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Abstract: It is well known that a monoidal category is (monoidally) equivalent to a strict monoidal category that is a 
monoidal category with a strictly associative product. In this article, we discuss strict commutativity and prove a necessary and 
sufficient condition for a symmetric monoidal category to be equivalent to another symmetric monoidal category with a strictly 
commutative monoidal product. 
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1. Introduction 

A monoidal category is a category C with a monoidal 
product ⊗, unit object I, associator α, left unitor λ, and right 
unitor ρ satisfying commutativity of coherence diagrams 
describing the associativity of ⊗ and the unit properties of I 
[8, VII.1]. There is an abundance of examples of monoidal 
categories — sets with cartesian product, abelian groups with 
tensor product, etc.  

A monoidal category C is a strict monoidal category if the 
natural isomorphisms α, λ, and ρ are identities. It implies the 
following equalities on objects as well as morphisms. For any 
objects A, B, and C, and for any morphisms f, g, and h,  

(A⊗B)⊗C = A⊗(B⊗C), I⊗A = A, A⊗I = A, 

(f⊗g)⊗h = f⊗(g⊗h), 1I⊗f = f, f⊗1I = f. 

Monoidal functors and monoidal natural transformations are 
the ones respecting monoidal structures. Mac Lane’s theorem 
says that every monoidal category is monoidally equivalent to 
a strict monoidal category [6, 8, 9]. In other words, for any 
monoidal category C, there exists a strict monoidal category D, 
monoidal functors F: C → D and G: D → C, and monoidal 
natural isomorphisms GF ⇒ 1C and FG ⇒ 1D. With Mac 
Lane’s theorem, we can treat monoidal products as if they are 
strictly associative. In the spirit of the theorem, there have been 
results in the direction of strictifying associativity of diverse 
algebraic structures [9, 4, 5].  

A symmetric monoidal category is a monoidal category C 

with a natural isomorphism  

σA,B: A⊗B→B⊗A 

for each pair A,B∈C such that σA,B = σB,A
−1 satisfying 

commutativity of more diagrams [8, XI.1] relating 
associativity and commutativity. A monoidal product is said 
to be strictly commutative if σA,B is the identity for every pair 
of objects A and B. This implies the following equalities on 
objects and morphisms. For any objects A and B, and for any 
morphisms f and g, A⊗B = B⊗A and f⊗g = g⊗f.  

Weakening the symmetry condition leads to the definition of 
the braided monoidal category and it has applications to knot 
theory and the theory of quantum groups [6, 3]. Weakening the 
condition even further leads to the weak braided monoidal 
categories, which have been studied in [1, 10]. On the other 
hand, strict commutativity of a monoidal product leads to very 
desirable properties in many situations. So it is natural for 
people to try to construct a monoidal category with strictly 
commutative product that is equivalent to the original category 
they are working with. However, is not hard to see that 
strictifying commutativity is not always possible. See 
Proposition 1 for a necessary condition. This condition has 
been noted by several authors. See Section 3.19 in [2] for 
example. In this paper, we show that this necessary condition 
is also sufficient if one assumes the axiom of choice. 

2. Basic Definitions 

We state the following definitions from [8] for easy reference.  
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Definition 1. A monoidal category is a category C with a 
bifunctor ⊗: C × C → C called the monoidal product, an 
object I called the unit, and natural isomorphisms  

αA,B,C: (A⊗B)⊗C → A⊗(B⊗C) (associator) 

λA: I⊗A → A (left unitor) 

ρA: A⊗I → A (right unitor) 

such that the following diagrams commute for all objects A, 
B, C, and D in C.  

  (1) 

          (2) 

Definition 2. A symmetric monoidal category is a monoidal 
category with natural isomorphisms  

σA,B: A⊗B → B⊗A 

such that for all objects A, B, and C, the following diagrams 
commute. 

 

 

                 (3) 

A monoidal category or a symmetric monoidal category is 
called strict if α, λ, and ρ are all identities. A symmetric 
monoidal category is said to be strictly commutative if σ is 
the identity. 

Definition 3. A monoidal functor between monoidal 
categories C and D is a functor F: C → D with natural 
isomorphisms 

φA,B: F(A)⊗F(B) → F(A⊗B) 

and an isomorphism ε: J → F(I) where J is the unit object of 
D such that the following diagrams commute. 

 (4) 

                   (5) 

 

Definition 4. A monoidal functor F: C → D between 
symmetric monoidal categories is called symmetric if the 
following diagram commutes for every A, B ∈ C. 

       (6) 

Definition 5. Suppose (F,φ,ε) and (G,φ’,ε’) are (symmetric) 
monoidal functors C → D between (symmetric) monoidal 
categories. A natural transformation γ: F � G is called 
(symmetric) monoidal if the following diagrams commute for 
all A, B ∈ C. 

 

 

3. Strict Commutativity 

Proposition 1. Suppose C is a symmetric monoidal 

category that is symmetrically monoidally equivalent to a 

strictly commutative symmetric monoidal category. Then for 

any object A in C, the symmetry isomorphism σA,A: A⊗A → 

A⊗A must be the identity. 

Proof. The natural isomorphism ξ: GF � 1C gives the 
following commutative diagram. 
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                 (7) 

The diagram (6) with A = B gives 

φA,AσF(A),F(A) = F(σA,A)φA,A. 

Since D is strictly commutative, σF(A),F(A) = 1. Therefore, 
φA,A = F(σA,A)φA,A, and after canceling the isomorphism φA,A, 
we get F(σA,A) = 1. Consequently, GF(σA,A) = 1. Now the 
diagram (7) gives  

ξA⊗A = σA,AξA⊗A 

and canceling the isomorphism ξA⊗A, we get σA,A = 1. 
The consequence of this proposition is that the 

commutativity of not every monoidal product can be 
strictified. In fact, the commutativity of many naturally 
arising monoidal products cannot be strictified as in the 
examples below. 

Example 1. Consider (Set, �), the category of sets with 
cartesian product. For a set A, the symmetry isomorphism 
σA,A is defined by σA,A(a1, a2) = (a2, a1). So σA,A is not the 
identity if A has more than one element. Therefore, � cannot 
be strictified to be strictly commutative. 

Example 2. Consider (Vect(k), ⊗), the category of vector 
spaces over a field k with tensor product. For a vector space 
V, the symmetry isomorphism σV,V is defined by σV,V(vi⊗vj) = 
vj⊗vi. Suppose dimV > 1 and v1 and v2 are linearly 
independent. Then v1⊗v2 is not equal to v2⊗v1. Therefore, ⊗ cannot be strictified to be strictly commutative. 

Corollary 1. Suppose C is a symmetric monoidal category 

with only one object. Then C is equivalent to a strictly 

commutative symmetric monoidal category if and only if C is 

strictly commutative. 

Proof. Suppose C is equivalent to a strictly commutative 
symmetric monoidal category. By Proposition 1, σA,A is the 
identity for the unique object A. Since it is the only symmetry 
morphism to be checked, C is strictly commutative. The 
converse is obvious. 

The main theorem of the paper is the following. It says the 
converse of Proposition 1 is also true if objects of C can be 
totally orderd. If we assume axiom of choice and restrict our 
attention to a small category or Grothendieck universe, this 
assumption is satisfied. 

Theorem 1. Let C be a symmetric monoidal category 

satisfying two conditions. 

(1) There is a total order 	 on objects of C. 

(2) For all objects A in C, σA,A = 1A⊗A. 

Then C is symmetrically monoidally equivalent to a strictly 

commutative symmetric monoidal category. 

To prove the theorem, we will introduce a new monoidal 
structure on C that is strictly commutative, then we will 
prove the equivalence of two monoidal structures. We define 
a new product 
 as follows. For A, B ∈ C, define 

� 
 � 
 � � ⊗ � if � 	 �, � ⊗ � if � � �. 
For morphisms f: A → C and g: B → D, define f⊙g by 

� 
 � 

���
�� 

� ⊗ � if � 	 �, � 	 �,��,�(� ⊗ �) if � 	 �, � � �,(� ⊗ �)��,� if � � �, � 	 �,��,�(� ⊗ �)��,� if � � �, � � �.
 

Next, define πA,B: A
B → A⊗B by 

��,� 
 � 1�⊗� if � 	 �,  ��,� if � � �.  

Lemma 1. The following diagram commutes for any f: A 
→ C and g: B → D. 

 

Proof. This lemma follows from the property of σ, that is, 
σA,B = σB,A

−1 for all A, B ∈ C. (See diagram (3).) We can easily 
check four cases individually. 

We can say π is a natural isomorphism once we prove the 
next lemma. 

Lemma 2. The new product 
 is a bifunctor. 
Proof. For the identity rule,  

1A 
 1B = 1A⊗1B = 1A⊗B 

by definition. The composition rule is proved using Lemma 
1. For any 

(f, g): (A, B) → (C, D) 

and  

(h,k): (C, D) → (E, F), 

 (! 
 ")(� 
 �) 


 (�#,$%& (! ⊗ ")�',�)(��,�%& (� ⊗ �)��,�) 
 �#,$%& (! ⊗ ")(� ⊗ �)��,� 
 �#,$%& (!� ⊗ "�)��,� 
 !� 
 "�. 
Now we define new associator left and right unitors, and 

symmetry morphism. Define α’, λ’, ρ’, and σ’ in such a way 
that the following diagrams commute for all A, B, C in C. 
They are natural isomorphisms as compositions of natural 
isomorphisms. 

            (8) 
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        (9) 

                           (10) 

Proposition 2. Under the assumptions of Theorem 1, the 

bifunctor ⊙ together with the same unit object I, and natural 

isomorphisms α’, λ’, ρ’, and σ’ defined above gives C a 

strictly commutative symmetric monoidal structure. 

Proof. Using the diagrams (8), (9), and (10), we can 
replace each object and morphism of the commutative 
diagrams (1) – (3) with the corresponding objects and 
morphisms in terms of 
. Another way to see the 
commutativity of such diagrams is by using Mac Lane’s 
coherence theorem [8, Theorem XI.1.1], [7] since π is 
defined in terms of σ and the identity only. Thus, C is a 
symmetric monoidal cagetory with 
. Now we will prove 
that σ’ is the identity. Consider three cases: A < B, A > B, and 
A = B. 

Case 1: A < B 

��,�( 
 ��,�%& ��,���,� 

 
 ��,�
%&��,�1��� 

 
 1���  

 
 1�
� . 

Case 2: A > B 

��,�
( 
 ��,�

%& ��,���,� 

 
 1�,�
%& ��,���,� 

 
 1��� 

 
 1�
� . 

Case 3: A = B 

��,�
( 
 ��,�

%& ��,���,� 

 
 1�,�
%& ��,�1��� 

 
 ���� 

 
 1��� 

 
 1�
�. 

Note that the second assumption of Theorem 1 is used in 
the last case. 

Proof of Theorem 1. We have constructed a new monoidal 
structure on C with 
. 

It remains to prove the equivalence of two monoidal 
structures. Define  

F: (C, 
, I) → (C, 
, I) 

to be the identity as a functor. Then define  

φA,B: A
B → A�B 

to be πA,B and define ε = 1I. Then (F, φ, ε) is a symmetric 
monoidal functor because the diagrams (4), (5), and (6) 
translate into diagrams (8), (9), and (10), respectively. We 
define the inverse monoidal functor similarly. Let 

G: (C, 
, I) → (C, �, I) 

be the identity as a functor, and define  

ψA,B: A�B → A
B 

to be πA,B
−1 and ε = 1I. Then (G, ψ, ε) is a symmetric 

monoidal functor. The diagrams (5) and (6) translate into (9) 
and (10), respectively. The diagram (4) translates into the 
following diagram. 

 

The commutativity of this diagram follows from the 
commutativity of the diagram (8) and the equality of the 
following compositions of morphisms, which is the result of 
Mac Lane’s coherence theorem (or one may check individual 
cases). 

 

 

Since (F, φ, ε) and (G, ψ, ε) are inverese to each other, two 
monoidal structures are isomorphic. 

We can take one more step to achieve both strict 
associativity and strict commutativity as in the next theorem. 

Theorem 2. Let C be a symmetric monoidal category 

satisfying two conditions. 

(1) There is a total order 	 on objects of C. 

(2) For all objects A in C, σA,A =1A�A. 

Then C is symmetrically monoidally equivalent to a 

symmetric monoidal category with strictly associative and 

strictly commutative monoidal product. 

Proof. We may assume C is strictly commutative by 
Theorem 1. We slightly modify Mac Lane’s construction of a 
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strict symmetric monoidal category described in XI.3 in [8]. 
Define a category D as follows. The objects are all finite 
strings 

M = [A1,..., Ak] 

in non-decreasing order A1 	 ··· 	 Ak. Define M�N for 
strings M and N to be the concatenation of the strings 
followed by rearranging objects in order. This product is 
strictly associative and strictly commutative on objects. The 
identity is the empty string ∅. Then define a map F: D → C 
by setting  

F(∅) = I, 

F(M)=(...(A1�A2)�A3)...)�Ak) 

where the parentheses begin in front. Now define the 
morphisms of D by 

MorD(M,N) = MorC(F(M),F(N)). 

For morphisms f: M → K and g: N → L, define  

f�g: M�N → K�L 

to be the canonical map  

F(M�N) → F(M)�F(N) 

→ F(K)�F(L) → F(K�L). 

There is no ambiguity in this definition for rearranging 
objects and morphisms in the non-decreasing order because 
C is already strictly commutative. This definition gives a 
symmetric monoidal structure on D, and F becomes a 
symmetric monoidal functor. The definition of the functor in 
the opposite direction and the rest of the proof follows 
mutatis mutandis as in Mac Lane’s proof of Theorem XI.3.1 
in [8]. 

Example 3. Let C be a symmetric monoidal category. 
Suppose that the objects of C can be totally orderd and that 
for each pair of objects A, B in C, there is no more than one 
morphism from A to B. Then C is symmetrically monoidally 
equivalent to a strictly associative and strictly commutative 
symmetric monoidal category becase for any A in C, σA,A is 
an endomorphism, and it must be the unique morphism 1A�A. 

4. Conclusion 

We have proved that, assuming the axiom of choice, the 
commutativity of the monoidal category in a symmetric 
monidal category can be strictified if and only if the 
symmetry maps σA,A for all objects A of the category are 
identities. This easily verifiable criterion resolves the 
strictification problem completely. 
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