer of e in >– %, %? which means 

e5(0) = 0 ⟹ �5(Y_). � = 0 

We find the derivative of � at Y in the direction of �; 

�5(Y_). � = limi⟶�
�(Y_ + ��) − �(Y_)� = � lim�⟶0

[>�, Yj(�) + ��(�), ∇Yj(�) + �∇�(�)? − [(�, Yj, ∇Yj)
� dμ Ω  

= �[′(�, Y, ∇v); (0, �, ∇�)dμ Ω = �l[m(�, Y, ∇v). ϕ + [∇m(�, Y, ∇v). ∇ϕ]dμ.Ω  

The regularity of [ at Y_ is necessary for passing the limit 

into the above integral as we have done in the second line. 

This gives us uniform convergence of the integrand by way of 

the mean value inequality, since the integrand equals [5(o); (0, �, ∇�)  for some o ∈ ℝH × ℝ × ℝH , with ||[5|| 
having a finite upper bound independent of �  in a 

neighborhood of o. 

We hereby explain certain used notations by again having 

{��, �,, … , �H} as an orthonormal basis of functions for the 

tangent bundle OΩ  at each point of the manifold. We 

represent the gradient functions intrinsically to Ω: 
∇Y = (∇�JY)KL�H  and ∇� = (∇�J�)KL�H  

This way, [∇m has r scalar components, each of which we 

will denote [msJ . We then implement Green’s theorem of 

multivariate integration to re-evaluate a term in the formulation – 

� l[∇m. ∇ϕ]dμ  = Ω �([msJ )KL�H . (∇�J�)KL�H dμ Ω =  − �(�4YΩ [∇m)�dμ 

The reader ought to reckon with the divergence operator (div) invoked above, which will be used explicitly in the 
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included illustrations. As such, we assume in addition that [ 

is of class �,and we get that ∀ � ∈ ���(Ω) (or ��(ΩQ) if ΩQ is 

without boundary), 

t l[m(�, Y_, ∇Y_) − �4Y[∇m]. � �� = 0 ⟹  [m(�, Y_, ∇Y_) = �4Y[∇m(�, Y_, ∇Y_) Ω                    (1) 

at any local or global minimizer Y_ of � on W, which gives us a necessary optimality condition. If Ω is an open subset of ℝ�, 

then the above is simply written as 

[m(�, Y_, ∇Y_) = u $$�K
�

KL�
[mvJ (�, Y_, ∇Y_)  

2.2. Method 2 

Now, assume that Ω ⊆ ℝ� is open, bounded with a regular topological boundary, and we are to minimize the functional 

�: W ⊆ ��(ΩQ) ⟶ ℝ
Y ↦ � [(�, Y, ∇v)�W −  � w(�, Y)�x.yΩ  Ω

 

For this case, we work with test functions ∈ ��(ΩQ) because of the contributor to the functional from the boundary, and our 

formulation yields the necessary optimality condition 

� l[m(�, Y_, zY_). � + [{m(�, Y_, zY_). z�]�W −| � wm(�, Y_)� �x = 0 }|  

at any minimizer Y_ of E in V. Of course, we need the functions [ and w to be sufficiently regular. Applying Green’s theorem to 

a term in the above formulation; 

�l[∇m . ∇ϕ]�WΩ = �  ~$[∇m$� . �� �x − yΩ � �u $$�K
�

KL�
[mvJ � . ��WΩ  

where � is the outward unit normal or Gauss map evaluated 

on ∂Ω and 

$[∇m$� : =  E[∇m, �F  
Substituting this in our formulation, we get 

� �[m − u $$�K
�

KL�
[mvJ � . ��WΩ + �  (E[∇m, �F − wm). ��x yΩ = 0 

at any local or global minimizer Y_ of �. By the fundamental 

lemma of the calculus of variations, we conclude – 

u $$�K
�

KL�
[mj vJ = [mj  4� Ω 

∑ [mjvJ�K�KL� =  wmj  �� $Ω             (2) 

which is a boundary value PDE problem of Neumann type. By 

slightly adjusting prior hypotheses, it is straightforward to 

generalize that the formulations from (1) and (2) give not only 

necessary optimality conditions for minimizers, but for local 

critical points at large. 

The given lemma of the calculus of variations applies to 

larger reflexive Sobolev spaces, and this we can infer from a 

generalization of the lemma called the du Bois – Reymond 

lemma. It gives us that for any ℎ ∈ RS,N(Ω)  satisfying t ℎ(�). �(�)��Ω = 0 for all � ∈ ���(Ω) then ℎ ≡ 0 almost 

everywhere on Ω. However, it is most convenient to work 

with subsets of the reflexive Hilbert space RS,,(Ω) because 

of continuity of the partial inner product – 

Eℎ, � F = �ℎ(�). �(�)��Ω  ��b ℎ, � ∈ RS,,(Ω) 

and the availability of other analytical solution tools such as 

the Lax-Milgram theorem [3]. Here, given ℎ ∈ RS,,(Ω) 

satisfying t ℎ(�). �(�)��Ω = 0  for all ∈ RS,,(Ω) , then ℎ ≡ 0 almost everywhere on Ω. We will consider the weakly 

formulated methods in these larger reflexive Sobolev spaces 

in order to investigate existence and/or uniqueness of 

solutions to the optimization problems. Given the possibility 

of solution existence from the optimization theorem, we 

proceed to solve the weakly formulated PDE in a Sobolev 

space, and finally check whether the weak solutions are also 

solutions in ��(ΩQ). It may turn out that the weakly formulated 

problem has a solution, while the classical problem does not. 

In the succeeding examples, we will illustrate the theoretical 

framework laid out above. 

3. Results 

3.1. Result 1: Perelman Energy Functional 

Let x ⊂ ℝ�  be a regular, compact and connected 

hypersurface. Perelman’s energy functional on x is formally 

analogous to heat flow along the manifold and we give it by 
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�: ���x	 ⟶ ℝ
Y ↦ �(� + ||∇Y||,)exp (−Y)�x �

 

where �  is the scalar curvature of x.  In any setting, the 

functional �  lacks coercivity, and usually it also lacks a 

global minimizer. 

As an illustration of this statement, let x  be a regular 

surface in ℝ� consisting only of elliptic points, in which case 

the scalar curvature equals twice the Gaussian curvature and 

the Perelman energy is strictly positive for any Y.  We 

consider the problem in weak settings in order to investigate 

arguments using our optimization theorem. R can be any of 

the classical Sobolev spaces containing ��(x), and we see 

that infm∈� �(Y) = 0 by taking ||Y||� to infinity along the 

positive direction of constant functionals Y ≡ � , where 

� ∈ ℝ� is a constant. 

Nevertheless, the formulation of method 1 in subsection 2.1 

above provides weak local critical points of �  which we 

hereby discuss. This formulation gives us −(� + ||∇Y_||,) exp(−Y_) = 2�4Y(exp(−Y_) ∇Y_)     (3) 

at any critical point Y_  of �.  Observe that (3) is set as a 

non-linear second order P. D. E, as the divergence operation 

on the right hand side produces a second order differential of Y_. As a simple computational illustration, we will have x to 

be the two-dimensional unit sphere x, ⊂ ℝ�.  This is a 

compact surface consisting only of elliptic points embedded in 

the real Euclidean 3-space with unit Gaussian curvature � ≡ 1 so that its scalar curvature is also constant: � ≡ 2. 

Solving for Y_ in this case, we have 

>2 + (∇��Y_), + (∇��Y_),? exp(−Y_) + 2�4Y(exp(−Y_) ∇Y_)  ⟹ �
�2 + u � ∇��� Y_

��Φ�����
,

:L�,, �
� exp(−Y_) 

+2�4Y �
�exp(−Y_) � ∇��� Y_

��Φ�����
,

�
� = 0 ⟹ �2 + 1w::   $�$¡:¢,� exp(−�) + 2£|w¤�| $$¡: ¥£|w| exp(−�) ¦ 1w::

$�$¡:§ = 0 

where � = Y_  ∘ Φ and the parametrization Φ: © ⊆ ℝ, ⟹ x,;  (¡�, ¡,) ↦ Φ(¡�, ¡,) ≔ P ∈ x, 

is used to pull back the differential equation to an open subset © ⊆ ℝ,and solve. Using the spherical co-ordinate system, we 

have 

Φ: © = (0,2ª) × 7− ª2 , ª28 ⟶ x,(¡�, ¡,) ↦ («�¬¡�«�¬¡,, ¬4�¡�«�¬¡,, ¬4�¡,) 
so that w�� = ||Φ��||, = «�¬,¡,;  w,, = ||Φ��||, =  1. 

We have ��, �, to be the unit vectors in the directions of 

the partial derivatives Φ��and Φ��respectively. Observe that 

we have used the elementary property of directional 

derivatives; ∇i­® = �∇­® for a scalar field �. Hence, the 

formulation in (3) becomes 

2 + ¬¯«,¡, ~ $�$¡��, − ~ $�$¡,�, − 2¬¯«¡, ~ $�$¡��, + 2¬¯«¡, $,�$¡�, − 2°±�¡, $�$¡, + 2 $,�$¡,,  =  0 

In all consequent computations for this example, we will fix }²}�� ≔ ��� to be zero for simplicity. In so doing, we obtain a 

second order non-linear O. D. E: 2 − [�5(¡,)], − 2 tan(¡,) . �5(¡,) + 2�55(¡,) = 0 

Substitution of the variable �5(¡,) = ´ gives an O. D. E 

of the first order. Although solutions exist on 7− µ, , µ,8 , 

specified initial value solutions may not be bounded or unique 

on the interval because the tangent function is only continuous, 

and not uniformly continuous therein. For instance, we must 

use the initial condition ´ 7− µ,8 = 0  in order to avoid a 

singularity at the point ¡, = − µ, , but the solution for ´ obtained under this specification is unbounded because 

graphically generated schemes reveal lim��⟶¶�· ´ (¡,) =−∞. For this case, we clearly have Y_ ∈ ¸¹º»� (x,), which is the 

largest of function spaces covered by the du Bois-Reymond 

lemma. As such Y_  is almost everywhere locally integrable 

since it is continuously differentiable except at Φ 7¡�, µ,8 , 

which is a point. However, continuous differentiability on the 

entire compact unit sphere is not obtainable. 

The nature of critical functions can be investigated using 

the second variation test [7] of the functional �. We can judge 

the nature of Y_ by considering variations of the form Y_ + ¼� 

for ¼ > 0 small enough to judge how � acts locally around Y_.  We may examine the most significant terms of an 

associated Taylor Series expansion for this purpose. The 

smoothness of the metric of the hypersurface x guarantees 

that �  is more than twice differentiable, so that we can 
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deduce the required terms as follows. 

��Y + ¼�	 
 �[��, Y + ¼�, ∇v + ¼∇�	�x
�


 �[[��, Y, ∇v	 + ¼�0, �, ∇�)]�x� . 
We now expand the integrand partially via a Taylor Series varying with respect to � to get 

[(�, Y, ∇v) +  ¼[′(�, Y, ∇v); (0, �, ∇�)+
½�, [[55(�, Y, ∇v); (0, �, ∇�)]; (0, �, ∇�) + ¾(¼�) 

= [(�, Y, ∇v) +  ¼[′(�, Y, ∇v); (0, �, ∇�)+ ½�, ([mm�, + 2�[m∇¿. ∇� + [[∇m∇¿; ∇�]. ∇�) + ¾(¼�) 

Therefore, �(Y + ¼�) − �(Y) equals 

� �¼[5(�,m,∇¿);(�,À,∇À) +  ¼,2 ([mm�, + 2�[m∇¿. ∇� + [[∇m∇¿; ∇�]. ∇�) + ¾(¼�)� �x�  

⟹  �(Y_  + ¼�) − �(Y_ ) = � � ¼,2 ([mm�, + 2�[m∇¿. ∇� + [[∇m∇¿; ∇�]. ∇�) + ¾(¼�)� �x� |mLmj   
The sign of the result obtained above is determined by the 

leading term of the integrand; which is 
½�, ([mm�, +2�[m∇¿. ∇� + [[∇m∇¿; ∇�]. ∇�). This is to say, if the critical 

function (Y_ )is a strict local minimizer of � , then �(Y_  +¼�) − �(Y_ ) > 0  for ¼  small enough, meaning [mm�, +2�[m∇¿. ∇� + [[∇m∇¿; ∇�]. ∇�  is positive for any non-zero 

test function � ∈ ��(x). By a similar line of reasoning, we 

can make the opposite conclusion in the event whereby Y_ is a 

strict local maximizer of �.  Critical points for which �(Y_  + ¼�) − �(Y_ )  is neither positively nor negatively 

defined on any ¼-neighborhood of Y_ in the ambient Sobolev 

space are saddle points. 

The procedure just outlined above is that of examining the 

second variation of �. Indeed, we can readily view this as the 

infinite-dimensional analogue of the behavior of the second 

derivative of functionals, by way of the quadratic form 

�55(Y)(�)(�) = �([mm�, + 2�[m∇¿. ∇� + [[∇m∇¿; ∇�]. ∇�)�x�  

With the given analytical observation, we now make remarks based on the computation initiated above on the Perelman energy 

functional. 

�55(Y)(�)(�) = � [( 2 + ||∇v||,)¯¤m�, − 4¯¤m�E∇�, ∇YF + 2||∇�||,¯¤m]�xÁ�  

=t ¯¤m[( 2 + ||∇v||,)�, − 4�E∇�, ∇YF + 2||∇�||,]�xÁ�                        (4) 

Observe also that 2||�∇v − ∇�||, = [ 2�,||∇v||, − 4�E∇�, ∇YF + 2||∇�||, ] ≥ 0                  (5) 

If everywhere on x,, we have ||∇Y_||, strictly less than 2, then whenever � ≠ 0, we also get ( 2 + ||∇v||,)�, − 4�E∇�, ∇YF + 2||∇�||, >  2�,||∇v||, − 4�E∇�, ∇YF + 2||∇�||, ⟹ �55(Y)(�)(�) > 0 

from (4) and (5). 

In such an event, the critical function Y_ would be a strict 

local minimizer for the Perelman energy. Using the weak 

solution discussed above, (wherein the spherical coordinate 

system was employed and ��� set to zero) this situation can 

be created simply by truncating parallels ¡,∗  of x, for which |´(¡,∗)| > √2, for �5(¡,) = ´  as previously defined. The 

resulting manifold would be a connected spherical section 

with boundary, and the critical function would then be a 

classical solution to (3) above. 

If ||∇Y_ ||, > 2  on a �x -non-negligible subset x∗ of x, , 

then Y_ would be a saddle point for �. This is confirmed by 

using an appropriate Urysohn test function �, satisfying 

� = exp (Y_) on a non-negligible subset of x∗ and � = 0 whenever ||∇Y_ ||, < 2, 
for which �55(Y_ )(�)(�) < 0. It is easy to verify that the 

integrand of �55(Y_ )(�)(�) is negative whenever ||∇Y_ ||, >2 and � = exp (Y_). � has no strict local maximizers, as �55(Y)(Å)(Å) > 0 for 

any non-zero constant function Å. 
In the classical applications of Perelman’s energy, the 

functional Y is time dependent and critical points of � with 

respect to time characterize steady Ricci Solitons. Therefore, 

Perelman’s entropy can be regarded as a variational tool for 

the study of Ricci flow, which is an advanced current area of 

interest in pseudo-Riemannian geometry. It is also worthy of 
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note that the same functional also occurs quite importantly in a 

branch of theoretical physics known as string theory [8]. 

3.2. Result 2: Dirichlet Energy Functional 

Let Ω ⊂ ℝ�  be open, bounded and with ��  topological 

boundary. The Dirichlet energy functional on Ω is given by �: W ⊂ ��(ΩQ) ⟶ ℝY ↦ �||∇Y||,�W Ω
 

where W = 9Y ∈ ��(ΩQ): Y|}Ω = ℎ; 

and ℎ is a particular differentiable function defined on the 

compact set $Ω. The classical problem is to minimize � over W , but we first consider the weak setting in the reflexive 

Sobolev space R�,,(Ω) ≔ Æ�(Ω)  to effectively perform 

analysis using the given optimization theorem in the 

Introduction section. In particular, this setting is made 

appropriate by continuous differentiability of the functional � on Æ�(Ω). Hence, the domain W′ of � in this setting is the 

pre-image of the singleton ℎ ∈ ,̧(∂Ω) under the continuous 

trace operator; e�: Æ�(Ω) ⟶ ,̧(∂Ω) 

so W′ is (norm-) closed in Æ�(Ω). Moreover, the set W′ is 

convex because Ç¡ + (1 − Ç)Y ∈ W5 ∀Ç ∈ [0,1], ∀¡, Y ∈ W5 
For any function Y� in W5, it is easy to check that the set . = 9Y ∈ W5: �(Y) ≤ �(Y�); is bounded due to the coercivity 

of �, giving us existence of a minimizer for � on . and thus 

also on W′. The critical function Y_ will exist uniquely due to 

strict convexity of �. 
Given the minimizer Y_ ∈ Æ�(Ω), the weak formulation for 

this problem is the following boundary value PDE: 

u $,Y_$�K ,
�

KL� = 0 4� Ω; 
Y_ = ℎ �� $Ω                   (6) 

This is obtained by implementing the formulation method 2 

(subsection 2.2) with test functions in Æ��(Ω)  instead of  Æ�(Ω), because there is no contribution to the functional � 

from the boundary of Ω. Problem (6) is known as Laplace’s 

equation, as 

u $,Y_$�K,
�

KL� : =  ∆Y_ 
Is called the Laplacian of Y_. (6) is a linear second-order 

elliptic P. D. E of Dirichlet type, of which the solutions 

constitute an interesting category of functions. Its solutions 

are called harmonic functions and they are the chief 

ingredients in the study of potential theory. We will hereby 

give just a brief analysis of this formulation and possible 

solutions. 

Symmetries of the Laplace Equation 

One of the most efficient approaches to tackling Laplace’s 

equation is exploiting its symmetries. This equation is known 

to accommodate the Lie groups of conformal transformations 

on ℝ�, which are precisely the non-degenerate symmetry Lie 

groups of invariance transformations which preserve angles 

between vectors in their domains. Any such group can be 

decomposed into one-parameter subgroups. Each member ÉÊ 

of a conformal one-parameter Lie group 9ÉÊ;Ê∈ℝ can be seen 

as a re-parametrization of ℝ�;  ÉÊ: ℝ� ⟶ ℝ�� = (��, … , ��) ⟼ (ÌK(�, Ç))KL��  

characterized by 

Í$ÉÊ$�K Í = Î$ÉÊ$�: Î 

and 

E$ÉÊ$�K , $ÉÊ$�: F = 0 ��b 4 ≠ Ï, 1 ≤ 4, Ï ≤ � 

In this event, 

u $,Y_$�K,
�

KL� = 0 ⟹  u $,Y_$ÌK ,
�

KL� = 0  
When ÉÊ is linear, its action can be faithfully represented 

by an appropriate non-degenerate linear map Ð: ℝ� ⟶ ℝ� , 

meaning ÉÊ(�) = Ð� ∀� ∈ ℝ� .  Specifically, any 

transformation represented by a subgroup of the orthogonal 

group ¾(�) ≔ 9Ð ∈ ℳ�×�(ℝ): ÐC = Ð¤�; 

exhibits the required properties and these suffice for 

simplifying equation (6), provided that they leave the 

boundary condition invariant. Except for the case on � = 2, ¾(�) has infinitely many one-parameter subgroups. 

In addition to being conformal transformations, 

parametrizations by the orthogonal group are isometries 

meaning that 

Í$ÉÊ$�K Í = 1 

and 2|Ð�|2 = ||�|| 
for every one-parameter subgroup 9ÉÊ;Ê∈ℝ ⊆ ¾(�)  and Ð ∈ ¾(�). Of course, we can deduce invariance of Laplace’s 

equation (without boundary constraints) under the smaller 

rotational group x¾(�) ⊆ ¾(�) [5]. 

For an illustration of this example, we will consider a 

simple solution of Laplace’s equation, using the � −ball of 

radius ±;  Ω = .�(0, ±)  for convenience, with the 
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boundary constraint ���	 
 Ò�2|�|2	 on $Ω . Consider Ò 

to be a continuously differentiable real-valued function 

defined on an open subinterval of the reals containing 9±;. 
In this setting, any element of ¾(�) leaves equation (6) 

invariant, and we can effectively deduce the Lie group 

invariant b(�) = ||�||  which eliminates the group 

parameter Ç since 

b�ÉÊ��		 
 b��	 ∀9ÉÊ;Ê∈ℝ ⊆ ¾(�)  
We hereby seek a solution of functional form Y_(�) = Ó(b). 

$Y_$�K  =  �Ó�b $b$�K  =  �Ó�b $ Ô(∑ �K,�KL� )�,Õ$�K  = Ó′(b) �Kb  

$,Y_$�K , = Ó55(b) ~ $b$�K�, + Ó′(b) $,b$�K ,
= Ó55(b) 7�Kb 8, + Ó′(b) $$�K 7�Kb 8

= Ó55(b) 7�Kb 8, + Ó′(b) ¥b − �K,bb, §
 

u $,Y_$�K,
�

KL� = u
�
Ö�Ó55(b) 7�Kb 8, + Ó5(b) ¥b − �K,bb, §

�
×��

KL� = Ó55(b) + Ó5(b) ~� − 1b � 

u $,Y_$�K,
�

KL� = 0 

⟹ Ó55(b) = Ó5(b) ~1 − �b � 

⇒ � Ó55(b)Ó5(b) �b = � ~1 − �b � �b 

⇒ Ù�|Ó5�b	| 
 �1 − �	 ln(b) + « ⇒ Ó5(b) = �b(�¤�) 
where � ∈ ℝ  is a constant of integration. For a further 

constant � of integration, we have the solutions: Ó(b) = � ln(b) + � for � = 2,  and Ó(b) = � Ú(�·Û),¤�  +�  for � ≥ 3.  Hence, the corresponding weak solutions in Æ�(.�(0, ±)) are 

Y_(�) = Ý � ln(||�||	 + � for � = 2� ||�||�,¤�	
2 − �  + �   for � ≥ 3 

for � ≠ 0.  Due to uniqueness of the weak solution, it 

becomes clear that (à) often lacks a classical solution for this 

case, taking � to be zero and the function Ò to be the identity 

for instance, recalling ℎ(�) = Ò(2|�|2	  on $Ω.  This is 

because Y_(�) as computed is not continuously extendable at � = 0 ∈ .�(0, ±) . Nevertheless, the above solutions Y_(�) 

are harmonic functions on .�(0, ±)\90;  and details about 

such functions are seen in classical potential theory. 

The solutions derived above to both (3) and (6) have been 

obtained after placing certain restrictions in either case. It is 

useful to determine characteristics of these two differential 

equations in other settings. In particular, Laplace’s equation (6) 

can be restructured in several ways after implementing its 

potential transforms from conservation laws [5] to give 

optional vantage points for determination of subgroups of the 

overall admitted Lie symmetry group. This is instrumental in 

solving for group invariant solutions to (6), other than the 

fundamental solutions given here. 

4. Conclusion 

In many everyday applications, analogous quantified 

functionals are not differentiable, unlike the continuously 

differentiable examples considered above. In order to embrace 

a broader scope of functionals, we test instead for their lower 

semi-continuity and convexity. Given a functional �: W →  ℝ ∪ 9+∞; 

the domain â of � is the active region for our analysis; â = 9Y ∈ W: �(Y) ∈ ℝ; 
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�  is lower semi-continuous at Y� � â  if for every 

sequence {Y�}��ℕ � â which converges in norm to Y�, we 

have liminf�→ã �(Y�)  ≥ �(Y�) . �  is lower 

semi-continuous on â if it is lower semi-continuous at every Y ∈ â. � is said to be convex if �(Ç¡ + (1 − Ç)Y) ≤ Ç�(¡) + (1 − Ç)�(Y) ∀¡, Y∈ â ±�� ∀Ç ∈ [0,1] 
If �  is both convex and lower semi-continuous but not 

differentiable, then � is still termed subdifferentiable and we 

invoke the Fenchel subdifferential of � at ¡ ∈ â: $�(¡) = 9Y∗ ∈ W∗: EY∗, Y − ¡F ≤ �(Y) − �(¡) ∀Y ∈ W;  
We have the subdifferential $�(¡) to be nonempty upon 

subdifferentiablity of �  on â  and elements of $�(¡)  are 

called subgradients of � at ¡. $�(¡) is always a convex set. If � is in addition differentiable at ¡, then $�(¡) is a singleton 

which coincides with the classical differential of �  at ¡;  $�(¡) ∈ W∗, where W∗ is the dual of W. A necessary and 

sufficient condition for Y_ to be a local minimizer of � is that 0 ∈ $�(Y_), and this is how we initiate weak formulations in 

this setting. As we have done in our included illustrations, we 

may first consider the problem set in a larger reflexive space to 

make arguments about existence and uniqueness of solutions 

using the same given optimization theorem in the introduction. 
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