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Abstract: In this paper the stochastic differential equation in a Banach space is considered for the case when the Wiener 

process in the equation is Banach space valued and the integrand non-anticipating function is operator-valued. At first the 

stochastic differential equation for the generalized random process is introduced and developed existence and uniqueness of 

solutions as the generalized random process. The corresponding results for the stochastic differential equation in a Banach 

space is given. In [5] we consider the stochastic differential equation in a Banach space in the case, when the Wiener process is 

one dimensional and the integrand non-anticipating function is Banach space valued. 
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1. Introduction and Preliminaries 

The main problem in developing the stochastic differential 

equation in a Banach space is the construction of the Ito 

stochastic integral. The traditional finite dimensional 

methods allow to construct the stochastic integral in Banach 

spaces with special geometrical properties (see [1-3]). In an 

arbitrary Banach space it is possible to define the stochastic 

integral only in case, when the integrand function is non-

random (see [4]). We define the generalized stochastic 

integral for a wide class of operator-valued non-anticipating 

random processes which is a generalized random element (a 

random linear function), and if there exists the corresponding 

random element, that is, if this generalized random element is 

decomposable by the random element, then we say that this 

random element is the stochastic integral. Thus, the problem 

of existence of the stochastic integral is reduced to the well 

known problem of decomposability of the random linear 

function. Another problem to develop the existence and 

uniqueness of the solution of the stochastic differential 

equation is to estimate the stochastic integral in a Banach 

space which is impossible by traditional methods. We 

introduce the stochastic differential equation for the 

generalized random process; here it is possible to use 

traditional methods to develop the problem of existence and 

uniqueness of a solution as a generalized random process. 

Afterward, from the main stochastic differential equation in a 

Banach space we receive the equation for a generalized 

random process, and the solution as a generalized random 

process. Thus, we reduced the problem of the existence of the 

solution to the problem of decomposability of the generalized 

random process. In [5] we consider the stochastic differential 

equation in the case when the Wiener process is one 

dimensional and the integrand function is Banach space 

valued, and we give some sufficient conditions of 

decomposabilility of the generalized random process. 

Let X be a real separable Banach space, 
*X  its conjugate, 

( )B X  the Borel σ -algebra in X . ( , ,Ω Β Ρ ) a probability 

space. A measureble map : Xξ Ω →  is called a weak second 

order random element if 
* 2,E xξ〈 〉 < ∞  for all * *x X∈ . A 

linear operator 
*

2: ( , , )L X L→ Ω Β Ρ  is called the generalized 

random element (sometimes it is used the terms: a random 

linear function or a cylindrical random element). Denote by 

1 2: ( , ( , , ))M L X L∗= Ω Β Ρ  the Banach space of the generalized 

random elements (GRE) with the norm 
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1
2 2

1
sup ( ( ) )

x
T E Tx∗

∗
≤

= . Every weak second order random 

element generates the GRE *

2
: ( , , )T X Lξ → Ω Β Ρ , defined 

by the equality * *,T x xξ ξ= 〈 〉  for all * *x X∈  but not 

conversely, if X  is infinite dimensional, then every  

generalized random element may not be generated by a 

random element. Denote by 
2

M  the normed space of weak 

second order random elements with the norm Tξξ = . 

Consequently,
2 1

M M⊂ . A generalized random element 

generated by a random element is called decomposable. The 

decomposability problem of generalized random elements  is 

a well known problem. It is equivalent  to the problem of the 

extension of a weak second order finitely additive measure to 

the countable additive measure. The correlation operator of 

1
T M∈  is defined as 

* **: ,TR X X→  
* .TR T T=  TR  is a 

positive and symmetric linear operator. If 2T T Mξ= ∈ , then 

TR  maps 
*X  to X  (see [6], th. 3.2.1). For *:R X X→  

positive and symmetric linear operator there exist 
* *( )k k Nx X∈ ⊂  and ( )k k Nx X∈ ⊂  such that * *,

k j kj
Rx x δ〈 〉 = , 

*

k kRx x=  and for * *x X∈ , * *

1

,
k k

k

Rx x x x
∞

=

= 〈 〉∑  (see [6], 

lemma 3.1.1). In general, if 
2

Im ( , , )T L⊂ Ω Β Ρ  is separable, 

there exist 
* *( )

k k N
x X∈ ⊂  and 

** **( )
k k N

x X∈ ⊂  such that 

* *,
k j kj

Rx x δ〈 〉 = , 
* **

k k
Rx x=  and * ** * **

1

,
k k

k

Rx x x x
∞

=

= 〈 〉∑ . 

Definition 1. Let X be a separable Banach space. The 

random process [0,1]
( )

t t
W ∈ , :

t
W XΩ → , is called a 

(homogeneous) Wiener process if 1) 
0

0W =  almost surely (a. 

s.); 2) 
1i it tW W

+
− , ( 0,1, , 1)i n= −⋯  are independent random 

elements for every 
0 1

0 1
n

t t t≤ < < ≤⋯ ;   3) for every t  

from [0,1] , 
t

W  is a Gaussian random element with the 

covariance operator tR , where *:R X X→  is a fixed 

Gaussian covariance. 

If X is finite dimensional and R  is the identity operator, 

then our definition of a Wiener process coincides with the 

definition of the standard Wiener process. When X  is an 

infinite dimensional Hilbert space, then no Wiener process 

exists for which R  is the identity operator. Our definition is 

a direct extension of the definition of a Wiener process for 

the Hilbert space case ([7], p. 113). If [0,1]
( )

t t
W ∈  is a Wiener 

process in a separable Banach space, then it has a. s. 

continuous sample pats, and there exists the representations 

of the Wiener process by the uniformly for t  a. s. 

convergence sums of one dimensional Wiener processes with 

the coefficients from X  and by independent Gaussian 

random elements with the covariance operators R  and 

corresponding real valued coefficients (see [8-11]). Denote 

by [0,1]
( )

t t
F ∈  the increasing family of σ -algebras, 

t
F ⊂ Β , 

such that   t
W  is 

t
F -measurable and for all s t> , 

s t
W W−  is 

independent to 
t

F  . In this case we say that [0,1]
( )

t t
W ∈   is 

adapted to the family of the σ -algebra [0,1]
( )

t t
F ∈ . For many 

purposes we need 
0

F  to contain all Ρ -null sets in Β . 

Denote by 
*( )

R
G X  the linear space of weakly measurable 

random functions 
*: Xφ Ω →  such that 

2 ( ) ( ), ( )R R dτ φ φ ω φ ω
Ω

≡ 〈 〉 Ρ < ∞∫ . ( )Rτ φ  is a pseudonorm in 

*( )RG X . 

We use the following proposition to prove the existence of 

a solution of the linear stochastic differential equation. 

Proposition 1. If 
*( )RG Xφ ∈  and 

2( ), x dφ ω
Ω

〈 〉 Ρ < ∞∫  for 

all x X∈ , then there exists 0K >  such that 

2

1
( ), ( ) sup ( ),

x
R d K x dφ ω φ ω φ ω≤

Ω Ω

〈 〉 Ρ ≤ 〈 〉 Ρ∫ ∫ . 

Proof. Consider the linear operator 2: ( , , )T X L→ Ω Β Ρ , 

( ),Tx xφ ω= 〈 〉 . By the closed graph theorem, T is a bounded 

operator, therefore 
2

1
sup ( ),

x
x dφ ω≤

Ω

〈 〉 Ρ < ∞∫ . As R is a 

Gaussian covariance, by the Kwapien-Szymanski theorem 

(see [12], [4] p. 262) , there exists ( )n n Nx X∈ ⊂  and 

* *( )n n Nx X∈ ⊂  such that 
* ,n k nkx x δ〈 〉 = , * *

1

,k k

k

Rx x x x
∞

=
= 〈 〉∑ , 

* *x X∈  and 
2

1

k

k

x
∞

=
< ∞∑ . We have 

22 2

1 1

( ), ( ) , ( ) , ( )k
k k

k k k

x
R d x d x d

x
φ ω φ ω φ ω φ ω

∞ ∞

= =Ω Ω Ω

〈 〉 Ρ = 〈 〉 Ρ = 〈 〉 Ρ ≤∑ ∑∫ ∫ ∫
 

2

2

1
1

sup , ( ) .
k x

k

x x dφ ω
∞

≤
= Ω

〈 〉 Ρ∑ ∫  

Definition 1. A function 
*:[0,1] Xφ ×Ω →  is called non-

anticipating with respect to [0,1]
( )

t t
F ∈  if the function 

( , ) ( , ),t t xω φ ω→ 〈 〉  from  ([0,1] , [0,1] )× Ω Β × Β  into (
1 1, ( )R RΒ ) 

is measurable for all x X∈ , and the function 

( , ),t xω φ ω→ 〈 〉  is 
t

F -measurable for all [0,1]t ∈ . 

By *( )RTG X  we define the class of nonparticipating random 

function φ , for which 
1

2 ( ) ( ( , ), ( , )
R

o

P R t t dtdφ φ ω φ ω
Ω

≡ 〈 〉 Ρ < ∞∫ ∫ . 

*( )
R

TG X  is a linear space and 
R

P  is a pseudonorm in it. We 

use the following proposition to prove the existence of the 

solution of the stochastic differential equation. 

Proposition 2(see [13]). If *: [0,1] Xφ × Ω →  is non-

anticipating and for all x X∈  
1

2

0

( , ),t x dtdφ ω
Ω

〈 〉 Ρ < ∞∫ ∫ , then 

φ ∈ *( )
R

TG X  and 
1 1

2

1

0

( , ), ( , ) sup ( , ),
x

o

R t t dtd K t x dtdφ ω φ ω φ ω≤
Ω Ω

〈 〉 Ρ ≤ 〈 〉 Ρ < ∞∫ ∫ ∫ ∫
.
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The proof of this proposition is analogous to the proof of 

the proposition 1. 

If φ ∈ *( )RTG X  is a step-function 
1

1

[ , )

0

( , ) ( ) ( )
i i i

n

t t t

i

t tφ ω φ ω χ
+

−

=

=∑ , 

0 10 1nt t t= < < < =⋯ , 0, , 1i n= −⋯ , then the stochastic 

integral of φ  with respect to [0,1]( )t tW ∈  is naturally defined by 

the equality
 

1 1

1

00

( , ) ( ),
i i i

n

t t t t

i

t dW W Wφ ω φ ω
−

+
=

= 〈 − 〉∑∫ . 

The following lemma is true 

Lemma 1 ([8]). For an arbitrary φ ∈ *( )RTG X  there exists 

a sequence of step-functions 
*( ) ( )n n N RTG Xφ ∈ ⊂  such that 

RP

n
φ φ→  and 

1

0

n tdWφ∫  converges in 
2
( , , )L Ω Β Ρ . 

Definition 2 ([8]). Let φ ∈ *( )RTG X  and 

*( ) ( )n n N RTG Xφ ∈ ⊂  be step-functions such that 
RP

n
φ φ→  and 

1

0

n tdWφ∫  converges in 
2
( , , )L Ω Β Ρ . The limit of the sequence 

1

0

n tdWφ∫ is called the stochastic integral of a random function 

φ ∈ *( )RTG X  with respect to the Wiener process [0,1]
( )t tW ∈  

and is denoted by 

1

0

tdWφ∫ . 

The stochastic integral 

1

0

tdWφ∫  is a random variable with 

mean 0 and variance 

1

( , ), ( , )
o

R t t dtdφ ω φ ω
Ω

〈 〉 Ρ∫ ∫ . 

Consider now the linear bounded operator 
* *: ( ),RX G Xφ →  for all * *x X∈ , 

*xφ is the map *XΩ → . 

Denote by 
* *

1
( , ( ))G

RM L X G X≡  the space of such operators 

with the property: 
2

1( )
G

R Mτ ≡ *

* *

1
sup , .

x
E R x xφ φ

≤
〈 〉 < ∞  

1
( )G

R
Mτ is a pseudonorm in 

1

GM . Consider now the 

family of linear bounded operators ( )
[0,1]t t

T ∈ ,

* *: ( )
t R

T X G X→ , such that for all * *x X∈ , the random 

process 
*

t
T x  is nonanticipating and 

2

1( )
G

R TMτ ≡

*

1

* *

1
0

sup ,
t tx

RT x T x dtd
≤

Ω

〈 〉 Ρ < ∞∫ ∫ . Denote by 
1

GTM  the space 

of such family of operators. 

We can naturally define the stochastic integral from 

( )
[0,1]t t

T ∈ ∈
1

GTM  which is the GRE defined by the equality 

( )
1

* *

[0,1]

0

t t tt
I T x T x dW

∈
= ∫ . Accordingly, we have the 

isometrical operator :I

 

1

GTM →
1

M , 

( )
1

* *

[0,1]

0

t t tt
I T x T x dW

∈
= ∫ . 

Let now X  be a separable Banach space and ( , )L X X  be 

the space of bounded linear operators from X  to X . 

Definition 3. The random process : ( , )
t

L X Xξ Ω →  is 

nonanticipating with respect to the familly of the σ -algebra 

[0,1]
( )

t t
F ∈  if for all x X∈ , ( ) : [0,1]

t
x Xξ ω × Ω →

 
is 

measurable and for all [0,1]t ∈ , the random element 

:
t
x Xξ Ω →  is 

t
F -measurable. 

Definition 4. We say that the non anticipating random 

process ( )
[0,1]t t

ξ ∈ , : ( , )
t

L X Xξ Ω →  belongs to the class 

( ( , ))TG L X X  if 

2 ( )τ ξ ≡ *

1

* * * *

1
0

sup ( ) , ( )
t tx

R x x dtd
ω

ξ ω ξ ω
≤

〈 〉 Ρ < ∞∫ ∫ , 

where ( )
t

ξ ω∗
 is the linear operator, conjugate to the operator 

( )
t

ξ ω . ( ( , ))TG L X X  is a linear space with the pseudonorm 

( ).τ ξ  

Let ξ ∈ ( ( , ))TG L X X  and x X∗ ∗∈ . 
*:[0,1]x Xξ ∗ ∗ ×Ω →  

be non anticipating and 

1

* * * *

0

( ) , ( )
t t

R x x dtd
ω

ξ ω ξ ω〈 〉 Ρ < ∞∫ ∫ . 

We can define the stochastic integral 

1

0

( )
t t

x dWξ ω∗ ∗∫ , which 

is the random variable with mean 0 and variance 
1

* * * *

0

( ) , ( )
t t

R x x dtd
ω

ξ ω ξ ω〈 〉 Ρ∫ ∫
 

. Therefore, we can consider 

the GRE 
2

: ( , , )I X Lξ
∗ → Ω Β Ρ , I xξ

∗ =
1

0

( ) .
t t

x dWξ ω∗ ∗∫
 

We have the isometrical operator :I ( ( , ))TG L X X
1

M→ , 

* *( )I x I xξξ = .

 Definition 5. The generalized random element
 

I xξ
∗ =

1

0

( )
t t

x dWξ ω∗ ∗∫  is called the generalized stochastic integral 

from the random process ξ ∈ ( ( , ))TG L X X . If there exists 

the random element : Xη Ω →  such that , xη ∗〈 〉 = I xξ
∗ =

1

0

( )
t t

x dWξ ω∗ ∗∫  for all x X∗ ∗∈ , then we say that there exists 

the stochastic integral from the operator valued non 

anticipating random process ( )
[0,1]t t

ξ ∈ , : ( , )
t

L X Xξ Ω →  by 

the Wiener process in a Banach space X  and then we write 
1

0

( )
t t

dWη ξ ω= ∫ . 

2. Main Results 

Consider now the stochastic differential equation for 
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generalized random  process 

( , ) ( , ) ,
t t t t

dT a t T dt B t T dW= +                  (1) 

Where 
1 1

: [0,1]a M M× →  and 1 1:[0,1] GB M TM× →  

Definition 6. A GRP ( )
[0,1]t t

T ∈  is called the strong 

generalized solution of the equation (1) with the 0F −
measurable initial condition 0T L= , if the following 

assertions are true: 

For all * *x X∈ , 
*( , )ta t T x  and 

*( , )tB t T x  are 1[0,1] F×  

measurable,  
21 1

* * *

0 0

( ( , ) ) ( , ) , ( , )
t t t

E a t T x dt E RB t T x B t T x dt+ 〈 〉 < ∞∫ ∫ ; 
*

tT x is 

continuous, tF − adapted and for each [0,1]t ∈  and * *x X∈  

* * * *

0

0 0

( , ) ( , )

t t

t s s sT x T x a s T x ds B s T x dW= + +∫ ∫  a.s. 

Definition 7. We say that the stochastic differential 

equation (1) with the initial condition 0T L=  has an unique 

strong generalized solution , if [0,1]( )t tT ∈  and 
[0,1]

( )t t
T ∈  are two 

solutions, then for each * *x X∈ , 

* *
{ : ( ) ( )ttT x T xω ω ωΡ = for all 

* *} 1x X∈ = . 

The following theorem gives the sufficient conditions of 

existence and uniqueness of a strong generalized solution to a 

stochastic differential equation for GRP. 

Theorem 1. Suppose that the coefficients of the stochastic 

differential equation (1) satisfies the following conditions: 

1. 
1 1

2 22 2

1( , ) ( )( ( , )) (1 ),G

RM M
a t T M B t T K Tτ+ ≤ +  

2. 

1 1

2 22 2

1( , ) ( , ) ( )( ( , ) ( , ))G

RM M
a t T a t S M B t T B t S K T Sτ− + − ≤ −

 

For all from 1M . 

Then there exists an  unique strong generalized solution  to 

(1) with the initial condition 

0T = L , where , for all * *x X∈ , *Lx is 0F − measurable 

1

2

M
L < ∞ , . 1: [0,1]T M→  is continuous. 

Proof. For all t  define 
0

tT L=  and for any * *x X∈  let 

( ) * (0) * ( 1) * ( 1) *

0 0

( , ) ( , )

t t

n n n

t t s s sT x T x a s T x ds B s T x dW− −= + +∫ ∫ . (2) 

*

1

2
( 1) ( ) ( ) ( 1) * 2

1
0

2sup ( ( , ) ( , ) )

t

n n n n

t t s sxM
T T E a s T a s T x ds+ −

≤
− ≤ − +∫  

*
1

2sup
x ≤

( ) ( 1) * 2

0

( ( , ) ( , ) )

t

n n

s s sE B s T B s T x dW−− ≤∫  

1

1 1

2

( ) ( 1) 2 ( ) ( 1)

1

0 0

2 2
1

2 ( ) ( 1) 2 1 (1) (0)

0 0

( , ) ( , ) 2 ( )( ( , ) ( , ))

( )
2 (2 )

( 1)!

t t

n n G n n

s s R s sM

t t n
n n n

s s s s

M M

a s T a s T ds M B s T B s T ds

t s
K T T ds K T T ds

n

τ− −

−
− −

− + − ≤

−− ≤ −−

∫ ∫

∫ ∫
 

11

1 1

2 2

2 2(1) (0) (0) (0) 2

0

0 0

2 ( , ) 2 ( , ) 2 (1 ).

t t

s s s s s MM

M M

T T a s T ds B s T dW K T− ≤ + ≤ +∫ ∫  

Therefore 
1

2
( 1) ( )n n

t t M
T T+ −

!

n
pC

n
≤  for some positive p  and C . 

For any fix * *x X∈ ,  

2
( 1) ( ) * ( ) ( 1) * 2

0 1 0 1

0

sup ( ) 2 sup (( ( , ) ( , )) )

t

n n n n

t t t t s s
E T T x E a s T a s T x ds

+ −
≤ ≤ ≤ ≤− ≤ − +∫  

1

2 21

( ) ( 1 * ( ) ( 1)

0 1

0 0

2 sup ( ( , ( , )) 2 ( , ) ( , )

t

n n n n

t s s s s s

M

E B s T B s T x dW a s T a s T ds− −
≤ ≤ − ≤ − +∫ ∫  

1

0

8∫
1

2 ( ) ( 1)

1

10
( )( ( , ( , ))

( 1)!

n
G n n

R s s

pC
M B s T B s T ds

n
τ

−
−− ≤ − . 

ST ,



 Pure and Applied Mathematics Journal 2015; 4(3): 133-138  137 

 

Then we Have 

∑ ∑
∞

=

∞

=

+
≤≤

+
≤≤ ≤−≤>−

1n

2

1n

*)n(
t

)1n(
t1t0

4
2

*)n(
t

)1n(
t1t0 )x)TT((supEn)

n
1x)TT((supP . ∑

∞

=

−

−
1n

1n4

)!1n(
Cnp10 . 

By the Borel-Cantelli lemma, the series  

(0) * ( 1) *

1

( ) ( ( ) ( ))n n

t t t

m

T x T T xω ω ω
∞

−

=

+ −∑  

converges uniformly on t  ( Ρ − a.s.) to the continuous 

random process, which we denote by 
* * *,tT x x X∈ . From 

equation (2) we obtain 

* * * *

0 0

( , ) ( , )

t t

t s s sT x Lx a s T x ds B s T x dW= + +∫ ∫  a. s.. 

Therefore, the GRP [0,1]( )t tT ∈  is a strong generalized 

solution of the equation (1). 

Uniqueness of the solution and continuity of 

. 1
: [0,1]T M→  we can prove by the same way (see [5] th.6). 

Let now consider the stochastic differential equation in an 

arbitrary Banach space 

( , ) ( , )
t t t t

d a t dt B t dWξ ξ ξ= + ,                (3) 

where : [0,1]a X X× →  and : [0,1] ( , )B X L X X× →  

are such functions, that 

1’.
1

2
( , )

M
a t ξ + ( )2 *

1( ) ( , )G

R M B tτ ξ
1

22 (1 )
M

K ξ≤ +  

2’.

1 1

2 22 * * 2

1( , ) ( , ) ( )( ( , ) ( , ))
G

RM M
a t a t M B t B t Kξ η τ ξ η ξ η− + − ≤ − , 

Where 

,ξ η  are weak second order X -valued random elements. We 

can extend the coefficients a  and 
*B  on 2 1M M⊆ : Let 

2T M∈ , then there exists 2( )n n N Mξ ∈ ∈ , such that 

1

0n M
Tξ − → . Then 

1 1

2
( , ) ( , ) 0n m n mM M

a t a t Kξ ξ ξ ξ− ≤ − → , 

1

2 * * 2

1( )( ( , ) ( , )) 0G

R n m n m M
M B t B t Kτ ξ ξ ξ ξ− ≤ − → . Therefore, 

we can define ( , ) lim ( , )n na t T a t ξ→∞=  and 

* *( , ) lim ( , )n nB t T B t ξ→∞= . They will satisfy the conditions 1 

and 2 of the Theorem 1 with the initial condition 
* *

0 0 ,T x xξ= 〈 〉 , therefore, we receive from the equation (3) 

the stochastic differential equation for GRP. 

Theorem 2. If the coefficients of the equation (3) satisfy 

the conditions 1’ and 2’ and for all 2Mξ ∈ , ( , )a ξ⋅  from  

[0,1]  to 1M  and 
* ( , )B ξ⋅  from [0,1]  to 1

GM  are continuous 

then the stochastic differential equation (2) possesses an 

unique strong generalized solution with initial condition 
* *

0 0 ,T x xξ= 〈 〉 . 

Consider now a linear stochastic differential equation in a 

separable Banach space. 

 ( ) ( )t t t td A t dt B t dWξ ξ ξ= + ,                 (4) 

where : [0,1] ( , )A L X X→  and : [0,1] ( , ( , ))B L X L X X→  

are continuous. Therefore, 
[0,1]

max ( ( ) , ( )
t

A t B t M∈ ≤  for 

some 0M > . Then  

 

 

* *
1

* *
1

2 * 2 * * 2

1 1

*
2 2* * 2 2 * 2 2

*1 1

( ) ( ) sup ( )( ), sup ( ), ( )

( )
( ) sup ( ), sup ( , ;

( )

M x x

Mx x

A t A t E A t x E A t x

A t
A t E x M E x M

A t

ξ η ξ η ξ η

ξ η ξ η ξ η

≤ ≤

≤ ≤

− = 〈 − 〉 = 〈 − 〉 =

〈 − 〉 ≤ 〈 − 〉 = −
 

Using the proposition 1, we have 

*

2 * * * *

1 1
( )( ( ) ( ) ) sup ( ( )( )) , ( ( )( ))

G

R x
M B t B t E R B t x B t xτ ξ η ξ η ξ η

≤
− = 〈 − − 〉  

* *

* *

1

* * 2 * 2

1 11 1

*
2

* * 2 2 * 2

1 *1 1

22

sup sup ( ( )( )) , sup sup ( )( ) ,

( )
( ) sup sup ( ), ( , ) sup ( ),

( )

( ) ,

x xx x

xx x

M

E B t x x E B t x x

B t
B t E x x M E x

B t

M

ξ η ξ η

ξ η δ ξ η

ξ η

≤ ≤≤ ≤

≤≤ ≤

〈 − 〉 = 〈 − 〉 =

〈 − 〉 ≤ 〈 − 〉 =

−

 

Where 
*( , )x xδ  is an element of the Banach space 

*(L(X,X)) , Therefore, the  equation (4) satisfies the 

conditions 1’ and 2’. That is , by the theorem 2 , the linear 

stochastic differential equation (4) has an unique generalized 

solution. 

Hence, by the theorems 2, we prove the existence of 

solutions as a GRP (family of random linear functions).We 

reduce the problem of the existence of the random process as 

a solution to the well known problem of decomposability of 

GRE (random linear function). Using the corresponding 

results, we can receive sufficient conditions for existence of 
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the solutions. Some sufficient conditions were received in [5]. 
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