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Abstract: Real numbers are divided into fictitious (non-computable) and essential (computable). Fictitious numbers do not 
have numerical values, essential numbers have algorithms for constructing these numbers with any exactness. The set of 
fictitious numbers is continual, the set of essential numbers is countable. Functions are also divided into fictitious, defined over 
the set of fictitious numbers, and essential, defined over the set of essential numbers. Essential functions have an algorithm for 
calculating any value with any exactness. All functions of applied mathematics and some functions of abstract mathematics are 
essential The set these functions is countable. The four upper levels of classification of real functions are constructed. This 
classification uses superpositions of functions and diagonal sets borrowed from the algebra of finite-valued functions.  
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1. Introduction 

There is a vast number of papers devoted to classification of 
real functions. This is due to the lack of a satisfactory 
classification of real functions.  

All these classifications ignore the classification of 
functions preceding real ones. Using this classification, many 
problems of real function classification would be solved.  

The classification of real functions must begin at bottom, at 
the classification of Boolean functions, finite valued functions, 
and countably valued functions.  

A complete classification of Boolean functions was 
constructed by E. L. Post [1]. Some addition was given in 
the study [2]. The main means of constructing this 
classification are superpositions (compositions) and 
diagonal sets. Superpositions are variables permutation, 
identification of variables and substitution of functions 
instead of variables of another function. Diagonals are 
functions with the same variable values. There are 4 
diagonal sets of Boolean functions, they are the sets 
�, �, �, �. There are countable diagonal sets in real function 
algebra. 

The classification of finite-valued functions was 
constructed in [3, 4]. The main difficulty of this classification 
is the continuity of the set of subalgebras in algebra of these 

functions [5]. The classification of subalgebras in this algebra 
is also a classification of functions. It turned out that there are 
fictitious subalgebras to be useless for classification of 
functions [6]. The set of these subalgebras is continual, and the 
set of essential subalgebras is countable.  

Nevertheless, it is not possible to construct a complete 
classification even of three-valued functions due to an 
incomparably larger number of essential subalgebras with 
respect to subalgebras of two-valued functions.  

Many authors tried to solve the problem of classifying finite 
valued functions using stronger closure operations with 
respect to superpositions [7, 8]. These operations reduce the 
set of subalgebras, which allows to construct a complete 
classification. But the use of these classifications is 
insignificant. Instead of these closure operations, one can use 
superpositions, but restrict oneself to a few upper levels of 
classification. 

Superpositions and diagonal sets are applicable in the 
algebra of real numbers. Using these superpositions and 
diagonal sets, 4 upper levels of classification of real functions 
are constructed in this article.  

Classification of real numbers will receive a powerful push 
by applicating methods of classification of finite-valued and 
countable-valued functions.  
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2. Basic Definitions 

2.1. Definition of Algebra of Real Functions 

A. I. Malcev gave a definition of algebras of any functions. 
This definition is given below for real functions.  

Definition. Algebra of real functions Pℝ is 

Pℝ =  (�ℝ; Ω) 

where �ℝ is the carrier of algebra, it contains all functions 
over the set of real numbers ℝ. The set Ω contains basic 
operations of algebra. These are operations of superpositions 
(compositions):  

1. cyclic permutation of variables, at which the first variable 
becomes the last, respectively numbering of variables is 
changed (variables are numbered from one to �);  

2. permutation of the first and last variables; this and 
previous operations perform any variable permutation;  

3. identification (equality) of the first and last variables;  
4. replacing the first variable of a function with another 

function.  
A. I. Malcev called this algebra Post algebra. The 

designation Pℝ is given in honor of E. L. Post. 
A subalgebra of this algebra is an algebra whose carrier is a 

set of functions closed by superpositions, and whose basic 
operations are superpositions. 

Further, subalgebras of algebra PR are called algebras. 
Since all algebras contain the same set of basic operations, 

it is generally accepted to identify algebra and its carrier. This 
simplifies the formulation of statements. In particular, the 
intersection of two algebras is an algebra whose carrier is the 
intersection of the carriers of these two algebras. The union of 
two algebras (union of carriers) may not be an algebra. 

2.2. Essential and Fictitious Numbers 

Real functions are defined over the set of real numbers.  
In following, real functions are called functions, and real 

numbers are called numbers.  
The numbers are divided into essential and fictitious. 

Essential numbers are numerical, i.e. are computable. The set 
of these numbers is countable. Numbers that do not have a 
numerical value are fictitious. The set of fictitious numbers is 
continual (the set of fictitious objects exists in almost every 
theory, and this set is always incomparably larger than the set 
of essential objects).  

Fictitious numbers have no numerical value. These 
numbers are useless.  

Definition. A number is called essential (computable) if there is 
an algorithm for calculating this number with any exactness. The 
remaining numbers are called fictitious (not computable).  

The set of fictitious numbers is continual. The set of essential 
numbers is countable, as the set of algorithms is countable.  

The classification of numbers contains two classes: 
essential (computable) numbers and fictitious numbers. The 
class of computable numbers also contains two classes: 
rational and irrational numbers. The class of irrational 
numbers contains the class of algebraic numbers and the class 

of transcendental numbers. This completes classification of 
numbers.  

The set of computable numbers is denoted by R.  
Complex numbers are also essential and fictitious.  

2.3. Essential and Fictitious Functions 

The set of all functions is hyper continual. But the set of 
essential (computable) functions is countable.  

Definition. A function is called computable if it is computed 
with any exactness for any computable numbers, for which 
this function is not infinite.  

All functions existing in applied mathematics are 
computable. And some functions of abstract mathematics are 
computable. For example, Dirichlet function is computable.  

3. Classification of Functions 

3.1. About Classification 

The main problem of any theory is classification of its 
objects. In Pℝ objects are functions, and the first step of the 
classification contains two classes: computable and 
non-computable functions.  

Classification of non-computable functions is useless. 
Further the classification is given for computable functions, 
non-computable functions are not used and all functions are 
considered computable.  

The set of functions forms the algebra PR. This algebra 
contains fictitious functions (functions with fictitious 
variables), but without them the algebra becomes partial, since 
set of essential functions closed by superpositions contains 
fictitious functions. In the following, only closed sets of 
functions are investigated. Each closed set is a subalgebra of 
the algebra PR. Further, subalgebras are called algebras.  

Not all algebras implement the classification of functions. 
Only algebras generated by a one-element basis implement the 
classification of functions. The remaining algebras are 
fictitious, since they are useless for classifying functions.  

Indeed, each function generates some algebra. The set of 
functions generating the same algebra forms a class of bases, 
and these classes do not overlap. Each function belongs to 
only one class, i.e. classes of one-element bases and the 
algebras generated by them really to classify functions. 
Algebras generated only by multi-element bases are useless 
for classifying functions. In the following, only algebras 
generated by one-element bases are investigated. 

3.2. Baire Classification 

The second level of classification contains sets of 
discontinuous functions. 

The class 0 of this classification is a set of continuous 
functions. The class 1 a set of discontinuous functions which 
have points to be represented as the limit of a convergent 
sequence of continuous functions. Any other class does not 
contain functions of previous classes, but functions of this 
class have points to be represented as the limit of a convergent 
sequence of continuous functions of the previous class. 
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An example is Dirichlet function 

f(x) = lim [cos n!  πx]�� at n, m → ∞, 

which belongs to class 2. And there are functions that do not 
belong to any of these classes. They form one more class, but 
functions of this class are not computable.  

3.3. Maximal Algebras 

The next level of classification of continuous functions 
contains sets of maximal algebras, i.e. algebras contained only 
in Baire class 0. The set of these algebras is countable, since 
the set of computable functions generating these algebras is 
countable.  

Many results of papers devoted to maximal algebras of 
finite-valued functions apply to functions too.  

In particular, S. V. Yablonsky and I. Rosenberg 
established 6 sets of maximal algebras of finite-valued 
functions [9, 10].  

These are sets of algebras: monotone functions, 
automorphic functions, linear functions, functions that 
preserve central relation, functions that preserve nontrivial 
equivalence relation, the union of one-place and 
incomplete-valued functions.  

The function # ($%, . . . , $') is monotone if  

 ((%, . . . , (')  ≤  (*%, . . . , *')  → # ((%, . . . , (')  

≤ # (*%, . . . , *')  

where 

((%, . . . , (')  ≤  (*%, . . . , *') if (+ ≤ *+ 

This definition is a natural extension from the monotony of 
one-place functions to the monotony of multi-place functions.  

In addition to the usual order of monotony, any other 
computable order can be used.  

A function is automorphic if  

∃-∀ ($%, . . . , $')  # (- ($%), . . . , - ($') )  

= - (# ($%, . . . , $') )  

where - is a single-place all-valued function consisting of 
cycles of the same length /  (/  is a prime number). The 
function -  has a cycle of length /  if /  times there is 
- (- (. . . (- ($) ). . . ) )  = $ for all $.  

Function is linear if  

∃ ((0, . . . , (') ∀ ($%, . . . , $')  # ($%, . . . , $')  

= (0 + (%$%+. . . +('$' 

The operations of addition and multiplication can be 
replaced by dual operations. I. e. when the addition ⊕ is 
$% ⊕ $� = -3% (- ($%)  + - ($�) ),  and when the 
multiplication of ⊙  is $% ⊙ $� = -3% (- ($%)  ⋅ - ($�) ), 
where - is any one-place function.  

A function preserves central relation if this relation is total 
reflexive, total symmetric and has a center.  

A relation is total reflexive if it is reflexive for 
multi-variable relations, i.e. there is at least one pair of equal 
variables. A relation is total symmetrical if it is multi-variable 
and symmetrical for all variables. A relation 6 has a center if 
some first variables have a fixed value, for example, 6 =

 (0,1, $9, $9, $:, . . . , $') . A function preserves a nontrivial 

equivalence relation if this relation classifies functions, but 
does not generate classes, each of which has a single element, 
and does not generate a single class. A function 
incomplete-valued if it does not accept all values.  

But these 6 sets of algebras have only 3 sets of essential 
algebras, the remaining 3 sets contain fictitious algebras [11].  

G. Rosseau and P. Schofield proved that only 3 sets of 
maximal algebras really exist [12, 13]. These are algebras of 
cellular functions, functions preserved by congruence, and 
automorphic functions. These authors proved that a function is 
complete if it does not belong to these three sets of algebras.  

Function is cellular if  

; ⊂ R ∧ ∀ ($%, . . . , $')  ∈ ;: # ($%, . . . , $')  ∈ ; 

The function # is preserved by congruence, if  

∃A∀ ($%, . . . , $' , B%, . . . , B'): $% ∼ B% ∧. . .∧ $' ∼ B'

→ # ($%, . . . , $')  ∼ # (B1 <. . . , B')  

where A is a partition of R into disjoint sets, and ∼ means 
membership to the same of these sets. Further classification is 
voluminous and requires a large series of articles for its 
presentation. Below some tools are present for building 
further classification of functions.  

3.4. Diagonal Sets 

Diagonal sets are a powerful tool for classifying functions. 
E. L. Post used diagonal sets for classification of two-valued 
functions.  

Definition. Let ; be a subset of R. Diagonal set is a set of 
functions #  with diagonals # ($, . . . , $)  = $  if $ ∈ ; , and 
with diagonals # ($, . . . , $)  ≠ $ if $ ∉ ;. In other words, the 
diagonal set preserves some elements of G. These elements 
are $ from # ($, . . . , $)  = $.  

The set of preserved elements is name of a diagonal set. 
This set is denoted by H. The diagonal set H = {} is called � 
set. The diagonal set H = G is called � set. These names are 
inherited from the algebra of two-valued functions.  

A function is called a function of H , if it preserves all 
elements of H. A basis is called basis of H, if functions of this 
bases are of H. An algebra is called algebra of H, if bases of 
this algebra are of H (it will be proved below that all bases of 
any algebra are of the same H). But this algebra may contain 
algebras of other H.  

An element $ ∈ H is called true diagonal. For this element, 
# ($, . . . , $)  = $. An element $ ∈K H is called false diagonal. 
L ($, . . . , $)  ≠ $ holds for this element. A function has true 
diagonal $ if # ($, . . . , $)  = $. A function has false diagonal 
$ if # ($, . . . , $)  ≠ $.  

In following, all true diagonals are called briefly diagonals, 
unless otherwise are specified.  
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A constant M is named {M}, since a constant diagonal is this 
constant.  

Lemma. A function # with diagonal ( generates function 
with diagonal (.  

Proof. Permutation and identification of variables of a 
function do not change any diagonal of this function. The 
substitution of a function #% with diagonal ( into a function 
#� with the same diagonal is a function also with this diagonal 
(, since:  

 #� (#% ((, . . . , (), (, . . . , ()  = #� ((, . . . , ()  = ( 

But a function can generate functions of another diagonal 
set if this function has a false diagonal.  

Lemma. A function of diagonal set ; = {N%, . . . , NO}  can 
generate only functions of diagonal set P ⊇ ;.  

Proof. The permutation and identification operations of 
variables of a function do not change the diagonal set of this 
function. The substitution operation can change diagonal sets.  

Let functions #%
'R and #�

'S are of the same diagonal set ;, 
let  

# ($%, . . . , $'RT'S3%)  

= #%
'R (#�

'S  ($%, . . . , $'S
), $'ST%, . . . , $'RT'S3%)  

and let this function # be of diagonal set P. Then 

# (N, . . . , N)  = N 

for any N ∈ ;. In this case, N ∈ P for all N ∈ ;, and P ⊇ ;, 
since # (N, . . . , N) can be N  for some N ∉ ; . But if 
# (N, . . . , N)  ≠ N for all N ∉ ;, then P = ;.  

Corollary. A function of diagonal set � generates functions 
of this diagonal set only. A function of diagonal set � can 
generate functions of any diagonal set.  

Proof. The diagonal set �  is denoted by ; = R , and ; 
cannot be a proper subset of any other set of numbers. The 
diagonal set �  is denoted by ; = { } , and ;  is a proper 
subset of any other set.  

It follows from the lemma that a function to be not � 
function does not generate � function. But several functions 
of different diagonal sets can generate � functions.  

Lemma. Functions, that are not �  functions and are of 
different diagonal sets, can generate a � function.  

Proof. It is enough to use two functions. Let functions #% 
and #� be of some diagonal sets ;% ≠ ∅ and ;� ≠ ∅. Let  

;% ∩ ;� = ∅, #� ($%, . . . , $'S
)  ∈ ;� 

And 

∀$% ∈ ;�; ∀ ($�, . . . , $'R
)  #% ($%, . . . , $'R

)  ∉ ;% 

Then 

#% (#� ($, . . . , $), $, . . . , $)  ≠ $ 

i.e. the result of this substitution is a � function. 
Full functions, i.e. function generating all other functions, 

are only of diagonal set �.  
All functions to be bases of an algebra are of the same 

diagonal set.  
Theorem. If a function contained in a basis is of some 

diagonal set, then all other functions to be bases also are of this 
diagonal set.  

Proof. If a basis is of diagonal set �, then all bases are of 
this diagonal set, since basis of diagonal sets �  generates 
other bases only of this diagonal set. If a basis is of diagonal 
set �, then this basis can generate functions of any diagonal 
set ;. But bases of this ; do not generate functions diagonal 
set �, i.e. they are of another algebra. A similar result exists 
for functions of diagonal set other than � and �. 

Corollary. An algebra to be of a diagonal set except � does 
not contain algebra of diagonal set �. 

Proof. The bases of this algebra have not � functions and 
do not generate algebras of diagonal set �. 

It follows from this theorem that each algebra belongs to 
algebras, which contain bases of this algebra. Since diagonal 
sets do not intersect, they form a level of classification.  

Each algebra may contain algebras of other diagonal set, 
among which there may be diagonal set of this algebra too.  

The following theorem is on diagonal sets of maximal 
algebras. 

Theorem. All maximal algebras are of one-element diagonal 
sets or diagonal sets �. 

Proof. Let algebra belong to a multi-element diagonal set, 
i.e. this algebra is not of one-element diagonal set and 
diagonal set �. Then this algebra is of one of one-element 
diagonal set algebras, if this element is of this multi-element 
diagonal set. 

Algebras of diagonal set � are not contained in algebras of 
other diagonal set. Consequently, they may be maximal. □ 

4. Conclusion 

The algebra of real functions is constructed and the natural 
classification of its subalgebras is given.  

The first level of this classification contains algebras of 
computable and non-computable functions. Computable 
functions are defined over the set of computable numbers. The 
set of computable functions is countable. Non-computable 
functions are defined over the set of all real numbers. These 
functions practically do not exist. They are defined over a set 
containing numbers that do not have numerical values. The set 
of non-computable functions is hyper-continental.  

The definition of computable numbers is given. The set of 
these numbers is countable.  

The classification of real functions is constructed. The first 
level of this classification contains all the functions. The 
second level of this classification contains computable and 
non-computable functions. Further classification is 
constructed for computable functions, since the construction 
of the classification of non-computable functions is 
meaningless. The constructed classification of functions is at 
the same time a classification of essential algebras too. 
Essential algebras have singleton bases. All other algebras are 
fictitious. The third level of classification contains Baire 
classes. It is shown that the fourth level contains not 6, but 3 
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sets of maximal algebras of functions, since 3 sets contain 
fictitious algebras. Further classification of functions is not 
built.  

All functions of applied mathematics are computable. In 
particular, all analytic functions are computable.  
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