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Abstract: In this paper, a simple direct method is presented to find equivalence transformation of a nonlinear Whitham- 

Broer-Kaup equations. Applying this equivalence transformation, we can obtain the symmetry group theorem of the 

Whitham-Broer-Kaup equations and then derive series of new exact and explicit solutions of the Whitham-Broer-Kaup 

equations according to solutions of the previous references. 
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1. Introduction 

Since the discovery of the soliton in 1965 by Zabusky and 

Kruskal, a large class of nonlinear evolution equations 

(NLEEs) have been derived and widely applied in various 

branches of physics and applied mathematics like condensed 

matter, nonlinear optics, fluid mechanics, plasma physics, 

theory of turbulence, ocean dynamics, biophysics and star 

formation. On the other hand, to better understand the 

nonlinear mechanisms in different physical contexts, many 

authors have diligently applied themselves to finding the 

exact analytical solutions for these NLEEs including the 

soliton solutions, periodic solutions and rational solutions.  

In the present paper, we would like to consider the coupled 

Whitham-Broer-Kaup (WBK) equations which have been 

studied by Whitham [16], Broer [2] and Kaup [10]. The 

WBK equations are as follows, 

0,

( ) 0

t x x xx

t x xx xxx

u uu v u

v uv v u

β
β α

+ + + =
 + − + =

         (1) 

The WBK equations describe the propagation of shallow 

water waves, with different dispersion relations. Where 

( , )u u x t= is the horizontal velocity, ( , )v v x t=  is the height 

that deviates from equilibrium position of the liquid, 

and ,α β are constants which are represented in different 

diffusion powers. WBK equations are very good models to 

describe dispersive wave. For the background materials of 

model equation, we refer to the paper [2, 10, 16]. 

If 0α = and 0β ≠ , Eq.(1) is classic long wave equations 

that describe shallow water wave with diffusion [17]. If 

1α = and 0β = , Eq.(1) is modified Boussinesq equations [8]. 

Kaup [10] and Ablowitz [1] studied inverse transformation 

solution for the special case of Eq.(1), Kupershmidt 

discussed their symmetries and conservation laws. By using 

of Backlund transformation, Fan [8] found three pairs of 

solutions of WBK equation. Xie et al. [17] made use of 

hyperbolic function method and Wu elimination method 

obtained four pairs of solutions of WBK equation. Chen et al. 

[3] present a more general transform ation and applied it to 

WBK equation and obtained some traveling wave solutions. 

Xu et al. [20] obtained abundant solitary- wave solutions and 

reveal some novel solitary-wave structures under certain 

parametric conditions for the WBK equation by tanh-function 

method. Xu [18] presented an elliptic equation method for 

constructing new types of elliptic function solutions for the 

WBK equation. Sirendaoreji [15] suggested a new auxiliary 

ordinary differential equation method and constructed exact 

travelling wave solutions of the WBK equation in a unified 

way and so on. 

However, there are still many researchers are discussing 

the exact and explicit solutions for this WBK equation [4, 5, 

7, 9, 14, 19, 21] by many new methods, and all kinds of 

solutions, such as traveling wave solutions, tanh-function 

solutions, elliptic function solutions, Jacobi elliptic function 



175 Baodan Tian and Yanhong Qiu:  Exact and Explicit Solutions of Whitham-Broer-Kaup Equations in Shallow Water  

 

solutions, rational function solutions, exponential function 

solutions of the WBK equation are obtained in this 

references.  

Naturally, an interesting questions is: Can we find a simple 

method to obtain a transformation between the present 

solutions and the new ones? If we find this transformation, 

we can obtain more and more all kinds of new solutions by 

the present references. As we know, one of the way to realize 

this aim is backland method of transformation and method of 

Lie-point symmetry group [13]. 

On the other hand, Clarkson and Kruskal [6] introduced a 

simple direct method to derive symmetry reductions of a 

nonlinear system without using any group theory. For many 

types of nonlinear systems, the method can be used to find all 

the possible similarity reductions. Recently, Lou and Ma [11, 

12] generalized a new simple direct method basing on CK’s 

method, which is much simpler than the traditional Lie-point 

symmetry group. 

Thus, in this paper, motivated by these ideas, the authors 

would like to obtain some new exact and explicit solutions by 

the simple direct method. And the organization of the paper 

is as follow. In the next section, we obtain the equivalence 

transformation of the WBK equation by the direct method. In 

section 3, we obtain series of new solutions of the WBK 

equation basing on the present references. 

2. Symmetry Group Theorem of the 

WBK Equations 

Following the idea of the direct method, we first suppose 

the WBK equations has the solutions in the following form 

( , ) ( , ) ( , ) ( , ),

( , ) ( , ) ( , ) ( , )

u x t m x t n x t U

v x t p x t q x t V

ξ τ
ξ τ

= + ⋅
 = + ⋅

       (2) 

where ( , ),  ( , )x t x tξ ξ τ τ= = and ( , ), ( , ), ( , ), ( , )m x t n x t p x t q x t are 

functions to be determined later, and ( , ), ( , )U Vξ τ ξ τ  is 

restricted to satisfy Eq.(1) as ( , ), ( , )u u x t v v x t= =  under 

the transformation: 

{ , , , } { , , , }u v x t U V ξ τ→ , 

that is, 

,

.

U UU V U

V UV VU V U

τ ξ ξ ξξ

τ ξ ξ ξξ ξξξ

β
β α

= − − −
 = − − + −

    
(3) 

Substituting Eq.(2) into Eq.(1) and using Eq.(3) one can get: 

3 2( , ) ( , ) ( , , , , , , ) 0,x xn x t U q x t V F x t U V U Vξξξξ ξξ ξ ξβ τ β τ⋅ + ⋅ + =⋯                  (4) 

3 3 3 2( , ) ( , ) ( , , , , , , ) 0,x xn x t U q x t V G x t U V U Vξξξξξξ ξξξξ ξ ξαβ τ β τ− ⋅ − ⋅ + =⋯                 (5)

where the function ( , , , , , , )F x t U V U Vξ ξ ⋯  is independent of Uξξξξ and Vξξ , while the function ( , , , , , , )G x t U V U Vξ ξ ⋯  is 

independent of Uξξξξξξ  and Vξξξξ . So it is necessary to take the coefficient of Uξξξξ  and Vξξ  in Eq.(4), Uξξξξξξ  and Vξξξξ  

in Eq.(5) being zero. 

which leads to, 

3 2( , ) 0xn x tβ τ− = , ( , ) 0
x

q x tβ τ = , 
3 3( , ) 0xn x tαβ τ = , 

3 2( , ) 0xq x tβ τ = .               (6) 

Then we can get 0
x

τ = , that is, τ  is dependent of the variable x , so  

( )tτ τ=                                           (7) 

At this time, if we substitute Eq.(7) into Eq.(4) and (5), then these two equations are reduced to the following 

2 2

1[ '( )] [ '( )] ( , , , , , ) 0x x xn t U n n t UU nn U F x t U V U Vξξ ξ ξ ξβ ξ τ ξ τ− ⋅ + − + + =           (8) 

3 2

1[ ( , ) ( , ) '( )] ( , )[ '( ) ] ( , , , , , , ) 0x xn x t q x t t U q x t t V G x t U V U Vξξξ ξξ ξ ξα ξ τ β τ ξ− ⋅ + − ⋅ + =⋯          (9)

where the function 
1 ( , , , , , )F x t U V U Vξ ξ  is independent of ,U UUξξ ξ  and 

2
U , while the function 

1 ( , , , , , , )G x t U V U Vξ ξ ⋯  is 

independent of Uξξξ  and Vξξ . 

In the same way, it is necessary to take the coefficients of ,U UUξξ ξ  and 
2

U  in Eq.(8), Uξξξ  and Vξξ  in Eq.(9) being 

zero. That is, 

2[ '( )] [ '( )] 0x x xn t n n t nnβ ξ τ ξ τ− = − = = ,                              (10) 

3 2[ ( , ) ( , ) '( )] ( , )[ '( ) ] 0x xn x t q x t t q x t tα ξ τ β τ ξ− = − = ,                           (11) 
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Thus, it is easy to obtain 

2'( ) xtτ ξ= , ( , ) ( ) ( , )
x

n x t n t x tξ= = , 2( , ) ( ) ( )q x t q t n t= = ,                   (12)

Therefore, if we substitute Eq.(12) into Eq.(8) and (9), then these two equations can be reduced to the following 

[ ] [ '( ) ] [ ] 0t x x t x x xxn m U n t nm U m mm p mξξ ξ β+ ⋅ + + + + + + =                   (13)

[ '( )] [ ] [ '( ) ]

[ ] 0

x x t x x x

t x x xx xxx

n q t UV np U m V np U q t qm V

p mp pm p m

ξ ξ ξξ τ ξ ξ ξ
β α

− ⋅ + ⋅ + + + ⋅ + + ⋅

+ + + − + =
              (14)

Also, it is necessary to take all the coefficients of the Eq.(13) and Eq.(14),which leads to 

0, '( ) 0, 0.
t x x t x x xx

m n t nm m mm p mξ ξ β+ = + = + + + =                           (15) 

'( ) 0,

0,

0,

'( ) 0,

0

x

x

x

x

t x x xx xxx

n q t

np

np

q t qm

p mp pm p m

ξ τ
ξ

β α

− =
 =
 =
 + =

 + + − + =

                               (16) 

From Eq.(12), Eq.(15) and Eq.(16) one can get 

( , ) 0p x t = , ( , ) 1q x t = ,
1

( , )m x t c= , ( , )n x t δ= ,
1 2

( , )x t x c t cξ δ δ= − + ,
3

( , )x t t cτ = +           (17) 

where 
1 2 3
, ,c c c  are arbitrary constants and 1δ = ± . 

Thus, we can easily get the following symmetry group 

theorem. 

Theorem 1. If ( , )U U x t=  and ( , )V V x t=  is a given 

solution of the WBK equations, then 

1 1 2 3
( , ) ( , )u x t c U x c t c t cδ δ δ= + − + +       (18) 

1 2 3
( , ) ( , )v x t V x c t c t cδ δ= − + +         (19) 

is also a solutions of the WBK equations. 

According to the formula (18) and (19), we obtain the 

relationship between the new explicit solutions and the old 

ones of the WBK equations, which is the so-called 

equivalence transformation of the Eq.(1). Also it is obvious 

to see that (18) and (19) is an auto-backlund transformation 

of the WBK equations (1). 

3. Some New Exact and Explicit 

Solutions of the WBK Equations 

Utilizing the conclusion of the Theorem 1, we can obtain 

following exact and explicit solutions of the WBK equations 

in this section. 

Family 1. From reference [4] we know that WBK equations 

have the following solution: 

1 1 2

0

1 1 2

( (tanh( ) sec ( ) (sec( ) tan( )))
( , ) ,

( (tanh( ) sec ( )) (sec( ) tan( )) 1)

a i h
U a

i h

µ ζ ζ µ ζ ζξ τ
µ µ ζ ζ µ ζ ζ

± + ±
= +

± + ± +
  

 

1 2 1 0 1 2

0

1 1 2

2 2

1 1 2 1 1

1 2

( )( (tanh( ) sec ( )) (sec( ) tan( )))
( , )

( (tanh( ) sec ( )) (sec( ) tan( )) 1)

( )(tanh( ) sec ( ))
            

2( (tanh( ) sec ( )) (sec( )

a k k a i h
V A

i h

a k k k a i h

i h

β µ β µ λ µ ζ ζ µ ζ ζ
ξ τ

µ µ ζ ζ µ ζ ζ
β β µ µ µ β ζ ζ

µ ζ ζ µ ζ

± − − − ± + ±
= +

± + ± +

± − + ±
−

± + ± 2

2

1 2 1 2 1 1

2

1 1 2

2 2 2

1 2 1 2 1 2 1 2 1 2

2

1 1

tan( )) 1)

( )(tanh( ) sec ( ))(sec( ) tan( ))
            

( (tanh( ) sec ( )) (sec( ) tan( )) 1)

( )(sec( ) tan( ))
            

2 ( (tanh(

a k k a i h

i h

a k k k a

ζ
µ β µ µ µ β ζ ζ ζ ζ

µ µ ζ ζ µ ζ ζ
µ β µ µ µ µ β µ µ β µ ζ ζ

µ µ

+

± − + ± ±
−

± + ± +

± ± − + ±
−

2

2

.
) sec ( )) (sec( ) tan( )) 1)i hζ ζ µ ζ ζ± + ± +  

where ( )kζ ξ λτ= + , 0 0 1 1 2
, , , , ,a A a kµ µ and λ  are arbitrary constants.  
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Applying the equivalence transformation (18) and (19) we obtain following combining tanh, sech, sec and tan function 

solutions of the WBK equations: 

1 1 2

1 0

1 1 2

( (tanh( ) sec ( ) (sec( ) tan( )))
( , ) ,

( (tanh( ) sec ( )) (sec( ) tan( )) 1)

a i h
u x t a

i h

µ η η µ η η
µ µ η η µ η η

± + ±
= +

± + ± +
                    (20) 

1 2 1 0 1 2

1 0

1 1 2

2 2

1 1 2 1 1

1 2

( )( (tanh( ) sec ( )) (sec( ) tan( )))
( , )

( (tanh( ) sec ( )) (sec( ) tan( )) 1)

( )(tanh( ) sec ( ))
            

2( (tanh( ) sec ( )) (sec( )

a k k a i h
v x t A

i h

a k k k a i h

i h

β µ β µ λ µ η η µ η η
µ µ η η µ η η

β β µ µ µ β η η
µ η η µ η

± − − − ± + ±
= +

± + ± +

± − + ±
−

± + 2

2

1 2 1 2 1 1

2

1 1 2

2 2 2

1 2 1 2 1 2 1 2 1 2

2

1 1

tan( )) 1)

( )(tanh( ) sec ( ))(sec( ) tan( ))
            

( (tanh( ) sec ( )) (sec( ) tan( )) 1)

( )(sec( ) tan( ))
            

2 ( (tanh

a k k a i h

i h

a k k k a

η
µ β µ µ µ β η η η η

µ µ η η µ η η
µ β µ µ µ µ β µ µ β µ ζ ζ

µ µ

± +

± − + ± ±
−

± + ± +

± ± − + ±
−

2

2

,
( ) sec ( )) (sec( ) tan( )) 1)i hζ ζ µ ζ ζ± + ± +

          (21)

where 
1 2 3 1 2 3

( ) ( ) ( ) ( )k x c t c k t c k x k c t k c cη δ δ λ δ λ δ λ= − + + + = + − + + ,
0 0 1 1 2
, , , , ,a A a kµ µ  

and λ  are arbitrary constants, 1δ = ± .  

Family 2. From reference [9] we know that WBK equations have the following solutions: 

2

0 1 2 1 2 2

0

( , ) csc ( ) coth( ),
d

U a b h d k d d
d

ξ τ ζ ζ= + +  

22 2 2 1

0 1 2 2 2

0 0 0

2 2 2

2 2 2

0 0

( , ) csc ( ) csc ( ) sinh( )

           coth( )csch( ) tanh( ).

d B d P
V A B h d h d d

d d d

K d P
d d d

d d

ξ τ ζ ζ ζ

ζ ζ ζ

= + + +

+ +
 

where ( )kζ ξ λτ= + , 1 2 0 1 2 0 2
, , , , , , ,k K A B B d dλ  and 2

P  are mentioned in Eq.(3.5) in [9]. 0 1
,a b  and 1

P  are arbitrary 

constants. 

So we obtain following hyperbolic function solutions of the WBK equations: 

2

2 0 1 2 1 2 2

0

( , ) csc ( ) coth( ),
d

u x t a b h d k d d
d

η η= + +                             (22)

22 2 2 1

2 0 1 2 2 2

0 0 0

2 2 2

2 2 2

0 0

( , ) csc ( ) csc ( ) sinh( )

          coth( )csch( ) tanh( ).

d B d P
v x t A B h d h d d

d d d

K d P
d d d

d d

η η η

η η η

= + + +

+ +
                (23)

where 
1 2 3 1 2 3

( ) ( ) ( ) ( )k x c t c k t c k x k c t k c cη δ δ λ δ λ δ λ= − + + + = + − + + ,
1 2 0 1 2 0 2

, , , , , , ,k K A B B d dλ  and 
2

P  are mentioned in 

Eq.(3.5) in [9], 1δ = ± .  

Family 3. From reference [18] we know that WBK equations have the following solutions: 

2

2 1 2 3 1 2

2

1 2

( , )
( , ) ( ) ,

2 ( , )

sn B m
U c k A

cn B m

α α α α α ζξ τ α β
α α ζ

 + +
= ± + − − 
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2 2 2 2 2

1 2 3 1 2 1 3 2 3

2 2 2 2 2 2 2 4

1 2 1 2 3 1 2

2 2 2

1 2 1 2

2 2 2

1 2 1 2

( )( 2 2 2 )
( , )

4

( )( ) ( , ) 2 ( ) ( , )
           

( , ) ( ( , ))

4 ( ) ( ) ( , ) ( , )
           

k A
V

k A sn B m k A sn B m

cn B m cn B m

k A sn B m cn B m

α β α α α α α α α α αξ τ

α α α β α α α ζ α α α β ζ
α α ζ α α ζ

β α α α α α β ζ ζ

+ + + − − −
=

+ + + +
+ −

− −

− +
∓

2 2

1 2

( , )
.

( ( , ))

dn B m

cn B m

ζ
α α ζ−

 

where 
0

( )k cζ ξ τ ξ= − + , ,k c are arbitrary constants and ,B m  refers to formula (4) in [18].  

So we obtain following elliptic function solutions of the WBK equations: 

2

2 1 2 3 1 2

3 2

1 2

( , )
( , ) ( ) ,

2 ( , )

sn B m
u x t c k A

cn B m

α α α α α ηα β
α α η

 + +
= ± + − − 

                     (24) 

2 2 2 2 2

1 2 3 1 2 1 3 2 3

4

2 2 2 2 2 2 2 4

1 2 1 2 3 1 2

2 2 2

1 2 1 2

2 2 2

1 2 1 2

( )( 2 2 2 )
( , )

4

( )( ) ( , ) 2 ( ) ( , )
           

( , ) ( ( , ))

4 ( ) ( ) ( , ) ( ,
           

k A
v x t

k A sn B m k A sn B m

cn B m cn B m

k A sn B m cn B m

α β α α α α α α α α α

α α α β α α α η α α α β η
α α η α α η

β α α α α α β η η

+ + + − − −
=

+ + + +
+ −

− −

− +
∓

2 2

1 2

) ( , )
.

( ( , ))

dn B m

cn B m

η
α α η−

             (25)

where 
1 2 3 0 1 2 3 0

( ) ( ) ( ) ( )k x c t c ck t c k k x k c c t k c ccη δ δ ξ δ δ ξ= − + − + + = − + + − + , ,k c are arbitrary constants and ,B m  

refers to formula (4) in [18], 1δ = ± .  

Family 4. From reference [18] we know that WBK equations have the following solutions: 

2

1( , ) (tan sec ) ,U Rξ τ α β ζ ζ λ= ± + + −  

2 2 2 2 2

1 2
( , ) ( ) (tan sec tan 1);V R R mξ τ α β β α β ζ ζ ζ = − + + + + +  

 

2

2 1( , ) ( cot csc ) ,U R mξ τ α β ζ ζ λ= ± + − + −  

2 2 2 2 2

2 2
( , ) ( ) (cot csc cot 1).V R R mξ τ α β β α β ζ ζ ζ = + − + − +  

 

where 
1

( ) ln
2

A
R c

B
ζ ξ λτ= + + − , 2 2

1 2 1, 0m m A B= = ± + ≠ , , , , ,A B R cλ are arbitrary constants. 

Thus, we obtain following double periodic wave solutions of the WBK equations: 

2

5 ( , ) (tan sec ) ,u x t R α β η η λ= ± + + −                                  (26)

2 2 2 2 2

5 2
( , ) ( ) (tan sec tan 1);v x t R R mα β β α β η η η = − + + + + +  

                        (27) 

2

6 1( , ) ( cot csc ) ,u x t R mα β η η λ= ± + − + −                               (28) 

2 2 2 2 2

6 2
( , ) ( ) (cot csc cot 1).v x t R R mα β β α β η η η = + − + − +  

                         (29) 

where 2 2

1 2 3 1 2 3 1 2

1 1
( ) ( ) ln ( ) ( ) ln , 1, 0

2 2

A A
R x c t c R t c Rc R x R c t R c c c m m A B

B B
η δ δ λ δ λ δ λ= − + + + + − = + − + + + − = = ± + ≠ , 
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, , , ,A B R cλ are arbitrary constants, 1δ = ± . 

4. Conclusions 

From the theorem, it follows that the symmetry group is the product of the usual Lie point symmetry group (see [13]). 

Because if we take the constants in Eq.(18) and Eq.(19) as follows,  

1 1 2 2 3 3
, ,c C c C c Cε ε ε= = =  

where ε  is an infinitesimal parameter and ( 1,2,3)
i

C i =  are arbitrary constants. Then Eq. (18) and Eq.(19) can be written as, 

( ), ( )u U U v V Vεσ εσ= + = +                                    (30) 

1 2 3 1 2 3
( ) ( ) ( ) , ( ) ( ) ( )

x t x t
U x C t C U t C U V x C t C V t C Vσ δ δ σ δ δ= − + + + = − + + +                 (31)

where ( )Uσ  and ( )Vσ  is the symmetry of the WBK 

equations. 

In fact, finishing above discussion, we can see that the 

equivalence transformation obtained by the direct method is 

more extensive and simpler than that obtained by the 

Lie-point group, and we can obtain even more new exact and 

explicit solutions if we take above solutions (20)-(21) as seed 

solutions. 

Moreover, by applying this direct method, we can find 

many new solutions of other nonlinear evolution equations 

with variant coefficients, and this left for the future work. 
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