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Abstract: Post stated that multi-valued logic has no principle difference with respect to two-valued logic. But Janov and 

Mucnik stated that multi-valued logic has essentially difference with respect to two-valued logic. We show that Post’s thesis is 

well but Janov-Mucnik’s statement is wrong. 
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1. Introduction 

Multi-valued logic attracts the intense attention because of 

the connection with computer technology. 

Post ([1], 1921) stated that multi-valued logic has no 

principle difference with respect to two-valued logic. In 

particular, he proved that every predicate of multi-valued 

logic can be presented by logical formula with connectives 

 and , as in 2-valued logic. But Janov and Mu nik 

([2], 1959) stated that multi-valued logic has essentially 

difference with respect to two-valued logic because there are 

continuum of closed sets of functions. But these closed sets 

are fictitious objects of multi-valued logic. It is natural that 

the number of fictitious object is continuum since almost 

every theory has infinitely more fictitious objects with 

respect to essential objects. And multi-valued logic has 

countable number of essential closed sets. Two-valued logic 

has countable number of essential closed sets, too. 

This paper is devoted to confirm Post’s thesis. 

2. Conjunctive (CNF) and Disjunctive 

(DNF) Normal Forms in Multi-Valued 

Logic 

These normal forms use connectives ,  and . 

Post gave definitions of the connectives. He produced 

them by computable functions: , 

, and . 

These definitions hold in 2-valued logic too. 

Definitions of CNF and DNF in multi-valued logic differ 

from definitions in 2-valued logic only by number of 

negations: CNF is conjunction of disjuncts of literals, DNF is 

a disjunction of conjuncts of literals, literals are logical 

variables with or without negations. 

If we have a table (a sequence of lines) of a function then 

we can build full CNF and full DNF corresponding to the 

function. And we build full DNF by using the next rule, 

which holds as in 2-valued logic as in multi-valued logic: 

� we create a sequence of lines of the table such that the 

lines have value  in function-column, 

� we delete  in lines of the sequence, 

� we replace value  of -th variable in every line of 

the sequence by , 

� these lines connected by  create full DNF. 

The similar rule exists for full CNF too. 

Reduced DNFs have no superfluous literals with respect to 

full DNFs, shortest DNFs have no superfluous conjuncts. 

These DNFs are built in multi-valued logic as in 2-valued 

logic. 

Instead of DNF Post used expansion of a function in 

2-valued logic: (DNF , DNF ), where DNF  is DNF of a 

function and DNF  is DNF of negation of the function. In 

-valued logic an expansion of a function is (DNF , 

DNF ,...,DNF ). Hear DNF  is DNF of a function, 

DNF  is DNF of negation of the function, DNF  is 

DNF of -times negation of the function. 
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Post used the expansion to build classification of Boolean 

functions. And we can use the expansion to build 

classification of functions of multi-valued logic. 

We have similar results for CNFs. 

This confirms Post’s thesis. 

3. Classification of Functions 

3.1. Preiterative Algebra 

Now there are 3 algebras for classification of functions: 

Post (or preiterative), Mal’cev (or iterative) and clone 

algebras. 

Mal’cev gave mathematically precise definitions of 

preiterative and iterative algebras. By Mal’cev, preiterative 

algebra has 4 primitive operations: cyclic permutation of 

variables of a function, permutation of two variables, 

identification of two variables and substitution a function 

into a function (for more details see below). Iterative algebra 

has one more operation that adds fictitious variables in a 

function. 

Unfortunately, preiterative algebra is ignored by 

contemporary researches. For example, the monograph [3] 

used only iterative and clone algebras. Only Rosenberg 

displayed an interest for Mal’cev’s results. He devoted one of 

his works [4] to Mal’cev. He marked "Preiterative sets are 

slightly more general than clones". In reality, the preiterative 

algebra is more general than the algebra of clones 

(Rosenberg used "sets" instead of "algebra"). But Rosenberg 

continues to use only iterative and clone algebras since the 

algebras are more simple to get new results. 

Mal’cev called iterative algebra Post iterative algebra. But 

Post did not use the algebra. Therefore we call it Mal’cev 

algebra. 

Mal’cev algebra is a part of Post algebra. And clone 

algebra is a part of Mal’cev algebra. 

Definition The Post algebra P  is 

 

where  is the set of all -valued everywhere defined 

functions with the domain . And , , , 

* are primitive operations (primitives) over these functions. 

In accordance with the standard definition of algebras, 

 is the universe of the algebra, , ,  and * are 

the fundamental operations of the algebra. Only they 

generate closed sets of functions. 

These fundamental operations are primitives. 

Primitives are those operations that build all other 

operations. The formal definitions of primitives were given 

by Mal’cev [5]. We have generalized the definitions. 

By informally, the primitive  is the cyclic operation: a 

function  becomes the function 

. The primitive  is permutation 

operation: a function  becomes the function 

. The primitive  is identification 

operation: a function  becomes the function 

. The primitive * is a substitution 

operation: a function  and a function 

 become the function 

. 

Sometimes the operation of adding a fictitious variable is 

considered as primitive. It was shown [6] that this operation 

is not primitive since fictitious functions add fictitious 

variables to a function by using the substitution operation, 

but fictitious functions can be generated by essential 

functions. 

Algebras with  and  exist too. Using the 

formula  for number of functions of arity , we find 

that the universe is empty at  and that the universe 

contains only functions of arity 1 at . Algebra with 

 exists too, and it has countable number of functions 

for every . 

Again Post’s thesis is confirmed. 

3.2. Family of Functions and First Equivalence Relation 

We will prove that there are 6 levels of classification of 

functions. The same levels of classifications exist in 2-valued 

logic. This confirms Post’s thesis. 

A family is a set of functions with the same type of 

diagonals. We will call families of functions with the same 

type of diagonals briefly families. 

Families were introduced by Post. There are 4 families in 

two-valued logic: , , , . Post’s classification of 

function and of their closed sets is based on the families. 

Families of functions exist for all  including 

. The number of these families is . 

The family  is defined standardly: . 

The family  is defined standardly, too: . 

Definitions of the other families are special in -valued 

logics since the logic has  constants. But the definitions 

are an extension of Post’s definitions and they hold for 

2-valued logic too. 

We denote all families by , where 

. And every function of a family has the 

diagonal  equal to  if 

, and not equal to  if 

, i.e., if only . 

We say that a function of a family  preserves 

values . 

Therefore we denote  family by  and 

 family by . A constant  belongs to family  

since a diagonal of a constant is this constant. The  

family of two-valued logic is denoted by  and the  

k
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family is denoted by . Functions of the families 

preserve 1 and 0 respectively. 

We call functions of  or of  families  or  

. 

The next theorem is useful. 

Theorem Any function of family  

generates functions of family . 

Proof. The operations of permutations and identification 

do not change a family of a function. The operation of 

substitution can change a family of functions. 

Let functions ,  be of the same family ,  

be the substitution of  into , and denotation of family 

of  be . 

Then  for 

all . In this case  for all , therefore 

. If  for all  then 

 since, by definition,  and 

 for all . But if  

for some  then this . In this case . 

The proof is finished. 

Corollary A function of the family  generates only 

function of this family. A function of the family  can 

generate functions of any family. 

Proof. The denotation of family  is the set 

 and there is no family with denotation 

 such that . The family  has the denotation 

 and  for any family with denotation . 

The Webb function and all other generators of P  

(usually they are named Sheffer functions) can belong only 

to the family  for all  including . 

Families realize a natural classification of functions since 

they are disjoint. This means that there is an equivalence 

relation. 

Definition Two functions are equivalent if they belong to 

the same family. 

Families realize the first level of the function classification. 

There are 6 levels of the classification. 

3.3. Types of Functions and Second Equivalence Relation 

In 2-valued logic Post defined 2 conditions  and  

for functions. In -valued logic there are  conditions 

. And this holds for all  including . 

In the next definition we call tuple  a line of a table of a 

function with value  of the function. A tuple  contains 

only values of variables of a function since the value of the 

function is pointed out by the subscript. And we call a 

column a part of a column in a table such that the part 

belongs to all tuple  of a function. 

Definition A function satisfies a condition 

�  ( ) if every of  tuples  in the 

table of the function has a column with value  of 

variables and if there exist  tuples  which 

have no column with value  of variables, 

�  ( ) if all tuples  have a column 

with value , the number of tuples  equals m. 

If a function does not satisfy a condition of the first part of 

definition then the function satisfies a condition of the 

second part of definition. Indeed, let a function do not satisfy 

. Then all tuples  are absent or  tuples  exist but 

 tuples  are absent. In the former case the function 

satisfies the condition . In the latter case the function 

satisfies the condition . 

So, a function satisfies the condition  if tuples  are 

absent. If tuples  exist but the value  is absent in some 

tuple , then the function satisfies condition . A constant 

 satisfies  if  (since the constant is not equal 

) and satisfies  (since the constant equals =j). 

The conditions and a name of a family form a type. 

Definition The type of a function is 

. 

And the type of a constant  is 

. 

Every function belongs only to one type. 

Definition Two functions are equivalent by the second 

equivalence relation if they have the same type. 

The first equivalence relation divides the set of all 

functions into families. The second equivalence relation 

divides families into subfamilies with the same type. 

3.4. Classes of Compositions of Function 

Closed sets of functions are called sometimes classes. This 

is not well since classes must be disjoint. But a closed set can 

contain other closed sets, therefore these closed sets are 

disjoint. 

A closed set becomes empty or not empty after removing 

closed sets contained into it. Now we use only closed sets 

that become non-empty after removing their closed sets. 

Definition A class of function’s compositions is a 

non-empty part of a closed set remaining after removing all 

other closed sets from the closed set. 

Further we call classes of function’s compositions briefly 

classes. A name of a class is a name of a closed set 

containing the class. 

Theorem Classes are disjoin. 

Proof. Any function generates a closed set. Every function 

of a class generates its closed set . This function cannot 

belong to a class of a closed set contained in  since, by 

definition, the function does not belong to any closed set 

contained in . And the function cannot belong to a class of 
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another closed set since the function generates only the closed 

set . 

So any function of a class of a closed set is the member of 

one membered basis of the closed set. We must take one of 

these functions as a representative of bases. For that we 

introduce an order of functions. 

Definition A function  is greater than  if the arity 

of  is greater than the arity of . If the arity of  

equals the arity of  then  whenever , 

where  is the ordinal number of : the ordinal is the 

contents of the column with values of the function at reading 

the column from top to down. 

Definition The minimal function of a class of a closed set 

is called the generator of the closed set. 

So the representative of bases of a closed set is its 

generator. 

3.5. Third Equivalence Relation 

We must prove that all functions of a class have the same 

type. Before we must prove one lemma. And, for 

simplification, we will say that a function has  if it 

satisfies a condition . 

Lemma All functions of a class belong to the same family. 

Proof. By the theorem of the previous subsection,  

functions generate only  functions. Therefore a class 

containing an  function contains only  functions and 

its closed set contains only  functions, too. By the 

theorem, functions of the family  can generate 

only functions of the family and  functions. A class 

containing a function of family  contains only 

function of the family since  functions do not belong to 

the class. By the theorem, functions of a family  generate 

functions of the family  and of a family , but 

functions of families  and  belong to different classes. 

This means that a class containing a function of a family  

contains functions only of the family . 

Theorem All functions of a class have the same type. 

Proof. It is enough to prove that the functions satisfy the 

same conditions. And the conditions are  

or . At first we will prove two 

preliminary statements and then we will prove the theorem. 

� Let a function  of a class be the generator of the 

class and satisfy a condition  for 

some . We must prove the statement that  

generates the class of functions  with . 

For that we will use the induction rule. 

If  then  generates functions with 

. The statement holds in this case. Let all 

functions of a class have  if the class is 

generated by  with  and let now  

have . Then  generates class of 

functions with  since functions with 

 belong to the other classes. The statement 

is proved. 

� Let a function  of a class be the generator of the 

class and satisfy a condition  

for some . We must prove the statement that  

generates the class of functions  with . 

For that we will use the induction rule. 

If  then  and all functions of the 

class generated by  have . The statement 

holds in this case. Let all functions of a class have 

 if the class is generated by  with 

 and let now  have . Then 

 generates the class of functions with  

since functions with  belong to the other 

classes. The statement is proved. 

� All functions of a class have the same . 

Indeed, let a function  have  and let a function  

have . Then the function  cannot generate the 

function . Hence the functions cannot belong to the same 

class. Only functions with the same  can belong to the 

same class. 

This means that classes create the third level of the 

classification. 

Definition Two functions are equivalent by the third 

equivalence relation if they belong to the same class. 

The third equivalence relation continues the classification 

of functions: the set of functions is divided into families, 

every family has subfamilies, every subfamily has classes. 

3.6. Functions with the Same Range and Fourth 

Equivalence Relation 

Classes of compositions have subclasses of functions with 

the same range. 

Indeed, if a function has a range with one member then the 

function is a constant or the function is fictitious. Hence, in 

this case a closed set contains only the constant or contains the 

function, a constant generated by the function, and all 

fictitious functions of the same range. 

A class of a closed set containing only a constant has only 

the constant. The class of closed sets containing a constant and 

its fictitious functions has only the fictitious functions. 

If a function has a range with two members then the 

function can generate functions that have ranges with one or 

two members. The functions, which have ranges with two 

members, form a class, since the functions, which have ranges 

with one member, belong to the other classes. 

And so on. 

The next equivalence relation continues the classification of 

functions. 

Definition Two functions are equivalent by the fourth 
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equivalence relation if they have the same range. 

This is the forth level of the classification. 

We call a range containing not all values and all subsets of 

the range a partial range. There are partial complete 

generators of all functions with the same partial range. 

Definition A complete generator is a generator of all 

functions. Complete generators usually are called Sheffer 

functions. A partial complete generator is a generator of all 

functions that have the same partial range. 

If  then there are 60 partial generators for every 

partial range with 2 values [7] (there are 3 such partial ranges: 

, , ). And there are 3 774 complete 

generators [9]. 

If  then every of the subclasses has 13 920 partial 

complete generators for every partial range with 2 values and 

has 5 494 944 partial complete generators for every partial 

range with 3 values [8]. There are 942 897 552 complete 

generators [8]. 

3.7. Fictitious Functions and Fifth Equivalence Relation 

If a subclass has a fictitious function of two or more arity 

then the subclass contains infinite number of fictitious 

functions since every essential function has infinite number of 

fictitious functions by adding fictitious variables to the 

essential function. 

Fictitious functions are superfluous. They are absent in 

applied algebras. But in abstract algebras fictitious functions 

are used for construction other functions. For example, the 

construction of recursive functions uses fictitious functions 

although the functions can be constructed without fictitious 

functions. 

The next equivalence relation continues the classification of 

functions. 

Definition Two functions are equivalent by the fifth 

equivalence relation if they are both essential or they are both 

fictitious. 

We use the relation to construct classes of the fifth level. 

The classes are subclasses of classes of the previous level. The 

classes of the fifth level allow us to isolate fictitious functions 

from essential. There is a bijection between all classes of 

essential functions of the preiterative algebra and all classes of 

the iterative algebra. A pare of classes of the algebras becomes 

equal if we remove fictitious functions in the iterative algebra. 

So all properties of functions in the iterative algebra can be 

found in the preiterative algebra. 

3.8. Functions with Renumbered Variables and Sixth 

Equivalence Relation 

The other superfluous functions are functions with 

renumbered variables since a numeration of variables of a 

new constructed function is subjective. A renumeration of 

variables of a function does not change the essence of the 

function but changes the structure of table of the function. 

Hence the table becomes new and we have a new function 

that is superfluous. So we must take only one of functions 

with renumbered variables. For that we take the minimal 

function from the functions. We call the function 

non-renumbered and we call the other functions renumbered. 

We continue to classify functions. 

Definition Two functions are equivalent by the sixth 

equivalence relation if they both are non-renumbered or if 

they both are renumbered. 

This relation allows us to construct classes of the sixth 

level. The classes are subclasses of classes of fifth level. And 

we isolate non-renumbered functions from renumbered. 

One non-renumbered function has a finite number of its 

renumbered. But the number is very big at large . 

So we have constructed 6 levels of classification of 

functions. Two-valued logic has the same 6 levels [6]. This 

confirms Post’s thesis. 

4. Classification of Closed Sets and 

Fictitious Closed Sets 

4.1. Classification of Closed Sets 

There are two theories: the theory of -valued functions 

and the theory of closed sets of -valued functions. 

The main problem of any theory is classification of its 

objects. The next problem is to find fictitious (useless) 

objects and to remove them. 

We have constructed classification of objects of the first 

theory, they are functions. We have found that fictitious 

objects are fictitious functions or renumbered functions. And 

we have isolated the fictitious objects. 

Now we construct the classification of objects of the 

second theory. These objects are closed sets. 

Again we use natural classification of objects: every object 

belongs only to one class and classes are disjoint. For that we 

use the number of members contained in minimal bases of 

closed sets. 

Every infinite closed set has infinite number of bases. We 

use the minimal basis: a basis is minimal if it has the least 

number of members. If there are several bases with the 

number of members then we use the basis which maximal 

member is minimal among the other bases (we do not use 

basis with minimal member among the other bases since a 

basis with the minimal member can have very big maximal 

member). If we have several such bases then we use the 

pre-maximal members and so on. 

We introduce the next classification of closed sets. 

Definition The class  of closed sets contains closed 

sets without a basis. The class  of closed sets contains 

closed sets with  membered minimal basis. The class 

 of closed sets contains closed sets only with infinite 

bases. 

This classification covers all closed sets and every closed 

set belongs to only one of classes. This means that classes of 

closed sets are disjoint. Below we call classes of closed sets 

briefly classes. 

There are 3 classes if : , , and  [10]. And 

there are all classes if  [11]. 
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Each class  with finite  has countable closed sets. 

The class  has continuum closed sets [11]. 

A member of  is a closed set that is upper limit of the 

sequence of closed sets of  such that any member of the 

sequence contains the previous closed set [11]. 

Any member of  is a closed set that does not contain 

other closed sets or contains other closed sets but it becomes 

not empty after removing the sets. By the previous section, 

 contains all classes of functions. 

Any member of  is a union of  closed sets of . 

This member becomes empty after removing all of the closed 

sets from it. 

Any member of  is a closed set containing infinite 

number of closed sets of  such that the union of any pare 

of the closed sets is a member of . 

4.2. Fictitious Closed Sets 

Every function generates some closed set. The other 

closed sets are fictitious (useless)i. Only the class  does 

not contain fictitious closed sets. We have used its closed sets 

to construct the classification of functions. Every essential 

closed sets of the classification become a class of functions 

after removing the other closed sets contained in the closed 

set. Fictitious closed sets become empty after removing 

closed sets contained in it. Therefore fictitious closed sets are 

useless for the classification of functions like fictitious 

variables are useless for calculation of functions. 

Only the class  contains the 6 levels of the more deep 

classification, the other classes have only one level. But we 

have constructed the more deep classification of fictitious 

closed sets for  [10], and this classification has 

demonstrated useless of the construction. 

Any theory must give a classification of all theory’s 

objects including fictitious. But it is enough to construct only 

the first level of the classification of fictitious objects since 

fictitious objects need not in a more deep classification. 

By Janov and Mu nik [2], multi-valued logic is 

essentially different with respect to two-valued logic since 

we have continuum of closed sets of functions. But except 

closed sets of , all closed sets are fictitious, i.e. useless 

and superfluous. Closed sets of  are countable. 

Fictitious objects are in any theory and there number, as a 

rule, is infinity more with respect to the number of essential 

objects. In the theory of functions we have infinite number of 

fictitious functions for every essential function (by adding 

fictitious variables). So it is natural that the number of 

fictitious closed sets is continuum but the number of 

essential closed sets is countable. 

So, we have shown that conjunctive and disjunctive 

normal forms are the same as in 2-valued logic as in 

multi-valued logic. We have shown that Post algebra holds 

for all logics including -valued logic. We have shown that 

there are 6 levels of classification of functions, they are the 

same as in 2-valued logic as in multi-valued logic. We have 

built the classification of closed sets of functions for all 

logics. There are essential and fictitious closed sets, the 

number of essential closed sets is countable (in all logics) 

and the number of fictitious sets is continuum. But fictitious 

closed sets are useless and usually are excluded. All this 

means that Post’s thesis is well and Janov-Mu nik’s 

statement is wrong. 
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i
 Do not confuse fictitious closed sets and fictitious functions. There are fictitious 

closed sets of non-fictitious functions and non-fictitious closed sets of fictitious 

functions. 
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