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Abstract: In this paper the author introduces a new direction in Mathematics called by “Region Mathematics” to the world 
mathematicians, academicians, scientists and engineers. The purpose of developing ‘Region Mathematics’ is not just for doing 
a generalization of the existing rich volume of classical Mathematics, but it has automatically happened so by this work. To 
introduce the ‘Region Mathematics’, we begin here with introducing three of its initial giant family members: Region Algebra, 
Region Calculus and Multi-dimensional Region Calculus. Three more of its initial giant family members: Theory of Objects, 
Theory of A-numbers (Number Theory) and Region Geometry will follow in the sequel work. The development of the subject 
‘Region Mathematics’ is initiated from its zero level for all its initial giant family members. The subject is expected to grow 
very fast with time to take its own shape, and it will surely cater to all branches of Science, Engineering, and others wherever 
an element of mathematics needs to be done. With the introduction of Region Mathematics, all existing branches of 
mathematics will get wide horizontal shifts in the academic universe of science, mathematics, engineering, social science, 
statistics, etc. with many more alternative new approaches and new thoughts. 
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1. Introduction 

In this paper the author introduces a new direction in 
‘Mathematics’ for the world mathematicians, academicians, 
scientists and engineers. By ‘Mathematics’ we mean a vast 
family consisting of a large number of giant members viz. 
Algebra, Number Theory, Arithmetic, Geometry, 
Trigonometry, Calculus, Mechanics, Astronomy,... etc. to list 
a few only out of many. In fact this work is not just about a 
new direction, but about a generalization of all the classical 
directions of existing huge volume of ‘Mathematics’ in an 
integrated universal way. That is the reason why we call it a 
universal mathematics. It will be insufficient if we just say 
that this is a new direction. It is basically a new vast direction 
consisting of many new directions. This is the first work on 
“Region Mathematics” and quite obviously it starts here 
from zero level. The ‘Region Mathematics’ is a newly 
discovered mathematics which has been justified to be 
viewed as a universal mathematics of super giant volume. 

The existing huge volume of mathematics is just a part of it; 
although apparently it seems that the existing volume of 
mathematics has been almost sufficiently supporting the 
demands of the world mathematician, world scientists, world 
statisticians, and world engineers in their all type of 
mathematical works. The work may apparently seem to be 
too simple at the first readings, because it is fact that it is 
simple and of very fundamental nature. Because of its 
very simple initial nature, the readers may have to take 
patience to read the materials till end, even if some of the 
theories/propositions happen to be unacceptable or debatable 
initially. The direction is launched by discovering the 
algebraic structure “Region” first of all, on submitting 
sufficient justification behind the genuine and mandatory 
need to discover it; then introducing the “Region Calculus”. 
In the sequel of this work done in Part-2 [7], we introduce 
“Theory of Objects”, then introduce a new language of the 
“Theory of Numbers”, and also a new topic “Region 
Geometry”. But with the introduction of few of its giant 
family members, it is the beginning of the super-giant 
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“Region Mathematics”, and at this moment it is at baby 
stage. The purpose of developing the super-giant ‘Region 
Mathematics’ is not just for doing a kind of generalization of 
the existing rich volume of classical Mathematics, but it has 
automatically happened so in its initial growth here. The 
complete content of this paper can be well studied without 
referring to our previous work in [3-6], because the present 
work is a major revised and updated version of all these 
previous work. 

The idea knocked my mind while I unearthed a peculiar 
fact that most of the simple and useful results, equalities, 
identities, formulas etc. of elementary algebra, which are 
commonly practiced at secondary school level of 
mathematics and ofcourse at all levels of higher mathematics, 
are not valid (can not be verified) in groups, rings, modules, 
fields, linear spaces, algebra over a field, associative algebra 
over a field, and even not in ‘division algebra’, i.e. are not 
valid (can not be verified) in any existing standard algebraic 
system alone, in general, by virtue of their respective 
definitions and properties. I became very much curious to 
scan the issue thoroughly. Initially I got confused, I got 
puzzled, I could not find out ‘what is the reason, what is 
wrong or where is the deficit in the existing volume of 
theories?’. I completely doubted only upon myself as my 
main area of research is not ‘Algebra’. I then revisited my 
college life favorite books of Herstein, Jacobson, Lang, 
Waerden, etc. from my bookshelves. In fact I tried a 
permutation/combination of the various existing algebraic 
structures to make out a possible identity of a platform 
algebraic system in which all the daily-useful results, 
identities, formulas, laws, etc. of elementary algebra can be 
verified. Finally I became fully confident that there is an 
excellent something lying hidden so far in the subject 
‘Algebra’. I unearthed the hidden beauty, which is a highly 
ornamented and beautiful algebraic system which I call by 
‘Region’. A special attention needs to be given to explore 
and study this hidden algebraic system considering its unique 
potential to provide a complete and sound platform, a 
minimal platform, on which the simple and useful results, 
equalities, identities, formulas etc. of elementary algebra can 
be verified (recognized to be valid). This attention was 
missing in the subject Algebra so far because of the reason 
that the serious importance and strength of this hidden 
algebraic system was so far not identified, although a huge 
and rich volume of literature is available on various algebraic 
systems. In quest of identifying this leading platform, the 
new algebraic system called by “Region” is developed 
independently with a unique identity in Section-3. 
Considering the enormous unique potential of “Region 
Algebra” to give license to the mathematicians to practice the 
existing simple and useful results, equalities, identities, 
formulas etc. of elementary algebra, world can not ignore the 
deserving and genuine claim of “Region Algebra” to have a 
self independent identity for it. It is because of the reason that 
the world has given due identity to the other algebraic 
systems including Division Algebra each of which has a 
much lower potential compared to “Region Algebra” in the 

core and application areas of mathematics from school to 
higher level. Many of the properties and results of the set R 
of real numbers are being so far used by the world 
mathematicians, assuming R to be a division algebra, but 
without knowing that they are actually using the ‘region’ 
properties of R. This is justified in this paper in details that 
the properties of division algebra is not sufficient for them to 
solve many (or most) of the mathematical problems. 
Fortunately the division algebra R is also a region algebra, 
and thus world mathematicians did not face any problem so 
far while discovering and developing various topics of 
mathematics (viz. Theory of Numbers, Geometry, Calculus, 
etc.) by exploiting fluently the infinite number of interesting 
properties of R but without looking at the actual identity of 
the algebraic platform upon which the results stand valid. In 
the progress of mathematics in many branches, the set R of 
real numbers probably is being always pre-assumed to be a 
division algebra, and this paper justifies that this pre-
assumption is not sufficient i.e. does not give license to use 
many simple results, formula, rules, identities etc. freely and 
fluently. It is a Region Algebra at minimum. Region 
Mathematics will reform the classical mathematics in an 
optimal generalized shape. It will be a serious mistake if we 
can not realize the unique superiority of ‘Region 
Mathematics’ as it is the absolute generalization of the 
classical mathematics and of a subject of unlimited 
applications. Without ‘Region Mathematics’ the existing 
huge volume of mathematics will surely lack its deserving 
materials to get its final shape of universal nature. Certainly 
Region Mathematics will provide the world scientists of all 
areas a further scope and thinking ability to analyze their 
works in a more significant and generalized way via a new 
gate of huge broadband, in pursuance of better results, in 
pursuance of unearthing an extended coverage of the 
problems under their study. The subject “Region 
Mathematics” is at its baby stage today, and will grow very 
fast at its own natural pace if the initial literature presented 
here be understood by the world. There is a possibility that 
readers may acquire reasons to ignore “Region Mathematics” 
because of its birth happened with simple type of 
mathematics and while they will come across very simple 
and elementary terms like: (ax+by)2, Associativity, Cross-
multiplication, Componendo & Dividendo, etc. in this article 
during the course of its analysis. Because on the other side of 
the mind it is fact that our scientists are roaming around 
Mars, or even around Pluto in this solar system and ofcourse 
roaming around the universe (or multiverse, if exists), with 
the existing super-giant volume of mathematics!. We proceed 
then to introduce a new direction in Calculus called by 
“Region Calculus” by defining “Calculus Space” in Section-
4. It is observed that the existing calculus of Newton and 
Leibnitz is a particular case of region calculus. It is claimed 
that there could be requirements of new generalized types of 
calculus to see the universe more precisely, and if it is so 
then there must be a path consisting of genuine steps which 
will ensure whether in a certain environment a new calculus 
can be developed or not. If it can be developed, then the 
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question arises on ‘how to develop’. It is also explained here 
that the philosophy of developing a new calculus is same as 
that of the originators Newton and Leibnitz. Then we extend 
the concept of calculus space by introducing multi-
dimensional calculus space and the corresponding multi-
dimensional region calculus. The properties of region algebra 
are very important as this is the ‘minimal algebra’ which 
justifies free and fluent practice of elementary as well as 
higher algebra. This important caliber of regions having the 
unique property to be qualified as the ‘minimal algebra’ in 
the sense of giving a kind of driving license to the world 
mathematicians, the caliber which is not possessed by 
groups, rings, modules, fields, linear spaces, algebra over a 
field, associative algebra over a field, and even not by 
‘division algebra’ or by any existing standard algebraic 
system alone, in general, by virtue of their respective 
definitions and properties. This important identification, 
probably the most important issue in the subject ‘Algebra’ 
and one of the most important issues in Mathematics, was 
missing so far in any past literature of algebra or 
mathematics, and thus it is surely a unique algebra of 
absolute integrated nature and super power. With the 
introduction of Region Mathematics, all existing branches of 
mathematics can be provided their siblings with the progress 
in future research works, in order to explore the academic 
universe of science, mathematics, engineering, social science, 
statistics, etc. with many more alternative new approaches 
and new thoughts. 

2. Recollecting the Standard Definitions 

of ‘F-algebra’, ‘Associative Algebra 

over a Field F’ and ‘Division Algebra’ 

Throughout the discussion in this paper, the following 
standard definitions are followed for ‘F-Algebra’, 
‘Associative Algebra over a field F’, and for ‘Division 
Algebra’ [1, 2, 10-23, 26, 28]:- 

2.1. ‘Algebra over a Field F’ (F-ALGEBRA) 

An ‘Algebra over a field F’ (or, a F-Algebra) is a vector 
space A over F equipped with a compatible notion of 
multiplication 

 

2.2. ‘Associative Algebra over a Field F’ 

An ‘Associative Algebra over a field F’ is a vector space 
over F which also allows the multiplication of vectors in a 
distributive and associative manner, having bilinearity of the 
multiplication. 

2.3. ‘Division Algebra’ 

A ‘Division Algebra’ (D, +, *) is a set D together with two 
binary operators + and * such that it is a unit ring and (D–
{ 0D },*) forms a group. A division algebra D allows division 

operation by non-zero elements, but D need not be 
commutative with respect to its multiplication operation. Even 
the compatible notion of multiplication may or may not be 
satisfied in D. A division Algebra is also called by "division 
ring" or "skew field". For example, the set R of real numbers, 
the set C of complex numbers, the Cayley algebra, the set of 
quaternions, etc. are few examples of division algebra. 

3. Region Algebra 

Algebra is regarded as one of the most beautiful branches of 
mathematics and it is about finding the unknowns. It tastes to 
be both dry and juicy. More precisely Algebra is about 
converting the real life problems of engineering, science, 
mathematics, social science, etc. into equations/inequations 
and then solving them to understand the unknowns. Algebra is 
taught from primary/secondary school level as one of the 
subjects in the course-curriculum popularly known as 
“Elementary Algebra” which develops the thinking 
capabilities, specifically logic, patterns, problem solving, 
deductive and inductive reasoning of the students. It is shown 
by a number of examples here that most of the simple and 
useful results, identities/equalities, formulas or algebraic 
expressions or equations (commonly practiced at secondary 
school level of mathematics) of elementary algebra are not 
valid (i.e. can not be computed/verified) in general in any of 
the existing standard algebraic systems alone: viz. in a group 
alone, or in a ring alone, or in a field alone, or in module, 
linear space, algebra over a field, in an associative algebra over 
a field, or in a division algebra alone, etc. By the phrase: “the 
result is valid in the algebraic system A”, we mean here that 
the result can be successfully computed and 
established/verified in the algebraic system A. Consequently, it 
is unearthed that there was a major gap lying hidden so far in 
the existing literature on the subject “Algebra”. To fill-up this 
gap a new algebraic system called by “Region” is introduced 
independently in a unique way. The huge potential and 
strength of this powerful algebraic system is lying in the fact 
that it validates the simple results, equalities, identities, 
formulas etc. of elementary algebra which are commonly 
practiced at secondary school level of mathematics, whereas 
most of them can not be computed/verified in general in any of 
the existing standard algebraic systems alone. The issue 
happened to my mind by chance only, by luck, with no prior 
plan or thinking of mine to proceed for developing a new 
algebraic system. Region alone provides the minimal platform 
on which all elementary algebraic computations practiced by 
students, teachers, mathematicians, scientists, engineers, etc. 
are done. Such a complete and sound platform for practicing 
‘elementary algebra’ can not be provided by any existing 
algebraic system alone like: group, ring, module, field, linear 
space, algebra over a field, associative algebra over a field, 
division algebra, etc. in general. This important fact was 
hidden so far to the algebraists, and has been now unearthed 
here. With this philosophy, it can be realized that all the 
existing classical algebraic systems are weaker than the 
algebraic system ‘region’ in terms of application potential and 
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caliber. An initial development of the theory of regions is done 
with a lot of characterizations, establishing a number of 
important properties of the regions. 

3.1. Justification Behind the Genuine Need to  

Define/Identify a New Algebraic System and to  

Introduce It Uniquely in an Independent Way 

A system consisting of a non–null set S and one or more n-
ary operators on the set S is called an algebraic system, 
denoted by the notation (S, O1, O2, …, Or) where Oi, i = 
1,2, …., r, are operators on S. An algebraist can define an 
infinite number of new algebraic systems. The objective of 
the work in this section is not just for the sake of defining a 
new algebraic system, but to recognize and identify a major 
gap of the subject ‘Algebra’ lying hidden so far in the 
existing vast literature developed till date. 

In this section we show that the existing algebraic systems 
viz. groups, rings, modules, fields, linear spaces, algebra over 
a field, associative algebra over a field, division algebra or 
any existing standard algebraic system, by virtue of their 
definitions, are not sufficient to provide a sound and 
complete environment/platform or algebraic right to the 
mathematicians for performing many simple algebraic 
computations, for establishing many useful and simple 
identities or equalities of two algebraic expressions, and for 
establishing many useful algebraic results/solutions etc. of 
elementary algebra; although many of these 
results/equalities/identities are very much well known even 
to the secondary school students, and being practiced fluently 
by the students, teachers, academicians, engineers, scientists, 
etc in the world. Fortunately none is arriving at any 
contradiction too (even if the scientists do excellent work like 
sending satellite to Mars or Pluto), the reasons for which has 
been unearthed and clarified with various sub-reasons stated 
at every section till the end of the content of this paper and of 
the work [7]. 

Let us begin here with a collection of few cases or issues 
(out of infinite number) on the various standard algebraic 
systems: groups, rings, modules, fields, etc. These cases (five 
cases) are mentioned below for the sake of instance only, 
although they are no doubt very simple and obvious cases to 
any algebraist. But special attention of the readers is required 
on the situations presented in Case-4. Then we justify the 
genuine needs for identifying a new kind of atomic, well 
complete, sound and unique algebraic system in an 
independent way with its self-identity. 

Few Cases (by examples): 

Case-1: If an expression like x ⊕  y/z is known to be a 
valid expression in an algebraic system A (while let us 
suppose that nothing is known to us at this stage about the 
identity or about the properties of the algebraic system A), 
where x, y, z ∈  A, then one can say that A is not just a group 
or a ring in general; however it could be a Division Algebra 
or any algebra which is also a division algebra. 

Case-2: If an expression like x ⊕  2.y ⊕  5.z is a valid 
expression in an algebraic system A while nothing is known 
to us at this stage about the identity or about the properties of 

the algebraic system A, where x, y, z ∈  A (assuming that 
associativity property hold good in A over the operator ⊕ ), 
then one can say that A is not just a group or ring or a field, 
in general. However, it could be a linear space over the field 
R of real numbers, or something else which is also a linear 
space over the field R of real numbers. 

Case-3: If an expression like x + 2.y z is a valid 
expression in an algebraic system A where x, y, z ∈  A, then 
one can immediately say that A can not be just a group or a 
ring or a field or a linear space in general. However, it could 
be an ‘Associative Algebra over a field’, or something else. 

Consider the equality (identity): (x + y)2 = x2 + 2.(x * y) + 
y2 which is an absurd equality (as it can not be verified) in 
general in a group or in a ring/module or in a field or in a 
linear space or in an associative algebra over a field. 
However, it can be well verified in some ‘algebra over some 
field’. Here it may be noted that the LHS of this equality can 
be evaluated in a ring or in a field, but not the RHS 
(assuming that the notation t2 stands for the expression t * t 
as usual). 

Now consider three interesting situations in Case-4 below: 
Case-4 (three examples here): 
Example 3.1 

A very simple example from elementary algebra, very 
frequently used by the secondary school students, is the 
equality (identity) I of type given by 

, 

but it is not valid i.e. can ‘not be verified’ in general in a 
group, ring, module, field, linear space, ‘algebra over a field 
(i.e. F-algebra)’, ‘associative algebra over a field’, Division 
Algebra, or in any existing standard brand of algebraic 
system alone. 

Justification 

It is because of the reason that: 
(1) since division operations are involved, it can not be a 

simple ‘F-algebra’ alone. 
(2) on the other hand, if it is not a‘F-algebra’ but a simple 

division algebra D alone, then the following are fact:- 

(i) the LHS expression 
2
3

x

y

   •   
   

can be well written to 

be equal to the expression 
1

2.
3

 
 
 

• (x * y-1) in the 

division algebra D, 

(ii) but the expression 
1

2.
3

 
 
 

•  (x * y-1) can not be 

written in the division algebra D, by virtue of its 
definition and own properties, to be equal to the 

expression (2 • x) * 11
3

y− • 
 

, (see Section 2). 

(iii) although, it is true that in the division algebra D, by 
virtue of its definition and own properties, 
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(2 • x) * 11
3

y− • 
 

is equal to the expression 
2
3

x

y

 •
 • 

. 

Consequently, in a simple division algebra D, the 

expression 
2
3

x

y

   •   
   

can not be equal to
2
3

x

y

 •
 • 

, in 

general, except in some particular cases where few additional 
conditions or properties need to be also satisfied by the 
division algebra D as its additional qualifications (although a 
‘division algebra’ by definition does not need to satisfy these 
additional requirements of properties). Fortunately, in many 
of these cases the objects x, y are real numbers and by default 
the set R of real numbers satisfies some additional interesting 
properties beyond the properties possessed by division 
algebra alone or any existing brand of algebraic system 
alone. Consequently, although there is no single brand of 
existing algebraic system alone which has the capability to 
provide the set R these additional requirements of properties, 
the mathematicians have not been facing any problem and 
have not been getting any incorrect results or contradictory 
results because of some interesting reasons which have been 
unearthed and analyzed in this section in details. This is a 
very useful, very powerful, very important (probably most 
important fact in Algebra) and going to be very prominent 
fact which is missing in the existing literatures on Algebra. 

It can also be observed that in this simple elementary 
expression, three multiplication operators ‘.’, ‘ • ’, and ‘*’ are 
involved. 

Example 3.2 

With the same argument as in Example 3.1 above, it can be 
observed that if an equality (in fact an identity) I of type 
given by 

2
2 2

2 2

1 1 2
( )

a x
a x a x

b y b yb y

    • ⊕ = • ⊕ ⊕ •    • •     
 

is known to be a valid identity (i.e. can be computed and 
verified) in an algebraic system A where x, y ∈  A, a and b 
are members (scalars) of some field F, then it can be 
observed that all of the following statements are not true in 
general (unless few additional properties are satisfied beyond 
their respective definitions): 

a. A is just a group alone, or a ring, module, field, linear 
space 

b. A is just an ‘algebra over a field F’ (F-algebra) 
c. A is just an ‘associative algebra over a field’ 
d. A is just a ‘Division Algebra’ alone 
e. A is any standard existing brand of algebraic system, in 

general. 
Example 3.3 

By a careful observation it can also be seen that even a 
simple computation of ‘cross-multiplication’ C of secondary 
school level elementary algebra like: 

if 
2
7

x

y

•
•

 = 
5
3

z

t

•
•

 then 6 • x ∗ t = 35 • y ∗ z (and conversely) 

is not valid in a division algebra, by virtue of its definition 
and its own properties, or in any standard algebraic system. 

Brief Justification: 

The justification is in fact similar to what made in 
Example 3.1 

(1) since division operations are involved, it can not be a 
simple ‘F-algebra’ alone. 

(2) on the other hand, if it is not a ‘F-algebra’ but a simple 
division algebra D alone, then the following are fact:- 

Suppose that 
2
7

x

y

•
•

 = 
5
3

z

t

•
•

 

Or, ( )2 x• ( ) 17 y
−•  = ( )5 z• ( ) 13 t

−•  
which can not yield the result 6 • x ∗ t = 35 • y ∗ z in a division 
algebra, by virtue of its definition and its own properties. 

Similarly, for another example, it may be carefully seen 

that a very simple square identity I like: 
2

3
7

x

y

 •
 • 

= 
2

2

9

49

x

y

•
•

 

can ‘not be verified’ (i.e. not valid) in general in a group, 
ring, module, field, linear space, ‘algebra over a field (i.e. F-
algebra)’, ‘associative algebra over a field’, Division 
Algebra, or any standard algebraic system (assuming that 
division by the zero element is not allowed). 

Then, the immediate question that arises to an algebraist is: 
“What algebraic system is A?” Or “What could be the 
minimal algebraic system in which the above identities I or 
the above cross multiplication result C are valid?”. Or “What 
algebraic system the identities I or these results can be 
verified in?”. For a possible answer, an algebraist has to think 
of a permutation/combination of the various existing 
algebraic structures to make out a possible identity of A. But, 
he might seek to make a unique identity for this algebraic 
system A to define it in an independent and atomic way, and 
then to study the various properties of A, various results valid 
on A, highlighting its unique importance/role in Algebra 
compared to all other standard algebraic systems. It is 
because of the reason that this algebraic system A is 
supposed to be the most appropriate and needful minimal 
platform for practicing the problems from elementary algebra 
of secondary school level to higher algebra, compared to any 
other existing standard algebraic system, in general. Thus the 
role of this algebraic system to the world mathematicians is 
much more than any other existing algebraic system. 
Consequently there a genuine need to identify that algebraic 
system, which is hidden so far, unrecognized so far, but a 
very powerful algebraic system in the sense that it can 
provide the actual and minimal base-platform for practicing 
the subjects elementary algebra and higher algebra, compared 
to what the existing algebraic systems can provide. It is fact 
that algebraic identities/equalities, formulas or algebraic 
expressions or equations involving two kinds of 
multiplication operators and one (or two) kind of addition 
operator are very common and frequent in the study of 
mathematics, science subjects, engineering subjects from 
secondary school level to higher levels(!). Such kind of 

computations are probably the most frequent and of routine 

type exercises at secondary school level to college/university 

and research level of study. For example, in matrix theory, 
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expressions with two kinds of multiplication operators 
(matrix multiplication and scalar multiplication) and with one 
kind of addition operator (matrix addition) like A + 2BCD-1 – 
5XY-2 where A, B, C, D, X, Y are real square matrices of 
order n, are very common and frequent. 

3.2. Introducing a New Algebraic System ‘Region’ 

It has been observed that there is a genuine need to 
introduce a new algebraic system having unique self-identity 
in order to provide a minimal but sufficient platform based 
upon which the elementary algebra or higher algebra can be 
fluently practiced by the mathematicians with valid algebraic 
right and driving license. 

3.2.1. Region 

Consider a non-null set A equipped with three binary 
operators ⊕ , * and •  such that for a given field (F, +,.), the 
following three conditions are satisfied:- 

(i) (A, ⊕ ,*) forms a field, 
(ii) (A, ⊕ , • ) forms a linear space over the field (F, +,.), 

and 
(iii) A satisfies the property of “Compatibility with the 

scalars of the field F” 
i.e. (a • x) * (b • y) = (a.b) • (x*y) ∀ a, b ∈  F and ∀ x, y ∈  

A. 
Then the algebraic system (A, ⊕ ,*, • ) is called a Region 

over the field (F, +,.). 
If there is no confusion, we may simply use the notation A 

to represent the region (A, ⊕ ,*, • ), for brevity. 
We now study the various interesting properties of a region 

A. 
Two Fields: Inner Field and Outer Field (Base Field) 
The field (A, ⊕ ,*) is called the “inner field” of the region 

(A, ⊕ ,*, • ); and the field (F, +,.) of the linear space (A, ⊕ ,
• ) is called the “outer field” or the “base field” of the region 
(A, ⊕ ,*, • ). 

3.2.2. Three Multiplication Operators 

First Multiplication Operator, Second Multiplication 
Operator, and Third Multiplication Operator (or Base 
Multiplication Operator) 

The sequence of the three operators “ ⊕ ”, “*”, and “ • ” 
appearing in the notation (A, ⊕ ,*, • ) representing the region 
A is important in the sense that the operator “*” of the region 
A which is the multiplication operator of the inner field (A,
⊕ ,*) is called the “first multiplication” operator of the 
region A. The operator “ • ” of the region A which is the 
multiplication operator of the linear space (A, ⊕ , • ) is called 
the “second multiplication” operator of the region A. The 
multiplication operator “. ” of the base field F is called the 
“third multiplication” operator or the “base multiplication” 
operator of the region A. 

3.2.3. Two Addition Operators: First Addition Operator and 

Third Addition Operator 

The operator “ ⊕ ” of the region (A, ⊕ , *, • ) which is the 
addition operator of the inner field (A, ⊕ ,*) as well as of the 
linear space (A, ⊕ , • ) is called the “first addition” operator 

of the region A. The operator “+” which is the addition 
operator of the base field (F, +,.) is called the “third addition” 
operator or the “base addition” operator of the region A. 

There is no terminology like “second addition” operator of 
a region A. 

Thus in a region A, we deal with two addition operators 
and three multiplication operators, in general. It is obvious 
from the definition that a region A must have at least two 
elements. It may also be noted that every region is an 
‘algebraic system over a field’, but the converse is not true in 
general. 

As a simple instance, it could be now seen that an equality 

(identity) I of type given by 
2
3

x

y

   •   
   

= 
2
3

x

y

 •
 • 

, 

which can not be verified, in general, in a group or in a ring 
or in a field or in a linear space or in an associative algebra 
over a field, or in a division algebra or even not in a simple 
‘algebra over a field’, now can be well verified or established 
in the algebraic system ‘region’ alone, and hence obviously 
in any algebraic system which is at least a region. 

As another simple instance, it could be now seen that an 
identity like 

2
2 2

2 2

1 1 2
( )

a x
a x a x

b y b yb y

    • ⊕ = • ⊕ ⊕ •    • •     
 

which can not be verified, in general, in a group or in a ring 
or in a field or in a linear space or in an associative algebra 
over a field, or in a division algebra or even not in a simple 
‘algebra over a field’, now can be well verified or established 
in the algebraic system ‘region’ and hence obviously in any 
algebraic system which is at least a region. 

And it can be also be seen now that even a simple 
computation of ‘cross-multiplication’ C of secondary school 
level elementary algebra like: 

if 
2
7

x

y

•
•

 = 
5
3

z

t

•
•

 then 6 • x ∗ t = 35 • y ∗ z (and conversely). 

or, a very simple square identity I like: 
2

3
7

x

y

 •
 • 

= 
2

2

9

49

x

y

•
•  

which can not be verified, in general, in a group or in a ring 
or in a field or in a linear space or in an associative algebra 
over a field, or in a division algebra or even not in a simple 
‘algebra over a field’, now can be well verified or established 
in the algebraic system ‘region’ and hence obviously in any 
algebraic system which is at least a region. 

A region (A, ⊕ , *, • ) is defined here as an atomic 
algebraic system with two multiplication operators, one is 
internal operative and the other is with the scalars of F. This 
characteristic makes the algebraic system region to become 
the most appropriate platform for practicing and validating 
the results of ‘elementary algebra’ (and also college algebra, 
higher algebra etc.), compared to the standard algebraic 
systems like groups, rings, modules, fields, linear spaces, 
algebra over a field, associative algebra over a field, division 
algebra, etc. 
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In the region (A, ⊕ ,*, • ) over the field (F, +,.), one of its 
component algebraic systems is (A, ⊕ ,*) which is a field. 
Thus we see that the region A is a commutative and also a 
division algebra. Besides that the other component algebraic 
system (A, ⊕ , • ) of the region A is a linear space over the 
field F. Considering the distributive properties of the field (A,
⊕ ,*) along with the condition(iii) mentioned in the 
definition of region above, it is observed that the region A is 
also a F-algebra. Thus, integrating these three facts, we can 
see that a region is a “commutative division F-algebra”, but 
defined independently and uniquely with a self-identity here. 
An algebra satisfying only the property of ‘commutative’ is 
not sufficient to define the algebra we have been in quest 
here, satisfying only the properties of ‘division algebra’ is not 
sufficient to define the algebra we have been in quest here, 
satisfying only the properties of ‘F-algebra’ is not sufficient 
to define the algebra we have been in quest here. At 
minimum it must be a region. It could be any other algebra 
which is also a region. But the minimum platform is the 
region, not less. Clearly a region is not a division algebra 
only, but a lot of things more. However, a region can also be 
viewed as permutation/combination of the existing classical 
algebraic systems in other ways too, But considering its 
major role and huge importance to all the mathematicians, 
our purpose is to give due regards to it providing it an 
independent identity and clearly studying its various 
properties here. 

Example 3.4 
The region RR: the most useful region in Science, 

Engineering & Other areas. 
Let R be the set of real numbers, ‘+’ be the ordinary 

addition operator in R and ‘.’ be the ordinary multiplication 
operator in R. Consider the field (R, +,.) of real numbers, and 
the linear space (R,+,.) over the field (R,+,.). Then the 
algebraic system (R, +,.,.) forms a region over the outer field 
(R, +,.). 

This region (R, +,.,.) plays a very important role in our 
daily life computations, in particular in school level 
elementary algebra/arithmetic. The content of the syllabus 
and corresponding instructions at school level algebra is 
based on the platform of this region (R, +,.,.), not on the 
platform of any standard algebraic structure like groups, 
rings, fields, linear spaces, algebra over a field, associative 
algebra over a field, division algebra or any existing 
algebraic system, in general. Let us name this region (R, +,.,.) 
in short by “RR”. The region RR is the most useful region in 
the existing Mathematics, Science, Engineering & Other 
areas. 

One of the most beautiful qualifications, rich merits and 
strengths of the Regions is that all the following three 
important associative properties collectively may not be true 
in a simple division algebra alone, or in any standard 
algebraic system alone, but they are well valid in any region; 
although they are frequently and freely being used by the 
mathematicians, scientists and engineers in their any 
mathematical work or computation of everyday life. 

3.2.4. Three Associativity Properties of Regions 

The following three associative properties hold good in a 
region (A, ⊕ ,*, • ) over the field (F, +,.). They are called 
“No-Scalar Associative Property”, “One-Scalar Associative 
Property” and “Two-Scalars Associative Property” 
respectively. 

(i) x ∗ (y ∗  z) = (x ∗ y) ∗ z: (No-Scalar Associative 
Property) 

(ii) a •  (x ∗ y) = (a • x) ∗ y: (One-Scalar Associative 
Property) 

(iii) (a.b) •  x = a •  (b • x): (Two-Scalars Associative 
Property) 

where a, b ∈  F and x, y, z ∈  A. 
Proof: 

(i) This follows by inheritance from the properties of the 
inner field (A, ⊕ ,*). 

(ii) Consider the property of “Compatibility with the 
scalars of field F” in the region (A, ⊕ ,*, • ) given by: 

(a • x)* (b • y) = (a.b) • (x*y). Substituting 1F for b in the 
above, we get the result of ‘One-Scalar Associative 
Property’, where 1F is the unit element of the outer field (F, 
+,.). 

(iii) It follows by inheritance from the properties of the 
linear space (A, ⊕ , • ). 

NOTE 3.1 Throughout this section, the following 
conventions are to be assumed in the context of region (A,
⊕ ,*, • ) over the field (F, +,.), without any confusion:- by the 
expression a • x ⊕ y, we shall mean (a • x) ⊕ y, not a • (x ⊕
y) ; the expression a • x ∗  b • y means the expression (a • x) ∗
(b • y); the expression a • x ⊕ b • y means (a • x) ⊕ (b • y); the 
expression a. b • x means the expression (a.b) • x. 

3.2.5. “Additive Identity” Element of a Region 

The additive identity element of the inner field (A, ⊕ ,*) of 
a region (A, ⊕ ,*, • ) is called the ‘additive identity’ element 
of the region A, and is denoted by the notation 0A. Obviously, 
the ‘additive identity’ element of a region A is unique, by 
virtue of inheritance from the properties of the inner field (A,
⊕ ,*). The additive identity of a region A is also called the 
‘zero element’ of the region A. It is obvious that the zero-
element of the linear space (A, ⊕ , • ) and the element 0A, the 
zero element of the region A, both are the same elements. 

3.2.6. “Multiplicative Identity” Element of a Region 

The multiplicative identity element of the inner field (A,
⊕ ,*) of a region (A, ⊕ ,*, • ) is called the ‘multiplicative 
identity’ element of the region A and is denoted by the 
notation 1A. Obviously, ‘multiplicative identity’ element of a 
region A is unique, by virtue of inheritance from the 
properties of the inner field (A, ⊕ ,*). The multiplicative 
identity of a region A is also called the ‘unit element’ of the 
region A. 

3.2.7. “Additive Inverse” of an Element of a Region 

For an element x of a region (A, ⊕ ,*, • ) over the field (F, 
+,.), the ‘additive inverse’ of x is defined to be that element 
of the region A which is the additive inverse of x in the inner 
field (A, ⊕ , ∗ ), and is denoted by the notation ~ x. 
Obviously, ‘additive inverse’ of an element of a region is 
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unique, by virtue of inheritance from the properties of the 
inner field (A, ⊕ , *). 

3.2.8. “Multiplicative Inverse” of an Element of a Region 

For a non-zero element x of a region (A, ⊕ ,*, • ) over the 
field (F, +,.), the ‘multiplicative inverse’ of x is defined to be 
that element of the region A which is the multiplicative 
inverse of x in the inner field (A, ⊕ , ∗ ), and is denoted by the 
notation x-1. Obviously, ‘multiplicative inverse’ of an element 
of a region is unique, by virtue of inheritance from the 
properties of the inner field (A, ⊕ ,*). It may be observed that 
“multiplicative inverse” x-1 of an element x of a region A is 
with respect to the first multiplication operator of the region 
A. There is no multiplicative inverse of an element x of the 
region A with respect to the second multiplication operator 
‘ • ’ and with respect to the third multiplication operator ‘.’. 

The following proposition on a region (A, ⊕ ,*, • ) over the 
field (F, +,.) is obvious, being inherited from its inner field 
(A, ⊕ ,*) for the results (i) and (ii), and being inherited from 
the linear space (A, ⊕ , • ) for the results (iii) and (iv). 

Proposition 3.1 

In a region (A, ⊕ , *, • ) over the field (F, +,.), for a, b ∈  
F and for x, y ∈  region A, 

(i) if x = y, then x ⊕  z = y ⊕  z ∀ z∈  region A. 
(ii) if x = y, then x * z = y * z ∀ z∈  region A. 
(iii) if x = y, then a • x = a • y ∀ a ∈  F. 
(iv) if a = b, then a • z = b • z ∀ z∈  region A. 
The following result is true in region algebra. 
Proposition 3.2 

In a region (A, ⊕ ,*, • ) over the field (F, +,.), for a∈F and 
for x ( ≠ 0A), y∈ region A, if y * x = a • x then y = a • 1A. 

Proof: We have y * x = a •  x 
∴ (y * x) * x-1 = (a •  x) * x -1 

Applying ‘No-scalar Associative Property’ on LHS and 
‘One-scalar Associative property’ on RHS, we get 

y * (x * x -1) = a •  (x * x -1) 

∴  y = a • 1A. Hence proved. 

3.2.9. Four Types of ‘Division’ in a Region Algebra 

Let (A, ⊕ , *, • ) be a region over the field (F, +,.). There 
are four types of division can be performed in this algebraic 
system which are mentioned below. For all these four types 
of division, we use a common notation/style like 

min
numerator

deno ator
, (assuming that there is no confusion). 

Division Type-(i) Division of an ‘element of the region A’ 
by another ‘element of the region A’ 

∀ x, y ( ≠ 0A) ∈  region A, the division of the element x by 

the non-zero element y is denoted by the notation 
x

y
, and is 

defined by 
x

y
= x ∗  y -1 or y -1 ∗ x (as they are commutative). 

Replacing x by 1A and y by x in the above, we get the result 
1A

x
 = x -1 (where x ≠ 0 A ). 

Division Type-(ii) Division of ‘an element of the region A’ 
by ‘an element of the outer field F’ 

∀  x ∈  A and ∀  a ( ≠ 0F) ∈  F, the division of the region 

element x by the field element a is denoted by 
x

a
, and is 

defined by 
x

a
 = a-1 •  x. (It may be noted that an expression 

like x • a-1 is not valid here in general, except for some 

particular regions). Replacing a by 1F, we get the result 
1F

x
 

= x. 
Division Type-(iii) Division of ‘an element of the outer 

field F’ by ‘an element of the region A’ 
∀  a ∈  F and ∀  x ( ≠ 0A) ∈  A, the division of the field 

element a by the region element x is denoted by 
a

x
, and is 

defined by 
a

x
 = a •  x-1. (It may be noted that an expression 

like x-1 • a is not valid here). Replacing a by 1F, we get the 

result 
1F

x
 = x-1. 

NOTE 3.2 

From the two equalities x-1=
1A

x
 and 

1F

x
 = x-1 (where x ≠

0A), we get the result 
1A

x
 = 

1F

x
. But using Proposition 3.2 

we observe that a cancellation-law is not applicable to this 
result here, and consequently the equality 1A = 1F does not 
emerge to be true (in general, except for some particular 
regions). 

Division Type-(iv) Division of ‘an element of the outer 
field F’ by another ‘element of the outer field F’. 

In the field (F, +,.), it is known (in field theory) that ∀  a, b 
( ≠ 0F) ∈  F, the division of the element a by the non-zero 

element b is denoted by the notation 
a

b
, and is defined by 

a

b
 

= a. b-1 or b-1.a, (they are commutative).  
NOTE 3.3 

In Proposition 3.2 we have seen that the equality a •  x = y 
* x does not allow any kind of right-cancellation in the 
region A (in general, except for some particular regions). 

Therefore, the equality 
x

a
 = 

x

y
 does not allow any kind of 

cancellation in the region A ; and also the equality 
a

x
 = 

y

x
 

does not allow any kind of cancellation in the region A (in 
general, except for some particular regions). 

3.2.10. Characterization of the Algebraic System “Region” 

In this section an initial characterization of region is made. 
Most of the useful simple results collectively all need to be 
validated in a unique algebraic system so that we can offer 
this algebraic system to the mathematicians, scientists, 
engineers for their use. And region is the minimal platform 
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for this, neither division algebra nor any existing algebra 
alone. May be few results are true in division algebra, few 
are true in a F-algebra, few may be true in an Associative 
Algebra over a field F, but all the results collectively are 
valid in a unique algebra ‘region’. That is the reason why 
region is unearthed and introduced with an independent and 
unique identity. 

Results 3.1 

In a region (A, ⊕ , *, • ) over the field (F, +,.), the 
following results are therefore straightforward ∀ x, y ∈  A 
and ∀ a ∈  F (keeping in mind that division by 0A or by 0F is 
not permissible):- 

(i) x
n ∗ x

r
 = x

n r+
 

(ii) x
n ∗ x

r−
 = x

n r−
 

(iii) x
n− ∗ x

r−
 = x

n r− −
 

= x – (n+r) 
(iv) (x ∗  y) n = xn ∗

yn 

(v) 
n n

n

x x

y y

 
= 

 
 

(vi) (
n n

n

x x

a a

  = 
 

 

(vii) 
n n

n

a a

x x

  = 
 

 

where n and r are non-negative integers. 
Results 3.2 

The following truths in a region (A, ⊕ ,*, • ) over the field 
(F, +,.), being inherited from the definitions and properties of 
the fields (A, ⊕ ,*) and (F, +,.), and also of the linear Space 
(A, ⊕ , • ), and of the region A itself, are listed below for the 
sake of one perusal just: - 

∀ x∈  A and ∀ a ∈  F, 

(1) 0F • x = 0A 

(2) a •  0A = 0A 

(3) 0F • 0A = 0A 

(4) 0F • 0A ≠  0F 

(5) 1F • x = x 

(6) 1A ∗ x = x 

(7) 1F • 1A ≠  1F 

(8) 1F • 1A = 1A 

(9) a • 1A ≠  a 

(10) 1F • 0A ≠  1F 

(11) 1F • 0A = 0A 

(12) 0A ∗ x = 0A 

(13) 0A ∗ x ≠  0F 

(14) 1A ~ 1A = 0A 

(15) 1F - 1F = 0F 

(16) 
0A

x
and

0F

x
 are meaningless. 

(17) 
0A

a
and

0F

a
 are meaningless. 

The following proposition is straightforward in any region. 
Proposition 3.3 

In a region (A, ⊕ , *, • ) over the field (F, +,.), ∀ x, y ∈  A 
and ∀ a ∈  F (keeping in mind that division by 0A or by 0F is 
not permissible) the following results are true:- 

(i) ∀ x∈  A, ~ (~ x) = x 
(ii) ∀ x ( ≠ 0 A ) ∈  A, (x 1− ) 1−  = x 
(iii) ~ (x ⊕  y) = (~x) ⊕  (~y) 
(iv) ~ (x 1− ) = (~ x) 1−  
(v) (x∗  y) -1 = x-1 ∗  y-1 
(vi) ~ (x ∗ y) = (~x) ∗ y = x ∗ (~y) 

(vii) ~ 
x

y
 = 

x

y

∼

 = 
x

y∼
 

(viii) ~ 
x

a
 = 

x

a

∼

 = 
x

a−
 

(ix) ~ 
a

x
 = 

a

x

−
 = 

a

x∼
 

(x) 
1

x

y

−
 
 
 

 = 
1

1

x

y

−

−

 
  
 

 = 
y

x
 

(xi) 
1

x

a

−
 
 
 

 = 
1

1

x

a

−

−

 
  
 

 = 
a

x
 

(xii) 
1

a

x

−
 
 
 

 = 
1

1

a

x

−

−

 
  
 

 = 
x

a
 

(xiii) x ∗  (a •  y) = a •  (x ∗ y) 
Proof: All the results are straightforward. 
Proposition 3.4 

In a region (A, ⊕ , *, • ) over the field (F, +,.), ∀ x ∈  A, 
~ x = (-1F) •  x = (~1A) ∗  x. 

Proof: We know 0A = 0F • x 
or, 0A = (1F + (-1F)) •  x 
or, 0A = 1F •  x ⊕  (-1F) • x 
or, 0A = x ⊕  (-1F) • x 
or, (~ x) ⊕  0A = (~ x) ⊕  (x ⊕  (-1F) •  x) 
or, ~ x = (-1F) •  x which is the result. 

Again, we have, 0A = 0A ∗ x 
or, 0A = (1A ⊕  (~1A)) ∗  x 
or, 0A = 1A ∗ x ⊕  (~1A) ∗ x 
or, 0A = x ⊕  (~1A) ∗ x 
or, ~x ⊕  0A = ~x ⊕  (x ⊕  (~1A) ∗ x) 
or, ~x = (~1A) ∗ x, which is the result. 

Proposition 3.5 

In an infinite region A = (A, ⊕ , *, • ) over the field (F, 
+,.) where the characteristic of A is zero, if a • x = 0A then 
either a = 0F or x = 0A, where x ∈  A and a ∈  F. 

Proof: We have a • x = 0A. 
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If x ≠  0A, then 
or, (a • x) ∗  x 1−  = 0A ∗  x 1−  
or, a • 1A = 0A 
⇒  a = 0F 

Otherwise, if a ≠  0F, then 
a 1− •  (a • x) = a 1− •  0A 
or, (a 1− . a) •  x = 0A 
or, 1F •  x = 0A 
or, x = 0A. Hence the result. 

In a region (A, ⊕ ,*, • ) over the field (F, +,.), we know that 
∀ a ∈  F and ∀ x ∈  A, the element (a • x) is in A. Therefore, 
(a • x) possesses its additive inverse in the region A. Also, if 
it is not the zero-element of the region A then it possesses its 
multiplicative inverse too in the region A. The following 
proposition defines the additive inverse of the element (a • x) 
in the region A. 

Proposition 3.6 

In a region (A, ⊕ , *, • ) over the field (F, +,.), ∀ x ∈  A 
and ∀ a ∈  F, ~ (a • x) = (-a) • x = a • (~x). 

Proof: (a • x) ⊕  ((-a) •  x) 
= (a + (-a)) •  x 
= 0F •  x 
= 0A 

∴~ (a • x) = (-a) •  x 
In a similar way, we can also prove that ~ (a • x) = a •  (~x). 
The following proposition defines the multiplicative 

inverse of the element (a • x) in the region A. This important 
result is not valid in a division algebra, in general. 

Proposition 3.7 

In a region (A, ⊕ ,*, • ) over the field (F, +,.), ∀ x ( ≠ 0A) 
∈A and ∀ a ( ≠ 0F)∈F, (a • x) 1−  = a 1− •  x 1− . 

Proof: (a • x) ∗  (a 1− •  x 1− ) 
= (a.a 1− ) •  (x ∗ x 1− ), using compatibility property of 

region A. 
= 1F •  1A 
= 1A 

Therefore, (a • x) 1−  = a 1− •  x 1− . 
This following important result is not valid in a division 

algebra, in general. 
Proposition 3.8 

In a region (A, ⊕ , *, • ) over the field (F, +,.), for x, y 

newρ  A and for a, b ∈F, if b and y are not zero elements then 

 

Proof: 
a

b
• x

y
 = (a. b-1) •  (x*y-1) 

= (a •  x)*(b-1 • y-1) 

= (a •  x)*(b •  y)-1 

= a x

b y

•
•

 

The results of the following proposition can be established 
easily in a region. 

Proposition 3.9 

In a region (A, ⊕ ,*, • ) over the field (F,+,.), ∀ x, y∈ A 
and ∀ a, b ∈  F (keeping in mind that a zero element have its 
inverse), 

(i) (a •  (x∗ y)) 1−  = a 1− •  x 1− ∗  y 1−  
(ii) ~ (a •  (x∗ y)) = (-a) •  (x ∗ y) = a ( , )new x yρ  ((~x) ∗

y) = a •  (x∗ (~y)) 
(iii) a • x ∗  b • y)-1 = (a 1− • x 1− ) ∗  (b-1 •  y 1− ) 
(iv) ~ (a • x ∗  b • y) = (~ (a • x)) ∗ (b • y) = (a • x) ∗ (~ (b •

y)) 
(v)  ((a.b) •  x) 1−  = (a 1− . b 1− ) •  x 1−  
(vi) ~ ((a.b) •  x) = ((-a). b) •  x = (a. (-b)) •  x = (a.b) •  

(~ x) 
Many of the frequently practiced cancellation laws are not 

valid in a Division Algebra alone or in any existing standard 
algebraic system alone, by their definitions or by virtue of 
their respective properties. 

For example, the result 
a x

a y

•
•

 = 
x

y
 
is not valid in a 

Division Algebra alone or in any of the existing standard 
algebraic systems alone. 

The following valid cancellation laws ensures the 
superiority of region over any existing algebraic system as a 
single brand. 

Proposition 3.10 Cancellation Laws 

Let (A, ⊕ ,*, • ) be a region over the field (F, +,.). Since (A,
⊕ ,*) is a field, the following cancellation laws hold good in 
a region (A, ⊕ ,*, • ) by virtue of inheritance:- 

(1) If x ⊕ y = x ⊕ z, then y = z where x, y, z ∈  A. 
(2) If x ⊕ y = z ⊕ y, then x = z where x, y, z ∈  A. 
(3) If x∗ y = x∗ z where x ≠ 0A, then y = z where x, y, z ∈  

A. 
(4) If x∗ y = z ∗ y where y ≠ 0A, then x = z where x, y, z ∈  

A. 
However, it can be easily shown that the following two 

cancellation laws too hold good in a region A:- 
(5) If a • x = a • y where a ≠  0F, then x = y where x, y ∈  

A and a ∈  F. 
(6) If a • x = b • x where x ≠  0A, then a = b where x ∈  A 

and a, b ∈  F. 
Besides the above six, there are a number of kinds of 

cancellation operations valid in the region (A, ⊕ ,*, • ) over 
the field (F,+,.), few of which are quoted below:- 

If x, y ∈A and a, b ∈  F, then 
(7) If (a.b) •  x = (a.c) •  y where a ≠  0F, then b • x = c • y. 

(8) 
a x

a y

•
•

 = 
x

y
, where a ≠  0F and y ≠  0A. 

(9) 
( )
( )
a b x

a c y

⋅ •
⋅ •

= 
b x

c y

•
•

, where a ≠  0F. 

(10) 
( )
( )
a c x

b c y

⋅ •
⋅ •

= 
a x

b y

•
•

, where c ≠  0F. 

(11) 
( )
( )
a x y

b x z

• ∗
• ∗

= 
a y

b z

•
•

, where x ≠  0A. 
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(12) 
( )
( )
a x y

a z t

• ∗
• ∗

 = 
x y

z t

∗
∗

, where a ≠  0F. 

Proof: Although the proof of all the above results are 
straightforward, nevertheless we present below proof of one 
result (8). 

a x

a y

•
•

 = (a • x) ∗  (a •  y)-1 

= (a • x) ∗  (a-1 •  y-1) 

= (a.a-1) •  (x∗  y-1), using compatibility property of region A. 

= 1F •  (x ∗  y-1) 

= x ∗ y-1 

= 
x

y
 

NOTE 3.4 

Proposition 3.2 states that in a region (A, ⊕ ,*, • ) over the 
field (F, +,.), for a ∈  F and for x ( ≠ 0A), y ∈  region A, if y * 
x = a • x then y = a • 1A, and thus there is no kind of right 
cancellation holds good here. 

Proposition 3.11 

In a region (A, ⊕ ,*, • ) over the field (F, +,.), the following 
results are true (keeping in mind that division by 0A or 0F is 
not permissible):- 

If x, y, z, t ∈  A, and a, b, c, d ∈  F, then 

(i) 
x

y
∗ z

t
 = 

x z

y t

∗
∗

 

(ii) 
x y

z

⊕
 = 

x y

z z

   ⊕   
   

 

(iii) x 2 ~ y 2  = (x ⊕ y) ∗  (x~y) 

(iv)  
x

y
⊕

z

t
= 

( ) ( )x t y z

y t

∗ ⊕ ∗
∗

, 

(v) a x b y

c z

• ⊕ •
•  

= a x b y

c z c z

• •   ⊕   • •   
 = a x b y

c z c z

       • ⊕ •       
       

 

Proof: All the results are straightforward, nevertheless we 
present the proof of result-(iv) here. 

x

y
⊕

z

t
 

= (x∗  y-1) ⊕  (z∗  t-1) 

= ((x∗  t) ∗  (y-1 ∗ t-1)) ⊕  ((y∗ z) ∗ (y-1 ∗ t-1)) 

= ((x∗  t) ⊕  (y∗ z)) ∗  (y-1 ∗ t-1) 

= ((x∗  t) ⊕  (y∗ z)) ∗  (y∗ t)-1 

= 
x t y z

y t

∗ ⊕ ∗
∗

 

The results of the following proposition is also 
straightforward in any region, but not true in a Division 

Algebra in general. 
Proposition 3.12 

In a region (A, ⊕ , *, • ) over the field (F, +,.), for any 
non-negative integer n, if x ∈  A and a, b ∈  F then the 
following results are true. 

(i) (a • x) n  = a n • x n  (ii) 
n

a x

b y

 •
 • 

= 
n n

n n

a x

b y

•
•  

= 
n n

n n

a x

b y
•

 
where b ≠ 0F and y ≠ 0A. 

NOTE 3.5 

The equality a • x = b • y implies the following equalities 
(keeping in mind that division by 0A or by 0F is not 
permissible): 

(i) 
1F

b
• x = 

1F

a
• y. 

(ii) a • 1A

y
 = b • 1A

x
. 

(iii) 
x

b
 = 

y

a
 

(iv) 
a

y
 
= 

b

x
. 

But the equality a • x = b • y can not imply that 
a

b
 = 

y

x
. In 

fact this is an invalid and absurd equality, although both 
a

b
 

and 
y

x
 are individually meaningful. However, it surely 

implies the following equalities:- 

(i) 
y

x
 = 

a

b
•  1A and (ii) 

x

y
 = 

b

a
•  1A 

One of the most useful and most important properties 
fluently applied by the mathematicians in their calculations is 
Cross Multiplication Property. The following simple Cross 
Multiplication Property is not valid in general in a division 
algebra alone or in any existing standard algebraic system 
alone, by their respective definition or by virtue of their 
respective properties. But the same result is well valid in a 
region A. 

Proposition 3.13 Cross Multiplication Property 

In a region (A, ⊕ ,*, • ) over the field (F, +,.), the Cross 
Multiplication Property is well valid. i.e. 

If 
a x

b y

•
•

= 
c z

d t

•
•

, then (a.d) • (x ∗ t) = (b.c) • (y ∗ z) and 

conversely, 
where x, y, z, t ∈  A, y ≠ 0A ≠ t and a, b, c, d ∈  F, b ≠ 0F ≠ d. 

Proof: We have 
a x

b y

•
•

 = 
c z

d t

•
•

 

i.e. (a • x) ∗ (b • y)-1 = (c • z) ∗ (d • t)
-1 

or, (a • x) ∗ (d • t) = (b • y) ∗ (c • z) 
or, (a.d) • (x∗ t) = (b.c) • (y∗ z). 

Proposition 3.14 

In a region (A, ⊕ ,*, • ) over the field (F, +,.), if a • x = b • y 
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then 
a x

b y

•
•

 = 1A and conversely, 

where x, y ∈  A, a, b ∈  F and b • y ≠  0A. 
The so important result (result-(ii) below) of Componendo 

& Dividendo Rule is not valid in a Division Algebra alone or 
in any existing standard algebraic system alone, by their 
respective definitions or by virtue of their respective 
properties. But the same result is well valid in a region A (i.e. 
the minimum platform is a region). 

Proposition 3.15 Componendo & Dividendo Rule 

In a region (A, ⊕ ,*, • ) over the field (F, +,.), the following 
‘Componendo & Dividendo’ rules are well valid: 

(i) If 
x

y
 
= 

z

t
, then 

x

y
= 

z

t
 = 

x z

y t

⊕
⊕

 = 
~
~

x z

y t
, where x, 

y, z, t ∈  A, and denominator ≠  0A. 

(ii) If 
x

y
 = 

z

t
, then 

x

y
 = 

z

t
 = 

( ) ( )
( ) ( )
a x b z

a y b t

• ⊕ •
• ⊕ •

 = 

~
~

a x b z

a y b t

• •
• •

 

where x, y, z, t ∈  A, and denominator ≠  0A. 
Proof: 

(i) We have 
x

y
 = 

z

t
 

or, x∗ y-1 = z ∗ t-1 
or, (x∗  y-1) ∗  (y∗ t) = (z∗  t-1) ∗ (y∗ t) 
or, x∗ t = z ∗ y 
or, x∗ y ⊕ x ∗ t = x∗ y ⊕ z ∗ y 
or, x∗ (y ⊕ t) = (x ⊕ z) ∗ y 

or, 
x

y
 = 

x z

y t

⊕
⊕

 

In a similar way we can establish that 
x

y
 = 

~
~

x z

y t
. Hence 

the result. 

(ii) We have 
x

y
 = 

z

t
 

Now, 
x

y
 = x ∗ y-1 

= (a.a-1) •  (x∗  y-1), 
= (a • x) ∗  (a-1 •  y-1), using compatibility 

property of region A. 
= (a • x) ∗  (a •  y)-1 

= 
a x

a y

•
•

 

Similarly, we can also establish that 
z

t
 = 

b z

b t

•
•

. 

Now, we have 

 

Applying now the result (i), we have 

x

y
 = 

a x b z

a y b t

• ⊕ •
• ⊕ •

 = 
~
~

a x b z

a y b t

• •
• •

 = 
z

t
. 

3.2.11. Characteristic of a Region 

In Region Algebra, the characteristic of a region A denoted 
char(A) is defined to be the smallest number of times one 
must use its multiplicative identity 1A in a sum to get the 
additive identity element 0A. A region is said to have 
characteristic zero if this sum never reaches the additive 
identity. For example, char(RR) = 0. 

3.3. Categories of Regions 

In this section three special types of regions are discussed 
which are useful to the mathematicians. These regions will be 
applicable in the subsequent sections here in our course of 
introducing “Region Mathematics”. 

3.3.1. Real Region 

A region (A, ⊕ ,*, • ) over the field (F,+,.) is called a Real 
Region if its outer field F is the classical field R of real 
numbers. 

Example 3.5 

The region RR (see earlier Example 3.4), C are examples 
of real region. 

The following simple results/formulas (Proposition 
3.16,3.17,3.18) are very useful and important results valid in 
regions, but all these collectively are not valid in general in 
division algebra alone or in any of the existing classical 
algebraic systems alone by their respective definitions and by 
virtue of their respective properties. These results reduce to 
the corresponding important classical results of elementary 
algebra as special cases. This is in fact the major applications 
of the regions in mathematics/algebra. The main philosophy 
behind this work is to discover that particular algebraic 
system in which such type of simple but useful results, 
equalities, solutions, formulas etc. of elementary algebra are 
valid (can be computed and verified). 

Proposition 3.16 

The following results hold good in a real region (A, ⊕ ,*,
• ): 

(i) (1A ⊕  x) 2  = 1A ⊕ 2 • x ⊕ x 2 , ∀ x ∈  A 
(ii) (x ⊕  y) 2  = x 2 ⊕  2 • x ∗ y ⊕ y 2 , ∀  x, y ∈  A 
(iii) (x ~ y) 2 = x 2  ~ 2 • x ∗ y ⊕ y 2 , ∀  x, y ∈  A 
(iv) (x ⊕  y)3 = x3 ⊕  3 • x2 ∗ y ⊕  3 • x ∗ y2 ⊕  y3, ∀  x, y ∈  A 
(v) (x ~ y)3 = x3 ~ 3 • x2 ∗ y ⊕  3 • x ∗ y2 ~ y3, ∀  x, y ∈  A 

However, the above results in general are not true in a 
region which is not a real region. A generalized result is 
given below. 

Proposition 3.17 

In a real region (A, ⊕ , *, • ) the following equality is 
valid ∀ x, y ∈  A: 

 

where the notation ∑ stands for summation over the 
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symbol ⊕  of first addition of the region A, and n is a 
positive integer. 

(However, this result in general is not true in a region if it 
is not a real region). 

NOTE 3.6 

The RR region is the actual algebraic system in which 
most of the results, expressions, equalities of school algebra 
are studied and taught. In RR region, the results of 
Proposition 3.16 & 3.17 are being written by all in traditional 
style as below:- 

(i) (1 + x) 2  = 1 + 2x + x 2  
(ii) (x + y) 2  = x 2  + 2xy + y 2  
(iii) (x - y) 2  = x 2  - 2xy + y 2  
(iv) (x + y) 3  = x3 + 3x2y + 3xy 2  + y3 
(v) (x - y) 3  = x3 - 3x2y + 3xy 2  - y3 

(vi) (x + y) n = 
0

n

r =
∑

n

r

 
 
 

xn-r yr 

The following results are not valid in a division algebra 
alone or in any of the existing classical algebraic systems 
alone by their respective definitions and by virtue of their 
respective properties, but valid in any algebraic system which 
is at least a real region. 

Proposition 3.18 

If (A, ⊕ , *, • ) be a real region, then the following results 
are true ∀  x, y ∈  A and ∀ a, b ∈  R: 

(i) (a • x ⊕  b • y) 2  = a2 • x2 ⊕  b2 • y2  (2.a.b) • (x ∗
y). 

(ii) (a • x ⊕  b • y) n  = 
0

. ( )
n

n r r n r r

r

n
a b x y

r

− −

=

  
• ∗   

  
∑ . 

NOTE 3.7 

However, in RR region the above results are written by all 
in traditional style as below:- 

(i) (ax + by) 2  = a2x2 + b2y2 + 2abxy 

(ii) (ax + by) n  = 
0

n
n r r n r r

r

n
a b x y

r

− −

=

  
   
  

∑  

3.3.2. Region over a Region (ROR) 

Let (A, ⊕ , ∗ , • ) be a region over a field (F, +,.). If the 
algebraic system (F, +,.,.) itself be a region over a field (K, 
±,.), then we say that A is a ‘Region over a Region’ (or, 
ROR). In such case the region F is called the ‘base region’ of 
the ROR A. 

3.3.3. Region over a Real Region (RORR) 

If the base region is a real region, then A is called a 
‘Region over a Real Region’ (or, RORR). An example of 
RORR is the region RR. 

Proposition 3.19 

If A = (A, ⊕ , ∗ , • ) is a region over a real region F, then 
∀ x ∈  A 

(i) x ⊕ x = (2. 1F) •  x 

(ii) 
1

n

r=
∑ x = (n. 1F) •  x 

Proof: x ⊕ x = (1F •  x) ⊕  (1F •  x) 

= (1F + 1F) •  x 

= (1.1F + 1.1F) •  x 

= (2. 1F) •  x Hence the result. 

The result (ii) can be proved similarly. 
Proposition 3.20 

If A = (A, ⊕ , ∗ , • ) is a region over a real region F, then ∀
x, y ∈  A 

(i) (1A ⊕  x) 2  = 1A ⊕  (2.1F) • x ⊕ x 2  
(ii) (x ⊕ y) 2  = x 2 ⊕  (2.1F) • x∗ y ⊕ y 2  

(iii) (x ⊕ y) n  = 
0

.1
n

n r r
F

r

n
x y

r

−

=

  
• ∗   

  
∑ where x 0 = 1A 

and a 0  = 1F. 
(iv) (a • x ⊕  b • y) 2  = a2 • x2 ⊕  b2 • y2 (2.(a.b)) • (x ∗ y) 

(v) (a • x ⊕  b • y) n  = 
0

( )
n

n r r n r r

r

n
a b x y

r

− −

=

  
⋅ ⋅ • ∗   

  
∑  

The following results are straightforward. 
Proposition 3.21 

If the region (A, ⊕ , ∗ , • ) is a real region, then ∀ x, y ∈  A 
the following results are true (not necessarily true in general 
if the region A is not a real region):- 

(i) x
2

⊕  y
2

 = (x ⊕ y)
2

 ~ 2. (x∗ y) = (x~y)
2

⊕  2.(x∗
y) 

(ii)  (x ~ y)
2

= (x ⊕ y)
2

 ~ 4.(x∗ y) 

(iii) (x ⊕  y)
2

 = (x~y)
2

⊕  4.(x∗ y) 

(iv)  x
3

~ y
3

= (x~y) ∗  (x
2

⊕ x∗ y ⊕ y
2

) = (x~y)
3

⊕  3. 
((x∗ y) * (x~y)) 

(v) x
3

⊕  y
3

 = (x ⊕ y) * (x
2

~ x ∗ y ⊕ y
2

) = (x ⊕ y)
3

 
~ 3. ((x∗ y) ∗  (x ⊕  y)) 

There are many (most of the) algebraic problems at 
secondary school level of ‘elementary algebra’ which we 
solve without knowing the identity of the minimal algebraic 
system upon which we are having our right to solve them. 
For example, the following problem is a very simple problem 
of school level ‘elementary algebra’ which can not be solved 
in general in groups alone, or in rings alone, or in modules, 
fields, module, linear spaces, algebra over a field, associative 
algebra over a field, division algebra alone or in any existing 
classical algebraic system alone, by their respective 
definitions and by virtue of their respective properties, but 
can only be solved in a region or in an algebraic system 
which is at least a region. This breakthrough is justified here 
in the immediate Note below. 

Problem 3.1. 

Solve for x the equation: 3 • x*y = 2 • y ⊕ 3 • t, where x, y 
( ≠  0A), t ∈A, A being the real region (A, ⊕ , ∗ , • ). 

Solution: We have the following equation in the region A: 
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Using the properties of region, we then can write 

1
3

•  (3 •  x * y) = 
1
3

•  (2 •  y ⊕  3 • t) 

or, 
1

3
3
 ⋅ 
 

•  (x*y) = 
1

(2 )
3

y
 • • 
 

⊕
1

(3 )
3

t
 • • 
 

 

or, 1F •  (x*y) = 
1

2
3
 ⋅ 
 

• y ⊕
1

3
3
 ⋅ 
 

•  t 

or, x * y = 
2
3

•  y ⊕  1F • t 

or, x * y = 
2
3

•  y ⊕  t 

or, (x * y) * y -1 = 
2
3

y t
 • ⊕ 
 

 * y -1 

or, x * (y * y -1) = 12
( )

3
y y− • ∗ 

 
⊕  (t * y -1) 

or, x * 1A = 
2

1
3 A

 • 
 

⊕  (t * y -1) 

or, x = 
2

1
3 A

t

y

 
• ⊕ 

 
, which is the solution. 

NOTE 3.8 (explanation of the above solution):- 

We analyze now the above solution to the Problem 3.1. Let 
us imagine a situation that the identity of the algebraic 
system A (say) in the above Problem 3.1 is unknown to us at 
this moment, but let us accept that the solution steps are valid 
in this unknown algebraic system A. In the above solution, 
we see that:- 

There are few steps which are allowed by virtue of the 
properties of ‘vector space’ and there are few steps which are 
allowed by properties of ‘division algebra’. It is obvious that 
a simple ‘division algebra’ can not give license to all the 
steps of the above solution (for example, ‘compatibility with 
scalars’ is not a licensed step in division algebra, even not the 
commutative property). Besides that, division operations are 
executed in the solution and hence A can neither be just an 
‘algebra over a field’ alone nor an ‘associative algebra over a 
field’ alone. Consequently, considering the validity of all the 
involved operations in this solution, this unknown algebra A 
has to be at minimum a ‘region algebra’, not less. Otherwise, 
the problem can not be solved for x in A. 

4. Calculus Space and Region Calculus 

It has been justified in the previous section that many of the 
simple results, formula, equalities, identities, rules etc. of 
elementary algebra are not valid in general in a group, ring, 

field, module, linear space, algebra over a field, associative 
algebra over a field, division algebra, or in any existing 
algebraic system alone, by their respective definitions and by 
virtue of their respective properties, but in ‘region algebra’. 
The minimum platform required for practicing elementary 
algebra is the region algebra. In this section we introduce the 
notion of ‘calculus space’ as the minimal structured 
mathematical space where a new calculus can be developed, 
and then we introduce the concept of ‘multi-dimensional 
calculus space’. A calculus space is a real region subject to 
fulfillment of few conditions which are explained here. 
Without a calculus space, a calculus can not be developed. It is 
observed that the classical calculus developed independently 
by Newton and Leibniz is based on the platform of RR region 
as its own calculus space. The topic is initiated in this section 
with the prior assumption that in our giant universe or 
multiverse (if exists), it may happen that the classical calculus 
of Newton and Leibniz may not be applicable at everywhere in 
the space. But whatever be the appropriate calculus at some 
location in this universe (or multiverse), it can only be 
developed over an appropriate ‘calculus space’ of its own. The 
Universe is commonly defined as the totality of existence as 
far as we people on this earth can think about. The present 
universe appears to be expanding at an accelerating rate. There 
are many competing theories about the ultimate fate of the 
universe. Scientific observation of the universe has led to 
inferences of its earlier stages too. Physicists remain unsure 
about what, if anything, preceded the Big Bang. Many refuse 
to speculate, doubting that any information from any such 
prior state could ever be accessible. There are various 
multiverse hypotheses too, in which physicists have suggested 
that this universe might be one among many universes that 
likewise exist. If the speculation about the existence of 
multiverse be accepted to be true, then one question arises: 
Whether every space of this universe is being governed by the 
same physical laws and constants throughout most of its extent 
and history? We consider here the important mathematical 
system ‘Calculus’ (developed independently by Newton and 
Leibniz). John von Neumann said: "The calculus was the first 
achievement of modern mathematics and it is difficult to 
overestimate its importance. I think it defines more 
unequivocally than anything else the inception of modern 
mathematics, and the system of mathematical analysis, which 
is its logical development, still constitutes the greatest 
technical advance in exact thinking”. But, can we accept the 
hypothesis that this classical Calculus is valid in every planet 
of our solar system or at every space of our universe or at 
every universe of the multiverse (if exists)? Is our classical 
Calculus an absolute calculus for everywhere in our universe 
or multiverse? Does it not get influenced by the facts of 
relativity. Does it not get influenced at different solar systems 
or at different spaces of the universe or at different universes of 
the multiverse where the concept of ‘time’ and ‘distance’ are 
different? In this section we do not (can not) propose any 
answer to these questions, but we propose the hypothesis that 
there could be a generalized calculus of which our existing 
classical calculus is a particular case just. Or, there could be a 
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number of new calculus which are siblings to our existing 
classical calculus. In this quest, we introduce new 
mathematical notions called by “Calculus Space” and “Region 
Calculus”. A calculus space is a base-platform on which one 
can develop a new calculus. In other words, a calculus can not 
be developed without a calculus space, called a base-platform 
of the calculus. We use the following notations: 

R = set of all real numbers, R+ = set of all positive real 
numbers, R- = set of all negative real numbers, R≥0 = set of all 
non-negative real numbers. First of all we define two new terms 
called by ‘extended region’ and ‘2-to-1 bijective mapping’. 

4.1. ‘Chain Region’ and ‘Partitioned Region’ 

Consider a real region A = (A, ⊕ ,*, • ). Suppose that A 
forms a chain with respect to a total order relation (say, 
denoted by the notation ‘ ≤ ’). Then the real region A is called 
a chain region with respect to the tot al order relation ‘ ≤ ’. 

A real region A = (A, ⊕ ,*, • ) is called a Partitioned 
Region if the following conditions are satisfied: 

i. A is an infinite region, 
ii. A is a chain region with respect to a total order relation 

‘ ≤ ’, and 
iii. the characteristic of A is zero. 
Here A is called a partitioned region because of the fact 

that it induces a partition PA of A into three mutually disjoint 
non-null sets A+, A- and {0A} such that 

i. A+ = { a: a ∈A and 0A < a} 
ii. A- = { a: a ∈A and a < 0A}. 
Clearly, ∀ a ∈A+, ~a ∈A- and ∀ b ∈  A-, ~b ∈  A+. 
(Note: It may be recalled from the properties of the chain 

that: a < b iff a ≤ b and a ≠ b, where “≤” is the total order 
relation of the chain A, and similarly a > b iff b ≤ a and b ≠ a). 

This partition PA, once made, is regarded as an absolute 
partition of the region A corresponding to its total order 
relation ‘ ≤ ’in the sense that this partition generates the sign 
of every object of the complete region A, positive or 
negative, which will remain absolute for the complete 
literature of the corresponding region mathematics. 

4.2. Extended Region 

Consider a partitioned region A = (A, ⊕ ,*, • ). If we now 
include two more objects + ∝ A and - ∝ A in A as two guests, 
then the set A ∪{+ ∝ A, - ∝ A} is called to be an extended 
region. 

Here + ∝ A =
0

A

A

x
 where Ax  (≠0A) is any positive object, 

and - ∝ A = 
0

A

A

z
 where Az (≠0A) is any negative object. Note 

that an extended region is not a region. But whenever we say 
that A is an extended region, it will imply that A is a region 
and two infinities are also included to it as permanent guests. 

4.3. 2-to-1 Bijective Mapping 

Consider two non-null sets X and Y. A function f: X →  Y 
is said to be a ‘2-to-1 Bijective Mapping’ if 

(i) f is onto, and 
(ii) ∀ y ∈ Y, ∃  two and only two distinct (not same) 

elements x1 and x2 in X such that f(x1) = y = f(x2). 
For example, the function f: R-{0} →  R+ given by f(x) = 

x2 is a 2-to-1 Bijective Mapping. 

4.4. Calculus Space 

Consider a partitioned region A = (A, ⊕ ,*, • ). Then A 
forms a Calculus Space if the following conditions are 
satisfied: 

(i) A is an extended real region. 
(ii) A is a normed complete metric space with respect to a 

norm ║.║ and the corresponding induced metric ρ (x, y) = 
║x~y║, (i.e. ║x║ = ρ (x, 0A)). 

(iii) The norm ║.║ is a 2-to-1 bijective mapping from A – 
{0A} to R+. 

4.4.1. What Is the ‘Calculus Space’ for Newton and Leibniz 

Calculus 

As a particular instance, if we choose the region A to be 
the RR region (see Example 3.4 presented earlier) 
considering it as a partitioned region with respect to the crisp 
order relation “Less Than or Equal To” denoted by the 
notation “≤”, and if we choose ║x║ = |x| in RR, where ρ (x, 
y) =║x-y║= |x-y|, then the corresponding region calculus 
happens to be the classical calculus (developed 
independently by Newton and Leibniz). 

4.4.2. A simple Division Algebra Can not Form a Calculus 

Space in General 

The set R of real numbers is so interesting that it very 
comfortably forms the region RR; and the region RR is so 
beautiful that it satisfies all the necessary conditions to form a 
Calculus Space (an eligible platform on which a calculus can be 
developed). This is just a coincidence for the case of division 
algebra R, because a simple division algebra by definition does 
not have so much capability. Consequently, it is clear now that 
the classical calculus developed independently by Newton and 
Leibniz happens to be on the particular calculus space RR with 
respect to a particular order relation “Less Than or Equal To” 
denoted popularly by the notation “≤”. 

The following facts may be recalled [25, 27] that the 
metric ρ associated with the norm ║.║ i.e. the metric ρ (x, 
y) = ║x~y║ has the following special properties: 

(i) ‘Translation Invariance’: i.e. ∀ z∈A we have ρ (x ⊕ z, 
y ⊕ z) = ρ (x, y) = ║x~y║, and 

(ii) ‘Homogeniety’: i.e. ∀ r∈R we have ρ (r • x, r • y) = 
|r|.║x~y║ = |r|. ρ (x, y). 

Although these two beautiful properties were established 
much later than the discovery of the classical calculus, but 
these were fortunately true in the ‘Calculus Space’ of 
Newton and Leibniz calculus, by default. 

4.5. Complete Region 

A real region which forms a calculus space is called a 
“complete region”. 
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We will introduce later that by a complete region, we will 
always mean one-dimensional complete region (1-D 
complete region). For instance, the region RR is a complete 
region with respect to the crisp order relation “Less Than or 
Equal To” denoted by the notation “≤” and the metric ρ (x, 
y)=║x ∼ y║= |x-y|, where the norm is the classical norm 
defined over R. 

The collection of all the complete regions is called the 
complete region universe Ʃ. 

4.6. Positive Object, Negative Object and Object Linear 

Continuum Line 

Consider a complete region A = (A, ⊕ ,*, • ). The elements 
of A+ are said to be positive objects and the elements of A-are 
said to be negative objects. The object 0A is neither in A+ nor 
in A-, and so we say that 0A is neither a positive object nor a 
negative object. The attribute of being positive or negative is 
called the sign of the object, and 0A is not considered to have 
a sign of its own. For a given calculus space A, a line XX1 
can be drawn with all positive objects lying upon it to the 
right of 0A, and all negative objects lying upon it to the left of 
0A as shown in Figure 1. Thus the ‘positive direction’ of X-
axis and the ‘negative direction’ of X-axis can be well 
understood and the line which the objects of the complete 
region A is considered to lie upon is called the Object Linear 
Continuum Line (see Figure 1 below). 

 

Fig. 1. Objects linear continuum line of the complete region A, a general 

view. 

Thus, any point on the Object Linear Continuum Line of 
the complete region A is called an object point of A. 

We use the following notations in our work here: 
A+ = set of all positive objects of the complete region A, 
A- = set of all negative objects of the complete region A, 
A≥0 = set of all non-negative objects of the complete 

region A. 
For developing a new calculus, be it in a two dimensional 

coordinate system, or in an n-dimensional coordinate system, 
at least one calculus space is required. Consider the object 
linear continuum line and the corresponding X-axis. Since 
the region A is complete, there are no "points missing" from 
it (inside or at the boundary). Since A is a chain, every object 
of A has a unique address on this object linear continuum 
line and conversely i.e. corresponding to every address 
(point) on this object linear continuum line there is a unique 
object of the region A. 

Consider a point x on the X-axis of the object linear 
continuum line corresponding to the calculus space A. Then 
for an infinitesimal small positive object ∆x, the point (x ⊕
∆x) will be at a distance ║∆x║ from the point x along the 
positive direction of X-axis and the point (x ∼ ∆x) will be at a 
distance ║∆x║ from the point x along the negative direction 
of X-axis. By distance between two objects x and y lying 
upon the XX1 Object Linear Continuum Line of the complete 

region A, we mean the corresponding metric distance ρ (x,y) 
of the normed complete metric space A. 

For example, see a collection of consecutive equi-spaced 
points on the object line as shown in the Figure 2 below. 

 

Fig. 2. Object Linear Continuum Line of the complete region A with few 

consecutive equi-spaced object points. 

The term ‘equi-spaced’ in the caption of Figure 2 is well 
understood in the sense of the corresponding metric (or 
norm) of the complete region A, i.e. for any real integer r, ρ
(r • 1A, (r+1) • 1A) = constant (independent of r), in the 
complete region A. 

Example 4.1 

If we choose the region A to be the RR region (see 
Example 3.4 presented earlier) which is a partitioned region 
with respect to the crisp order relation “Less Than or Equal 
To” denoted by the notation “≤”, and if we choose ║x║ = |x| 
in RR, where ρ (x, y) = ║x-y║= |x-y|, then the 
corresponding X-axis is the classical X-axis popularly used 
by us in the Cartesian coordinate system, the corresponding 
linear object continuum is the classical real continuum and 
the corresponding region calculus happens to be the classical 
calculus (developed independently by Newton and Leibniz). 

It will be mistake if we say that the classical calculus is 
based on the field R of real numbers (of course, considering 
the extended real-axis). Actually it is neither the field R nor 
the division algebra R, but it is the region R (which is called 
by RR region in the region algebra). Interestingly, the 
division algebra R satisfies few additional properties trivially 
(not by virtue of the definition and properties of ‘division 
algebra’ as mentioned in Section 2, an important issue which 
is to be seriously noted). And by fulfilling these additional 
properties, R well qualifies to become a real region too. 
Consequently the classical calculus never faced any 
computational constraints or invalidity even assuming R to 
be a field or division algebra just. Fortunately it is a 
coincidence that R does also form a complete region! 
Otherwise the classical calculus would not have reached the 
extremely rich today’s level, rather it would have become 
blocked somewhere at some time much earlier in its so long 
beautiful network of journey. 

4.7. Developing a New Calculus: Region Calculus 

We are aware about the history, development and growth 
of the classical calculus since its inception (happened to be 
developed on the calculus space RR). We define that a 
calculus developed on a calculus space is called a Region 
Calculus. 

Let us consider a calculus space A. Suppose that we want 
to develop now a new region calculus in the calculus space 
A. For this purpose, the basic concepts of any new calculus 
(of a new differential calculus) are: limit, continuity, 
differentiability of a function of objects, etc. which we need 
to introduce first of all in the calculus space A analogous to 
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the classical way of Newton and Leibniz style. 

4.7.1. What do You Mean by “x →  a” 

Consider an object variable x over the calculus space A = 
(A, ⊕ ,*, • ). Let a ∈ A be a fixed object. Suppose that x 
assumes successive values, some of them for example are: (a
⊕ 0.1 • 1A), (a ⊕ 0.01 • 1A), (a ⊕ 0.001 • 1A), (a ⊕ 0.0001 •
1A), …… in its course to get close and close to the object a. 

Obviously, as x passes through these values, the value ρ
(x, a) becomes less and less and become so small that for any 
positive real number ε , no matter however small, ρ (x, a) <
ε  is satisfied. Let us express this situation using the notation 
“x →  a+” which means that the object variable x approaches 
the fixed object a from the right hand side of a (see Figure 3). 

 

Fig. 3. On the Object Linear Continuum Line: x →  a+ 

Similarly, suppose that x assumes successive values, some 
of them for example are: 

(a ~ 0.1 • 1A), (a ~ 0.01 • 1A), (a ~ 0.001 • 1A),  
(a ~ 0.0001 • 1A), …… 

in its course to get close and close to the object a. 
Obviously, as x passes through these successive values, the 

value ρ (x, a) becomes less and less and become so small 
that for any positive real number ε , no matter however 
small, ρ (x, a) < ε  is satisfied. Let us express this situation 
using the notation “x →  a-” which means that the object 
variable x approaches the fixed object a from the left hand 
side of a(see Figure 4). 

 

Fig. 4. Object Linear Continuum Line: x →  a-. 

By the expression “x tends to a” symbolically written as “x 
→  a”, we mean that given any real ε >0 no matter however 
small, the successive values of x ultimately satisfy the 
inequality 0 < ρ (x, a) < ε . It is to be noted that if “x →  a” 
then ρ (x, a) ≠ 0, i.e. x ≠ a. 

4.7.2. Neighborhood of an Object Point on the Object 

Linear Continuum Line 

Consider an object a on the Object Linear Continuum Line 
of the calculus space A = (A, ⊕ ,*, • ). Let δ > 0 be a real 
number. Then the δ-neighborhood of the object a is defined 
by the set Nδ(a) of objects given by Nδ(a) = { x: x ∈  A and 
ρ (x, a) < δ}. 

Here Nδ(a) ⊆  A, and obviously Nδ(a) ≠ φ. 

4.7.3. Limit of a Function 

Let X and Y be two non-null subsets of the calculus space 
A = (A, ⊕ ,*, • ) and let f be a function f: X →  Y which is 
actually an object valued function of object variable. Then 
f(x) is said to have a limit l in Y if for any pre-assigned real 
number ε >0, no matter however small, ∃  a real number δ > 

0 such that ρ (f(x), l) < ε  whenever 0 < ρ (x, a) < δ. 

We write symbolically as: lim ( )
x a

f x
→

 = l, i.e. f(x) → l as x

→ a. 
Problem 4.1 

Show that 
2 1

lim 5
Ax

x
→ •

•  = l0 • 1A in the calculus space A = 

(A, ⊕ ,*, • ). 
Solution: Given real ε >0, no matter however small, we 

need to find out real δ > 0 such that 
ρ (5 • x, l0 • 1A) < ε  whenever 0< ρ (x, 2 • 1A) < δ. 
i.e. ║5 • x ~ l0 • 1A║ < ε  whenever 0<║x ~ 2 • 1A║<δ. 
i.e. 5. ║x ~ 2 • 1A║ < ε  whenever 0<║x ~ 2 • 1A║ < δ, 

using properties mentioned in subsection-4.4.1. 
Now if we choose δ = ε /5, our definition is satisfied. 
Hence 

2 1
lim 5

Ax
x

→ •
•

 
= l0 • 1A in the calculus space A. 

Problem 4.2 

Show that 
2

3 1

9 1
lim

3 1A

A

x
A

x

x→ •

•
•

∼

∼

 
= 6 • 1A in the calculus space 

A = (A, ⊕ ,*, • ). 
Solution: Given ε >0, no matter however small, we need 

to find out δ > 0 such that 

2 9 1
, 6 1

3 1
A

A
A

x

x
ρ
 •

•  • 

∼

∼

< ε  whenever 0< ρ (x, 3 • 1A) <δ. 

i.e. 
2 9 1

6 1
3 1

A
A

A

x

x

•
•

•
∼

∼

∼

< ε  whenever 0<║x ~ 3 • 1A║ <δ. 

Since x → 3 • 1A therefore x ≠ 3 • 1A and hence (x ~ 3 • 1A) 
≠ 0A. 

Therefore, Cancellation Laws of region algebra can be 
applied to get the following result: 

║ (x ⊕  3 • 1A) ~ 6 • 1A ║ < ε  whenever 0<║x ~ 3 • 1A║ < δ. 

i.e. ║ x ~ 3 • 1A║ < ε  whenever 0 <║x ~ 3 • 1A║ < δ. 

Now if we choose δ = ε , our definition is satisfied. Hence 
the result. 

4.8. Multi-dimensional Calculus Space and  

Multi-dimensional Region Calculus 

The calculus space discussed so far is basically one 
dimensional calculus space (1-D calculus space) and the 
corresponding region calculus is also one dimensional. It is 
because of the reason that in a calculus space any variable x 
can vary/move along a straight line only. By a ‘complete 
region’ we shall mean that it is corresponding to 1-D calculus 
space. By the simple terms: calculus space, region calculus, 
complete region, we shall always mean here the same in one-
dimensional. 

In this section we introduce the concept of ‘Multi-
dimensional Calculus Space’ as a generalization of the 
concept of ‘calculus space’. In a two-dimensional calculus 
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space (2-D calculus space), a variable z can move along a 
curve on a plane. The corresponding region calculus is called 
a 2-D region calculus. In a three-dimensional calculus space 
(3-D calculus space), a variable w can move along a curve on 
a 3-D space. The corresponding region calculus is called a 3-
D region calculus. Similarly, in an n-D calculus space, a 
variable µ can move along a curve on a n-D hyperspace. The 
corresponding region calculus is called an n-D region 
calculus. Instead of extended real region there could be more 
number of infinities leading to ‘multi-extended real region’. 
The notion of multi-extended real region needs to be studied 
in depth in future. However, let us call a partitioned region to 
be a multi-extended region if it has more than two infinities. 
We now define an n-to-1 Bijective Mapping. 

4.8.1. n-to-1 Bijective Mapping 

Consider two non-null sets X and Y. A function f: X →  Y 
is said to be a ‘n-to-1 Bijective Mapping’ if 

(i) f is onto, and 
(ii) ∀ y∈Y, ∃ a unique subset Sy of X of cardinality n (> 

2) such that ∀ x ∈Sy we have f(x) = y. 
Here, n could be finite positive integer (> 2) or infinity. 
For example, the function f: C-{0} →  R+ given by f(z)= 

|z|2 is a n-to-1 Bijective Mapping. 

4.8.2. Multi-dimensional Calculus Space 

Consider a partitioned region A = (A, ⊕ ,*, • ). Then A 
forms a Multi-dimensional Calculus Space if the following 
conditions are satisfied: 

(i) A is a multi-extended real region. 
(ii) A is a normed complete metric space with respect to a 

norm ║.║ and the corresponding induced 
metric ρ (x, y) = ║x~y║, (i.e. ║x║ = ρ (x, 0A)). 
(iii) The norm ║.║ is a n-to-1 bijective mapping from A – 

{0A} to R+ for some fixed integer rn > 2. 

4.8.3. n-D Complete Region 

A real region which forms a n-D calculus space is called a 
“n-D complete region”. 

A calculus developed out of n-dimensional calculus space 
is called by n-dimensional region calculus. It may happen 
that a region can not form an n1-dimensional calculus space, 
but can well form an n2-dimensional calculus space. In other 
words, a region may not form an n1-dimensional region 
calculus, but may well form an n2-dimensional region 
calculus. 

It is to be carefully noted that as per definition (see Section 
2), a Division Algebra is not a region in general. 
Consequently a Division Algebra can not become a Calculus 
Space in general even if it satisfies all the conditions of 
Calculus Space. Given any region G = (G, ⊕ ,*, • ) over the 
field (R, +,.), one can immediately attempt to explore 
whether G forms a calculus space with respect to some norm 
║.║ and a total order relation‘ ≤ ’. If G forms a calculus 
space, then a new calculus can be developed in G. The set C 
of complex numbers does not satisfy the required conditions 
to become a calculus space with respect to its popular norm 

2 2z z z x y= = + . Consequently, no 1-D region 

calculus can be developed in the region C. 
However, in our future research work we need to explore 

whether C forms a multi-dimensional calculus space (say, 2-
D calculus space) with respect to its popular norm
z z z=

 
so that a 2-D region calculus can be developed in 

C. The set of triangular fuzzy numbers (trapezoidal fuzzy 
numbers) does not form a region [8, 9] with respect to its 
existing known operators and consequently it can not offer 
any region calculus of any dimension to us. 

4.9. An Interesting Question Arises: How Many Distinct  

1-D Complete Regions Exist Mathematically in Region 

Mathematics 

To answer this question, first of all we see that given a 
region A = (A, ⊕ ,*, • ) over the field (F, +,.) there could be 
more regions corresponding to the same set A over the same 
set F but with different operators ⊕ , *, •  and +,. 
respectively. 

Even if P = (A, ⊕ ,*, • ) be a given fixed complete region 
with respect to the total order relation ‘ ≤ ’ and the norm ║.║, 
there could be another distinct complete region Q = (A, ⊕ ,*,
• ) with respect to a different total order relation or with 
respect to a different norm or with respect to different pair of 
total order relation and norm both. There could be many 
more such complete region (A, ⊕ ,*, • ) in similar ways. 
However, we will explore this in depth in our future research 
work. 

Thus a given region A = (A, ⊕ ,*, • ) over the field (F, +,.) 
may produce more than one distinct complete regions (even 
retaining the set A, retaining the set F and retaining the 
operators ⊕ , *, •  and +,. unchanged), but with different 
total order relations and different norms, subject to 
fulfillment of the definition of one dimensional region 
calculus. 

For example, consider the Newton Calculus which is based 
upon the complete region RR but with respect to the crisp 
order relation “Less Than or Equal To” denoted by the 
notation “≤” and the classical norm ║.║ defined by ║x║ = |x| 
in RR, where the corresponding metric is given by ρ (x, y) 
=║x-y║= |x-y|. 

Now, for any real number k > 0 we can define a new norm
.

new
 over the region RR as below: 

new
x  = k |x| 

It can be observed that the region RR in this case forms a 
new one dimensional calculus space with respect to this new 
norm .

new
 and the corresponding metric newρ  given by 

( , )new x yρ  = 
new

x y∼  = k |x - y|, even retaining the same 

crisp order relation “Less Than or Equal To” (≤). Thus we 
can define infinite number of distinct norms mathematically 
and infinite number of distinct corresponding metrics. Thus, 
even retaining the same total order relation we can define 
infinite number of distinct 1-D region calculus 
mathematically in real situation, besides the classical 1-D 
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region calculus ‘Newton Calculus’ based upon the real region 
RR, but with respect to the crisp order relation “Less Than or 
Equal To” denoted by the notation “≤” and the classical norm 
║.║ defined by ║x║ = |x| in RR, where the corresponding 
metric is given by ρ (x, y) =║x-y║= |x-y|. Thus we can 
define infinite number of distinct 1-D complete regions 
mathematically. 

5. Conclusion 

The work on “Region Mathematics” was not initiated in 
my mind with any pre-posed problem or plan. I did not have 
any pre-proposed synopsis for it. It was an accidental 
development in my mind while I observed that in general the 
existing standard algebraic systems alone viz. groups, rings, 
modules, fields, linear spaces, algebra over a field, 
associative algebra over a field, division algebra, etc. can not 
validate many of the fundamental and classical equalities, 
identities, expressions, equations, formulas, results of 
“elementary algebra” (of secondary school level or higher 
level) by virtue of their respective definitions and properties. 
Four examples are presented and explained in Case-4 in 
section-3.1, but there are infinite number of examples. The 
‘Algebra’ as a subject needs to identify an appropriate 
algebraic system of it on the platform of which the most 
practiced classical equalities, identities, expressions, 
equations, formulas, results of elementary algebra stand 
valid, can be computed and verified to be true. Yes, it is fact 
that an infinite number of algebraic systems can be defined 
by the algebraists, but the objective of this work is not to 
introduce a new one so. The attempt made in this work is a 
genuine requirement for the subject Mathematics, and in fact 
a very important and truly mandatory requirement. By 
‘Mathematics’ we mean a vast family consisting of a large 
number of giant members viz. Algebra, Number Theory, 
Arithmetic, Geometry, Trigonometry, Calculus, Mechanics, 
Astronomy,... etc. to list a few only out of many. The existing 
dragon volume of literatures on Mathematics developed so 
far is just a particular case of “Region Mathematics”. 
Consequently, it will not be appropriate if we say that the 
“Region Mathematics” is simply an extension of the existing 
Mathematics. Because the “Region Mathematics” is an 
integrated figure of many such Mathematics (of which the 
existing Mathematics is just one member). The sole objective 
of this work is to introduce “Region Mathematics” which is 
initiated by unearthing a new algebraic system which 
provides the minimal platform (unlike any other existing 
classical algebraic system alone, in general) to make the 
fundamental and classical equalities, identities, expressions, 
equations, formulas, results, etc. valid (i.e. can be computed 
and verified); to provide the practitioner of algebra an 
algebraic right to use the standard and most practiced 
equalities, identities, expressions, equations, formulas, 
results, etc of it fluently in the everyday algebraic 
computations. Identifying this algebraic system and then 
defining it uniquely with an independent self-identity is 
therefore important for us. Consequently in Section-3 a new 

but very sound and complete algebraic system called by 
“region” has been introduced. Various properties of the 
algebraic system ‘regions’ are studied, and a lot of 
characterizations is done. Region is the most practiced 
algebra in the study of Science, Technology, Engineering, 
etc. The scientists, engineers, mathematicians work fluently 
always being based upon a platform of an hidden algebraic 
system which is at least a region. Region can be visualized 
using permutation/combination of various existing classical 
brands of algebraic systems. Considering the enormous 
unique potential of “Region Algebra” to give license to the 
mathematicians to practice the existing simple and useful 
results, equalities, identities, formulas etc. of elementary 
algebra, we can not ignore the deserving and genuine claim 
of “Region Algebra” to have a self independent identity. 

Philosophically, if we consider the evolution of various 
algebraic systems, in particular considering their flexible 
roles and volume of contributing capabilities towards the 
subjects from ‘elementary algebra’ to ‘higher algebra’, we 
could visualize the unique location of “Region” as mentioned 
below, which has been unearthed in this work:- 

 

In Section-4 we then introduce the branch of ‘Region 
Calculus’ in Region Mathematics by defining ‘Calculus 
Space’. The classical calculus developed independently by 
Newton and Leibniz is based on the set R of real numbers, 
extended with two infinities, and then took its shape further 
with functions of complex variables, vector calculus, tensor 
calculus, etc. The growth of classical calculus at every stage 
required fluent applications of various properties of the set R 
of real numbers. Using the properties of a ‘field’ or a 
‘division algebra’ or any existing algebra other than region 
algebra, the classical calculus can not have the validity of its 
all fluent results. Fortunately the set R is a trivial example of 
real region and the mathematicians enriched the classical 
calculus using the properties of region R, although 
‘unknowingly’. It is fact because of the reason that the 
development of the classical calculus can not be agreed by 
virtue of the definition and properties of any existing brand 
of standard algebraic system of Algebra, but by virtue of the 
definition and properties of regions at minimum. 

One of the major breakthrough in Region Mathematics is 
that we have precisely identified: ‘What are the minimum 
properties which need to be satisfied by a set A so that a 
calculus can be developed over A?’. Consequently we have 
introduced the notion of ‘calculus space’ as a general 
minimal platform on which a calculus can be developed. It 
has been explained how the platform R of classical calculus 
forms a calculus space. For a non-example, the set of all 
triangular fuzzy numbers do not form a real region with 
respect to its commonly used operators, and hence can not 
open any platform to develop any fuzzy differential calculus 
and fuzzy integral calculus over it in the style of the classical 
calculus. The requirements are precisely identified as a 
checklist before making any attempt to develop any new 



58 Ranjit Biswas:  Region Mathematics-a New Direction in Mathematics: Part-1  
 

calculus over a given set. This work of Regional Calculus is 
initiated with a prior intuitionistic assumption that the 
classical calculus may not be applicable successfully at 
everywhere of our universe system or of the multiverse 
system (if exists). We presume here that our future 
computations (be it in this solar system or in other, be it in 
this universe or in other of the multiverse) may not be 
sufficiently covered by or compatible with our classical 
calculus. Consequently, the very first job is to define the 
general structure of a mathematical space which is a 
minimum requirement for making an attempt to develop any 
new calculus over it. It is justified that mathematically there 
are infinite number of distinct complete regions exist in 
Region Mathematics, there are infinite number of distinct 1-
D region calculus exist in Region Mathematics. Then we 
generalize the concept of calculus space by defining ‘multi-
dimensional calculus space’. The simple term calculus space 
is basically one dimensional calculus space (1-D calculus 
space) and the corresponding region calculus is also one 
dimensional region calculus. In a calculus space any variable 
x can vary/move along a straight line only, i.e. if x → a in a 
complete region, it means that x is being driven along a 
straight line. The concept of ‘Multi-dimensional Calculus 
Space’ is a generalization of the concept of ‘calculus space’. 
In a two-dimensional calculus space (2-D calculus space), a 
variable z can move along a curve on a plane. The 
corresponding region calculus is called a 2-D region calculus. 
In a three-dimensional calculus space (3-D calculus space), a 
variable w can move along a curve on a 3-D space. The 
corresponding region calculus is called a 3-D region calculus. 
Similarly, in an n-D calculus space, a variable µ can move 
along a curve on a n-D hyperspace. The corresponding region 
calculus is called an n-D region calculus (i.e. n-dimensional 
region calculus). It may happen that a region can not form an 
n1-dimensional calculus space, but can well form an n2-
dimensional calculus space. In other words, a region may not 
form an n1-dimensional region calculus, but may form an n2-
dimensional region calculus. It is to be carefully noted that 
mathematically an arbitrary Division Algebra (see Section-2) 
is not a region in general by virtue of its definition and 
properties. Consequently an arbitrary Division Algebra can 
not qualify to become a Calculus Space in general. The 
proposed theory of Region Calculus helps us to study for any 
arbitrary region G = (G, ⊕ ,*, • ) over the field (R, +,.) to 
explore whether G forms a calculus space with respect to a 
suitable norm ║.║ and a suitable total order relation ‘ ≤ ’. If 
G forms a calculus space, then a new calculus can be 
developed in G. However, the set C of complex numbers 
does not satisfy the required conditions to become a calculus 
space with respect to its popular norm 

2 2z z z x y= = + . Consequently, no 1-D region 

calculus can be developed in the region C. However, in our 
future research work we need to explore whether C forms a 
multi-dimensional calculus space (2-D calculus space) with 
respect to its popular norm z z z=  so that a 2-D region 
calculus can be developed in C. The set of triangular fuzzy 
numbers (trapezoidal fuzzy numbers) does not form a region 
[8, 9] with respect to its existing known operations, and 

consequently it can not offer any region calculus of any 
dimension to us. In the sequel of this present work done in 
Part-2 [7] on the new direction in mathematics called by 
“Region Mathematics”, we introduce “Theory of Objects”, a 
new kind of “Theory of Numbers” reshaping the existing 
Elementary Number Theory, and “Region Geometry” (which 
generates the classical geometry as one of its particular 
instance). 
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