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Abstract: For the last twenty years, there has been a great deal of interest in the theory of two weight. In the present paper, we 

investigate the two weight norm inequalities for fractional new maximal operator on the Lebesgue space. More specifically, we 

obtain that the sufficient and necessary conditions for strong and weak type two weight norm inequalities for a new fractional 

maximal operators by introducing a class of new two weight functions. In the discussion of strong type two weight norm 

inequalities, we make full use of the properties of dyadic cubes and truncation operators, and utilize the space decomposition 

technique which space is decomposed into disjoint unions. In contrast, weak type two weight norm inequalities are more 

complex. We have the aid of some good properties of Ap weight functions and ingeniously use the characteristic function. What 

should be stressed is that the new two weight functions we introduced contains the classical two weights and our results 

generalize known results before. In this paper, it is worth noting that w(x)dx may not be a doubling measure if our new weight 

functions � � �����.. Since ��|	|� 
 1, our new weight functions are including the classical Muckenhoupt weights. 
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1. Introduction 

In 1972, Muckenhopt [1] established the �� weight theory 

when studying the Lebesgue boundedness of classical 

Hardy-Littlewood maximal operators. Subsequently, he 

further obtained the two weight boundedness of 

Hardy-Littlewood maximal operators and founded that the �� 

two weight condition is a necessary and sufficient condition 

for the two weight weak boundedness of Hardy-Littlewood 

maximal operators. In addition, he discussed strong 

boundedness. Muckenhopt and Wheeden [2] founded that the �� two weight condition is only a necessary but not sufficient 

condition for Hardy-Littlewood maximal operator and Hilbert 

transform to have two weight strong boundedness, which is 

essentially different from the one weight case. Therefore, as a 

generalization of the one weight case, it is more difficult to 

discuss the boundedness of operators with two weights than 

with one weight. In 1982, great progress was made in the two 

weighted results. Sawyer [3] obtained the necessary and 

sufficient conditions for the two weight ��, ��  of 

Hardy-Littlewood maximal operators to be bounded from ������� to ������� with 1 � � � ∞. In 2000, Cruz-Uribe 

[4] gave a new proof of this result, and we can see a lot of 

work related to this topic in this paper, for example, see [5-8].  

Next, some necessary definitions and notations are given. In 

this paper, 	��, �� denotes the cube centered at � and of the 

sidelength � . Similarly, given 	 � 	��, ��  and � � 0 , we 

will write �	 for the λ-dilate cube, which is the cube with the 

same center �  and with sidelength ��. �  denote constants 

independent of parameters and may take different values in 

different places. Let � � � , !"  denote the characteristic 

function of � . |�| denote the Lebesgue measure of � . �# 
denote the conjugate index of �, i.e. 1 �⁄ % 1 �#⁄ � 1. Definition 1.1/01.  Let ���� � �1 % ��23 , � 
 0, 45 
 0 . � 
 0 6. 7. and � � �89:� �� �. 

(i) If there is a constant C such that for all cubes 	 �	��, �� with radius r centered on x, 

 ; 1��|	|�|	| < �= �>��>? ; 1��|	|�|	| < �@ A�@A= �>��>?�@A � �, 
Then we say that � � ������� � 1�. 

(ii) If there is a constant C such that 

BC������ � �����, 6. 7. � � � , 
where, 
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BCD��� � E��F�=
1��|	|�|	| < |D= �>�|�>, 

Then we say that � ∈ �A���.  

The classical Hardy-Littlewood maximal operator M is 

defined by 

BD��� = E��F∈=
1|	| < |D= �>�|�>. 

Obviously, D��� ≤ BCD��� ≤ BD���, 6. 7. � ∈ �  and BCD��� is lower semi-continuous. 

Since ��|	|� ≥ 1 , so ���� � ⊂ �����  for  1 < � < ∞ , 

where ���� �  denote the classical Muckenhoupt weights; 

see [10]. It is well know that if � ∈ �H�� � = I ���� ��JA , 

then ������  be a doubling measure, i.e. there exist a 

constant � > 0 for any cube 	 such that ��2	� ≤ ���	�. 
But Tang pointed out in /91  that if � ∈ ����� , then ������ may not be a doubling measure. In fact, let 0 ≤ M ≤N45 , It is easy to check that ���� = �1 + |�|�@� OP� ∉�H�� �  and ������  are not a double measures, but ���� = �1 + |�|�@� OP� ∈ �A���. 

The new maximal operators were firstly introduced by Tang /91  in connection with weighted ��  inequalities for 

pseudo-difffferential operators with smooth symbols and their 

commutators by using a class of new weight functions which 

include Muckenhoupt weight functions. It can control a class 

of important operators, such as pseudo-difffferential operator  

RD��� ∶= < T��, U�7 VWXF·ZD[�U��U\] , 
where D is a Schwartz function and D[ denotes the Fourier 

transform of D , Symbol σ(x, ξ) ∈ Â,_5  with 0 < δ ≤ 1. In 

particular, A. Laptev /111  proved that any Â,55  

pseudo-difffferential operator is a standard 

Calderón-Zygmund operator; see also /12 − 151. Applying 

the new maximal functions, Pan [16] obtained the strong type 

and weak end-point estimates for certain classes of multilinear 

operators and their iterated commutators with new BMO 

functions. 

In this paper, the fractional form of a new maximal operator 

considered by Tang in [9] is introduced: given 0 ≤ 4 < 1, the 

fractional new maximal function BC2D��� is defined as 

BC2D��� ≔ E��F∈=
1���|	|�|	|�A@2 < |D= �>�|�>, 

where the supremum is taken over all the cube containing �. 

Next, we introduce a new class of two weight functions, 

which includes the classical two weights in [3]. Definition 1.2.  Let 1 ≤ � ≤ d < ∞, 0 ≤ 4 < 1  and �, � ∈ �89:A �� �. If for every cube 	, 

(i) When 1 < p < ∞,  

1���|	|�|	|�A@2 ;< �= �����?Ah ;< ����A@�i
= ��? A�i ≤ �. 

(ii) When p = 1, for a. e. x ∈ Q,  

1���|	|�|	|�A@2 ;< �= �����?Ah ≤ �����. 
Then we say that ��, �� ∈ ��,h2 ���. It is easy to know that ��,h2 �� � ⊂ ��,h2 ��� , with ��,h2 �� �  denote classical two 

weight. 

We end this section with the outline of this paper. Section 2 

contains Theorem 2.1.1, Theorem 2.2.1 and the proofs of them. 

we extend the corresponding strong and weak results to the 

fractional new maximal operators. In Section 3, we give a 

conclusion. 

2. Method and Results 

2.1. Strong Boundedness of New Maximal Operators 

The purpose of this paper is to study the strong and weak 

type inequalities of fractional new maximal operators by 

introducing a new class of two weight functions containing the 

classical two weight, and obtain their two weight 

characterization in Lebesgue spaces. 

The main result of this section is to obtain the two weight 

strong boundedness of fractional new maximal operators. 

Theorem 2.1.1. Let 1 < � ≤ d < ∞, 0 ≤ 4 < 1  and ��, �� ∈ ��,h2 ��� . Then the following statements are 

equivalent: 

(i) For every cube 	, 

 ;< nBC2o�A@�i!=p���qh
= ������?A/h

≤ � ;< ����A@�i
= ��?A/� ; 

(ii) For every D ∈ �����, 

;< nBC2D���qh
\] ������?A/h ≤ � ;< |D���|�\] ������?A/�. 
The following lemma is needed to prove the theorem. 

Lemma 2.1.2. Let 0 ≤ 4 < 1, D ≥ 0 is a locally integrable 

function. If for every cube 	 and some � > 0 such that 1���|	|�|	|�A@2 < |D= �>�|�> > �, 
Then there exists a dyadic cube P such that 	 ⊂ 3u and 
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1���|u|�|u|�A@2 < Dv �>��> > 22@A@ �. 
Proof. Take w ∈ x  makes 2y@A ≤ ℓ�	� < 2y , so there 

exists dyadic cubes uA, uV, … , u| , 1 ≤ } ≤ 2  whose 

generate by 2y and intersect 	. Since ℓou~p = 2y > ��	�, by 

Vitali covering lemma, we get 	 ⊂ 3u~  for every � . In 

addition, it is assumed that there is no dyadic cube u such that 

< Dv �>��> > ����|	|�|	|�A@22 . 
Then, 

< D= �>��> ≤ � < Dv� �>��>|
~�A ≤ � ����|	|�|	|�A@22 ≤ ����|	|�|	|�A@2|

~�A . 
This contradicts the hypothesis. Therefore, there exists a dyadic cube u, 1���|u|�|u|�A@2 < Dv �>��> > ����|	|�|	|�A@22 ���|u|�|u|�A@2 ≥ 22@A@ �. 
Next, we give the proof of the theorem. 

Proof of Theorem 2.1.1. Set T��� = ����A@�i
. In (ii), take D = T!=, it is easy to see that (ii) implicature (i). Next, we 

prove that (i) implicature (ii). Firstly, without losing generality, 

Let D ∈ �����  be a nonnegative bounded function with 

compact support. This ensures that BC2D���  is almost 

everywhere finite. �  is decomposed in the following way: 

� = � �yy∈� , �y = �� ∈ � : 2y < BC2D��� ≤ 2yOA�. 
Then, for each w  and � ∈ �y , there exists a cube 	Fy 

containing � such that 1���|	Fy|�|	Fy|�A@2 < D=�� �>��> > 2y, 
Therefore, by Lemma 2.1.2, there exists a dyadic cube uFy 

such that 	Fy ⊂ 3uFy and 

 
AoCo�v���p�v���p��� � Dv�� �>��> > 22@A@ 2y .      (1) 

This estimate shows that for each fixed w, the dyadic cube uFy is bounded. Therefore, there exists such a succollection of 

disjoint dyadic cubes �u~y�~  that for a � , each 	Fy  is 

contained in 3u~y . Therefore, �y ⊂ I 3u~y~ . Next, we 

decompose the �y: �Ay = 3uAy ∩ �y, �Vy = �3uVy\3uAy� ∩ �y , … , �~y
= �3u~y\ � 3u�y

~@A
��A � ∩ �y , … 

So we get 

� = � �yy�� = � �~y~,y , 
where �~y ’s are pairwise disjont for all �  and w . Fix a 

sufficiently large constant � > 0  and Set ⋀� =���, w� ∈ ℕ � ℤ: |w| ≤ �� . Since u~y  satisfies (1), using �~y ⊂ �y, we get 

�y = < nBC2D���qh ������I �� �¡�  = � < nBC2D���qh ������"���~,y�∈⋀ 
 

≤ � ���~y��2yOA�h
�~,y�∈⋀ 

≤ � � ���~y� ¢ 1o�o�u~y�p�u~y�pA@2 < D�>��>v�� £h
�~,y�∈⋀ 

 

= � � �o�~yp ¢ 1o�o�3u~y�p�3u~y�pA@2 < T�>��>¤v�� £h ¥� �DT@A��>�T�>��>v�� � T�>��>¤v��
¦

h
�~,y�∈⋀ 

 

= C � T©�fσ@A�«dv® ,                                                                  (2) 

where ® = ℕ � ℤ, v is a measure in ®, with 

���, w� = �o�~yp ¢ 1o�o�3u~y�p�3u~y�pA@2 < T�>��>¤v�� £h , 
For each measurable function ℎ, operator Ry is defined by 

Ryℎ��, w� = � ℎ�>�T�>��>v��� T�>��>¤v��
!⋀ �~,y�. 

In this case, if we can be proved that Ry: ���� , T� →
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�h�®, �� is uniformly bounded, then it can be obtained from 

(2), 

�y ≤ � < Ry�DT@A�h�� ≤ � ;< �DT@A��T��\] ?h�
®

= � ;< D����\] ?h�. 
The expected inequalities can be obtained by using the 

consistency of �y  and the control convergence theorem. 

Therefore, only proving that Ry: ���� , T� → �h�®, �� 

uniformly bounded is necessary. Ry: �H�� , T� → �H�®, �� 

is obvious, by Marcinewicz interpolation theorem, it is only to 

prove the uniform boundedness of Ry: �A�� , T� →�h/�,H�®, ��. So we only need to prove that 

����, w� ∈ ®: Ryℎ��, w� > �� ≤ � ;1� < |ℎ���|\] T�����?h/� , � > 0. 
For this reason, fix ℎ ≥ 0 is a bounded function with compact support. Set 

±² = ���, w� ∈ ®: Ryℎ��, w� > �� = ���, w� ∈ ⋀�: Ryℎ��, w� > ��. 
Since �~y ⊂ 3u~y , we have 

��±²� = � ���~y� ¢ 1
o�o�3u~y�p�3u~y�pA@2 < T�>��>¤v��

£
h

�~,y�∈³´
 

≤ � < ¢ 1
o�o�3u~y�p�3u~y�pA@2 < T�>��>¤v��

£
h

������"���~,y�∈³´
 

≤ � < ;BC2 nT!¤v��q ���?h ������"���~,y�∈³´
. 

The dydic cube in the family �u~y : ��, w� ∈ ±²� is bounded. 

In fact, if ��, w� ∈ ±², then |w| ≤ �, and for each w, the cube �u~y�~  is bounded. This allows us to select the largest subset 

family �uX�X  for each ��, w� ∈ ±², u~y ⊂ uX . By �~y ’s are 

pairwise disjoint and �~y ⊂ 3u~y ,  

��±²� ≤ � � < ;BC2 nT!¤v��q ���?h ������"��v��⊂vµX
 

≤ � < ;BC2 nT!¤v��q ���?h ������¤v��X
 

 ≤ � ∑ n� T�����¤vµ qh/�
X , 

where we used the definition of two weight. Since the cube uX  
is selected from the maximal disjoint subcollection �u~y: ��, w� ∈ ±²� , there exists uX = u~y  for each · , with ��, w� ∈ ±². In this case, Ryℎ��, w� > �, and since ��, w� ∈ ±²,  

< T����� = < T�����¤v��¤vµ
< 1� < ℎ���T����� = 1� < ℎ���T�����.vµv��

 

Notice that q/p ≥ 1 , the maxima of cube uX  and their 

disjoints, we have 

��±²� ≤ � � ;1� < ℎ���T�����vµ
?h/�

X
 

≤ � ¢� 1� < ℎ���T�����vµX
£

h/�
 

≤ � ;1� < ℎ���T�����\] ?h/�, 
where � is independent of 	, so the proof is completed. 

2.2. Weak Boundedness of New Maximal Operators 

The main result of this section is to obtain the two weight 

weak boundedness of fractional new maximal operators. 

Theorem 2.2.1. Let 1 ≤ � ≤ d < ∞, 0 ≤ 4 < 1  and ��, �� ∈ ��,h2 ��� . Then the following statements are 

equivalent: �i� ��, �� ∈ ��,h2 ���; �ii� BC2: ����� → �h,H���, i.e. for any � > 0, 

��� ∈ � : BC2D��� > �� ≤ ��h ;< |D���|�
\] ������?h/� ; 
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�iii� For every D ≥ 0 and cube 	, 

 ; 1���|	|�|	|�A@2 < D= �����?h ��	�
� � ;< D����

= ������?h/�. 
Proof of Theorem 2.2.1. The proof will be carried out in the 

following manner: 

�ii� ⇒ �iii� ⇒ �i� ⇒ �iii� ⇒ �ii� 

�ii� ⇒ �iii� Take D ≥ 0 and cube 	 such that  

Dº2,= = 1���|	|�|	|�A@2 < D= ����� � 0. 
If 0 < � < Dº2,= and � ∈ 	, we have 

� < Dº2,= = 1���|	|�|	|�A@2 < D= ���!=�� � BC2oD!=p���, 
Then 	 ⊂ �> ∈ � : BC2oD!=p�>� > ��. By (ii), 

��	� ≤ ��> ∈ � : BC2oD!=p�>� > ��
≤ ��h ;< D����

= ������?h/�, 
Thus, 

oDº2,=ph��	� ≤ � ;< D����
= ������?h/�, 

Therefore, �iii� hold. �iii� ⇒ �i� For � > 1, Let D ≥ 0. For any ^ ⊂ 	, in (iii), 

take D = D!» to have 

n A
�C�|=|�|=|���� � D» �����qh ��	� � � n� D����» ������qh/�.                     (3) 

If D ≡ 1, then 

n |»|�C�|=|�|=|����qh ��	� � ���^�h/�.        (4) 

According to /5,388 pages1 , we can only consider 

non-trivial cases and prove that ��, �� ∈ ��,h2 ���. Firstly, for 1 < � < ∞, take D��� = ����A@�i
. Fix 	, Set 

~̂ = À� ∈ 	: ���� > 1� Á , � = 1,2, … 

Then D  is bounded on each ~̂  and � �A@�i��»� < ∞ . 

Using (3), with ^ = ~̂ and D = D!», we get 

 ¢ 1���|	|�|	|�A@2 < ����A@�i
»�

��£h ��	�
� � ¢< ����A@�i��»�

£h/�
. 

Each integral is finite, so 

1���|	|�|	|�A@2 ¢< ����A@�i
»�

��£h@h� ��	� � �, 
i.e. 

1���|	|�|	|�A@2 ;< ����= ��?
Ah ¢< ����A@�i

»�
��£

A�i � �. 
In addition, Â ⊂ ^V ⊂ ⋯ and I ~̂~ = �� ∈ 	: ���� > 0�. 

Let � → ∞, we get 

 1���|	|�|	|�A@2 ;< ����= ��?
Ah ;< ����A@�i

�F�=:Ã�F�Ä5� ��?
A�i

� �. 
Therefore,� > 0 6. 7. , ��, �� ∈ ��,h2 ���. 

For � = 1, notice that (4) can be written in the following 

form: for every 	, with ^ ⊂ 	, |^| � 0, 

1���|	|�|	|�A@2 ;< ����= ��?A/h � � ��^�|^| . 
Fix 	, consider 

6 > 7EE ·ND= � = ·ND�� > 0: |�� � 	: ���� � ��| � 0�. 
Set ^Å = �� ∈ 	: ���� < 6� ⊂ 	. Then,|^Å| � 0 and 

1���|	|�|	|�A@2 ;< ����= ��?A/h � �|^Å| < ����»Æ ��
� �|^Å| 6|^Å| � �6. 

For each 6 > 7EE ·ND= �, the upper formula is hold, so 

; 1���|	|�|	|�A@2 < �= �����?
Ah � �7EE ·ND= � ≤ �����. 

i.e. ��, �� ∈ �A,h2 ���. �i� ⇒ �iii� First, we consider the case of � = 1. For D ≥ 0 

and every cube 	, 
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 ; 1���|	|�|	|�A@2 < D= �����?h ��	� � �< D= ��� 1���|	|�|	|�A@2 ;< �= �>��>?
Ah ���

h
 

 ≤ � n� D= ���������qh
. 

The last inequality used ��, �� ∈ �A,h2 ���.  

On the other hand, when 1 < � < ∞, the Hölder inequality has 

; 1���|	|�|	|�A@2 < D= �����?h � 1���|	|�|	|��A@2�h ;< D�������A�����@A�= ��?h  
≤ 1���|	|�|	|��A@2�h ;< D��������= ��?h/� ;< ����A@�i

= ��?h/�i
. 

Since ��, �� ∈ ��,h2 ���, 

n A
�C�|=|�|=|���� � D= �����qh ��	�  

� A�C�|=|�|=|������Ê n� D��������= ��qh/� n� ����A@�i= ��qh/�i � �= �����  

 � n� D��������= ��qh/� Ë A�C�|=|�|=|���� n� ����= ��qA/h n� ����A@�i= ��qA/�iÌh
  

 � � n� D��������= ��qh/�. 
Therefore, (iii) is hold. �iii� ⇒ �ii� Let D ∈ �89:� �� �, ��	� > 0, then 

; 1���|	|�|	|�A@2 < D= �����?h ��	�
� � ;< D��������= ��?h/� � ∞, 

thus D ∈ �89:A �� �. So it can be assumed that D ∈ �A�� �, by 

defining Dy = D!=�5,y�, then we have Dy → D. In this case, the 

k limit of Dy in (ii) is independent of each constant C, so (ii) 

about f holds. With these, we will prove that the inequality of 

expectation holds when D ≥ 0, D ∈ ����� ∩ �A�� �. 

Set 

�² = �� ∈ � : BC2D��� > ��. 
If � ∈ �² , from the definition of � and the relationship 

between maximal function and central maximal function, 

there exists �F > 0 such that 

1���|�F| �|�F| �A@2 < D=�F,��� �>��>
> 22@A Í1 + 2 |	|1 + |	| Î@23 �. 

In 

particular, |�F| �
��|�F| �@A n2A@2 nAOV]|=|AO|=| q23 �@A||D||Ï�q ���� � � . By Vitali 

covering lemma, there exists a subcollection of pairwise 

disjoint cubes �	o�~ , �~p�~, with �~ ∈ �² , �~ = �F� , 

 �² ⊂ � 	��, �F�
F∈"´

⊂ � 	o�, 3�~p
~

. 
Recall that (iii) led to (3). Let 	 = 	o�~ , 3�~p  and ^ = 	o�~ , �~p ⊂ 	, then 

���²� ≤ ∑ � n	o�~ , 3�~pq~   

 ≤ � ∑ ; A
oCo�=oF�,¤��p�p�=oF�,¤��p�p��� � D=oF�,��p �����?@h n� D��������=oF�,��p ��qÊÐ~  

 ≤ � ∑ A
�C�|��|]�|��|]���� n� D=oF�,��p �����q@h n� D��������=oF�,��p ��qÊÐ~   
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 ≤ Ñ
²Ê n∑ � D��������=oF�,��p ��~ qÊÐ

 

 ≤ Ñ
²Ê n� D��������\] ��qÊÐ,  

where, we consider that d/� ≥ 1 and 	o�~ , �~p are pairwise 

disjoint. 

3. Conclusion 

This paper gives the sufficient and necessary conditions for 

strong and weak type two weight norm inequalities for a new 

fractional maximal operators by introducing a class of new 

two weight functions which include classical two weight 

functions on Lebesgue spaces and our main results will shed 

some new lights on boundedness of other operators and their 

commutators on Lebesgue spaces. In addition, we can also 

consider the two weight characterization of new maximal 

operators on Morrey spaces. 
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