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Abstract: Since 1990 Pardoux and Peng, proposed the theory of backward stochastic differential equation Backward
stochastic differential equation and is backward stochastic differential equations (short for FBSDE) theory has been widely
research (see El Karoui, Peng and Cauenez, Ma and Yong, etc.) Generally, a backward stochastic differential equation is a type
Ito stochastic differential equation and a coupling Pardoux - Peng and backward stochastic differential equation. Antonelli, Ma,
Protter and Yong is backward stochastic differential equation for a series of research, and apply to the financial. One of the
research direction is put forward by Hu and Peng first. Peng and Wu Peng and Shi made a further research, and Yong to a more
detailed discussion of this method, by introducing the concept of the bridge, systematically studied the FBSDE continuity
method. Because such a system can be applied to random Feynman - Kac of partial differential equations of research, And a
double optimal control problem of stochastic control systems, we will be working in Peng and Shi further in-depth study on the
basis of this category are backward stochastic differential equation. In this paper, we are considering various constraint
conditions with backward stochastic differential equation.

Keywords: FBSDE, Mean-Field Forward Backward, Stochastic Differential Equations,
Stochastic Partial Differential Equations

In order to study the stochastic partial differential

1. Introduction equations are non local (SPDEs):

u(t,x) =BG (1), 01+ [ Duls, x) + A5,y (), 0)]ds + | pG(s,5" (5),x)d B(s):

Ou(t, x)(t,x) = qG(t, " (1), %), p+q =1, # 0, p,q 00, (1
v(t,x) = Ou(t, x) (8, ™ (£),x),0(¢,x) [0, T]1x 0",

Where
Lu,
w:0,x0" - 0", Ou=|: )
Lu,,

Luy (2, x) —Zf}(l ¥ (@), x) (l xX)+= ZE(”T),,(I ¥ ), x) ~(x z (l U U(,x)"), k=1 m.

I/l j i,j=
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Ps, 7" (5),%) = EL@s, ™ (), %,u(s, 3 (), (5, %), (5, " (5)), (5, %), (5, 5 (), v(5, )],

In this section we study the mean field forward backward stochastic differential equations (MF-FBDSDE)

(e = x+ [ B (5,&(s))ds + [, E'g(s, E(s) d W (s) = [ 2(5)d B(s),

V(1) =ERQ/(T), () = [ EF(s,&(s)ds = [ E'G(s,&(s))d Bs) = [ Z(s)dW (s),

where

E'l(s,¢(s)) =E'l(s, y(5), Y (5),2(5), Z(5), ¥'(5),Y'(5),2'(5), Z'(5))
= JQ I(s,,6, y(s,w), Y (s,w),z(s,W), Z(s,w), y(s,w), Y (s,w"), z(s,w), Z(s, W) P(d)),l = f,g,F,G,

and
E'o((T),y'(T)) = JQ O(w o, y(T,w), (T, W) P(dd). (2)

Equation (2) to Carmona and Delarue's results are
extended to the stochastic case, the Peng and Shi results are
extended to the case of the average field. Under certain
monotonicity conditions, through the continuity of
MF-FBDSDE (2) method to get the existence and uniqueness
of the solution. Finally, the application of WF-FBDSDE (2),
are non stochastic partial differential equation (1) represents
the local solution of the probability.

2. Problem Presentation

Hypothesis (Q*,F?,P*)=(QxQ,FOF,POP) is a
complete space with its own product space here, for any
t0[0,7],F’ =F,0OF,F,0F, is FxF
Arbitrary definition of ¢=¢ (w) in the Q can be

extended to Q? natural space, namely
§'(ww)=¢(w),(ww)0Q*. H=R", and so on, we
define

completion.

L'(Q*,F*,P";H) :{f‘f:Qz - H,is F*-measurable and meetingE’ |4‘| = IQZ|<‘(af,w)| P(dw) < 00}.

for any UDLI(QZ,FZ,PZ;H),

note E'(@,01= | n(w,oPd),ENCw) = | (@, 0Pda).

if n(w,d)=n().n,(wa)=n,(w),then

E', = [ _n()Pdad) =B, B, = [, (@)P(dw) = En,.

When @,@' at the same time,

In order to distinguish between @ and @', we use mark
E'and E*.

From now on, when we talk about MF-BDSVIE , the
mapping of T/ and ¢ are defined by the E' operator.

Obviously, I/ is a non local means the '/ (s,Y(s),Z(s))
value in the I'"(s,w,Y(s,w),Z(s,w)) depends on the

whole set

{Y(s, w') ,Z(s, w')| w'(] Q}

Not only

(Y(s,w),Z(s,w))

Introduction of mark

y ) -F
| Y o Y (U | f
U_ z 7U - Z’ :E_(U,j:A(t:E)_ _G (taf)
Z z' g

considering MF-FBDSDEs(1), where
F:Qx[0,T]x0"x0"x0™ x0™ x0" x 0" x0™ x0™ - 0",
f:Qx[0,T]x0"x0" xO™ xO™ x0" x0" x0" x 0™ - 0",
G:Qx[0,T]x0"x0"xO™ x 0™ x0"x0" x 0™ x 0™ - 0™,
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g : QX[O,T] xl:ln xl:ln xl:InX/ xl:Inxd X D" xl:In xl:InX/ xl:Inxd N and’
O:QxO0"x0" - 0O".
Definition. meeting A (I;D) 0 MZ (0, T;Rn+n+nxl+nxd+n+n+nxl+nxd)
F, —measurable process (y, Y,z, Z) aom? (0, Ty Rrmmienxd )

(H2) A(t,f) and (D(y) is meeting Lipschitz condition:
is called the solution of MF-FBDSDEs if (y,Y,Z,Z) is

. 1 .
meeting (2) there exist contact £ >0,0<A < E , making
We assume that for any (H1) &R "t mdrmmmiand

A(C¥) is F, = measurable process on the [0,T]
[f@.O)-F. O] <k
|F(.6)-F(1.8) < k(
8O -2 <k(if +[?

6.6~ GO <k

, it s

Al

z

IR R Y

Rl

2 2

)7

2+|2|2+Z +j;'2+‘)9' 7'

i+ e+

2)+/1(|§|2+

RGN NG K

el 2

A1
z

A

2+Yz+|£|2+ * Y

y ¥V
(H3) A(t,f) and <D(y) are meeting the following

monotonicity condition, that is to say, for constant
1 >0,6>0, making

H>0,8>0

i 3. The Existence and Uniqueness of
E'(4(t, &)~ 4(t,6),U~U)<~plu -0, Solutions for MF-FBDSDEs

— T 77 —(= v = 7\ (- Pyt T
QU - (y,_Y,z,Z_) U=0.1.2,2) U =0\Y.2.Z'), In order to hypothesis (H1) -(H3), prove the equation (3.68)
U'=,Y',Z,Z) 00" x0" x0™ x0™, 0010, T]. the existence and uniqueness of the solution, we need the
- _ _ _ following lemma. The following lemma is discussed in class.
E(d(y,y)-D(F,7),y-7) = Bly-3 .0y, 500"
< -2 =®- ).y y> ,8|y y| e a D[O,l] is a priori parameter estimation of MF-FBDSDE:s:
Where

dy(t) =[QEf (t, (1)) + f,(6)]dt — z(t)dB(t) +[aE g (2, E(1)) + g, (1)]dW (t),
dY(t) =[aE'F(1,E(0) — (1 - a) uy(e) + F, (D)dt + Z(t)dW (t) +[aE G(1,&(1)) — (1 - @) z(2) + G, ()1dB(2), (3)
Yy =x,Y(T) = aE' Py (T), W(T)) +(1-a)y(T) + ¢,

Where {:(y,Y,z,Z,y',Y',z',Z') , (Fo,fO,GO,gO) OM? (0,T;R”+”+”X'+”Xd) , @O (Q,FT,P,R”) are arbitrary given
vector-valued random variables.

When @ =1, the existence of solution of equation (3.69)  number J, , to make the equation (3.69) is the only solution
means that the existence of solution of equation (3.68) exist. . 2  pnbnenxlenxd
When @ = 0, according to the [111] of the Ml(~‘ - B)DSDE also in the M (0.7:R ) for abfa,a,+3] .
results about the existence and uniqueness of the solution, ¢ OI° (Q,FT,P,R”),;ﬁ O (Q,FT’P,R”’)
that the equation (3.69) is the only solution can be got. ) T
The following lemma is the key in the continuous method, (Fo,fo,GO’gO) oM (0’ TR ) :
it provides for a fixed a =a,0[0,1), if the equation (3.69) Proof

El

is the only solution, there exista @, has nothing to do with Supposing that
the normal number 9, to make the equation (3.69) is the U=Y,z,2),U =(3,Y,2,7),
only solution also for a’D[a’O,a’o +50] . U=(%,Y,z,2),U =(},Y,2,72),
Lemma 2. Supposing that (H1)-(H3), if the equation (3.69) &E=0Y,2,72',y,Y,2,2),E=(3',Y", 2, 2", 3,Y,2,7),

is the only solution for «certain a=a,0[0,1) |, I=G.7.7.7 7.7.%.7) ?:():;’ V2.7 .5.7.%7)
@O (Q.F,P.R"),$0L (Q.F, P,R") , Fof-FE=f-¢
(Fys £ Gy o) M2 (0,7 777 ) U=(.Y,5,2)=(y-5,Y -Y,z-%2 -2),

There exist a @, has nothing to do with the normal U=(,Y,z,Z)= V-3.Y-Y,z-2,Z-2).
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When a=a,, if the equation (3.69) is the only solution for xOR", (F,,f,,G,,g,)OM" (0,T;R”+"+”x”’”d),

0 »°

¢ DLZ (QQFT’Py R") , there exist only U= (y,Y,Z,Z) DMZ (O’T;Rll+n+nx]+nxd) meeting the fOHOWing equations -
U = (ys Y,E, Z) O ]M2 (()’T;R'l+n+n><l+nxd) .

dy(t) = a,Ef (1, E(0) + ES (1,E(0)) + £,(0) |dt = 2(t)dB(¢) +[ @ E'g(1,6(0)) + E'g(t, & (1)) + 2,(1) | dW (v),
dY () =[ a,EF (& &) = (1 =a,) uy() + SEF (1,E (1) + Ly () + Fy (1) ] dt
Ha E'G(1,&(1) = (1=a,) z(1) + SE'G(1,€ (1) + LZ (1)) + G, ()]dB(1) + Z(t)dW (1),

Yo =%,
Y(T) = aE'®(y' (1), (1) + (1 =a,)y(T) + S(E'PH'(T), y(T)) = y(T)) + ¢,

Where o0 (0, 1) is independent of @, Our aim is to prove the following mapping
U= Iaﬂ+5(U) . M2 (0’ T, Dn+n+n><l+n><d) N M2 (O, T, Dn+n+n><l+n><d)

It can be compressed for small enough Jd>1
Supposing that 7 = (5,7,%,2)0M>(0,T; R"*"*"™"*™),

0=(3,7,22)=1,.50).
On the [0, T ] , The Ito formula was applied with < »Y > ,We can obtain

E(F(T), a,®(T) +(1=a,) 3(T)) + (1= a, k|, (70 + 20yt ~E[, E (@, (4(1,60) = 4(1.60)).0(0)) e

= E(3(T), 03(T)) ~E(3(T), &GT)) + &E[, ({70, F 0. E@)) +(30). F (1. E0)) +{Z(0), 20, E0) +(2(0), Gt E o) Jae
+aE[ ((50).50)+(2(0).2(0))

Where

0)=Ef (E0)-Ef (£.E®),

(1)) =Eg(t.E0)-Eg(L.E®),

0)=EF(1,E0)-EF(L.E0),

G(t.Z0)=EG(.E(0)-EG(1.&wW).

() = EQF(T), 7(T)) ~E'D(F'(T), 7(T)),
P(W(T)) = ED(y(1), W(T) ~EP(F'(T), (1))

~)

(
1(

F

0
MUERAY

L
L,
L

| ™

according to the H1-H3,
(1-a,+a,BE[F(T) + 4, (5] +z) Jar < JCEIOTUU(z)r +‘z?(t)r}rz + 5C(E| SO +Ep@)| )

Where constant C>0, thereafter, it would be appropriate constants. It can be progressive different and only depends on the
Lipschitz constant. On the other hand, we apply estimation technology to (Y ,W) = (Y /4 —W) . We apply 1t6 formula to

|Y(t)|2 onthe [0,7] .we can get the following,
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E[7 ()| +E[|Z(5)] ds = E|a, 801 + (1= a,)3(T) + 8(@GT) - 5(D))|

26 (7(),0,F (5,£(5) ~ (1~ @ p3(s) + O F (5,8 () + 3 (s) ) ds

Gls.&(5)) ~ (1= 1, 22(5) + 8(Gs. E ) + 42 (9))| s,

Where
F(t,&(1) =EF(1,6(t))-EF(1,.6())
F(t.E0)=EF(.E0)-EF(1,&0)
G(1.6(n) =EG(1.£(0)-EG(1.6(n)).
G(1.&0)=EG(n.E0)-EG(1.E0),
(1)) =E'D(y'(T), (1)) -E'P(F'(T)HT)),
O (3(1)) = ED('(7),5(1)) -E'D(F'(T)F(T)).

Form the (H.3), we can get the following

7| +Ef] |26 ds < 4E[ a [ (x()[ + 1=, [3Df + & oG] + &[5 |

+2EI,T|?(S)|(H |17" s,g‘(s))|+(1—a )y|)7(s)|+6‘ﬁ(s,?(s)) +6,u|):;(s)|)ds

+Ejf[1:“ *|6 (5. } +3[ [1 *24 ((1 a,) 1 25+

1-24

G (s, g?(s))‘2 + 07’ |?(s)|2 ”ds

< CE|5(T[ + 6CE[3(D)| +E]’ [( e+ AF (s é) j+(l—6¥o)ﬂ(|l7(s)|2 +|i(s)|2)}ds

1-2/
+5EIT[(|?(S)|2+‘F(S,<?(S))\2)+ﬂ(|?(s)| el )}ds+EJ‘ [1 2/]|G (5,6() H

EJ‘ [HM (1-a,)* )z(s) +52‘G f(S))‘ +o' 1’ |Z(S)| }ds

32/1

< CE[3(1)| +3CE[5(T)[ +CEL |Y(s)| ds +0CE j

g (S)

ds+CE[’ (| ) +|E(s)|2)

Thus

E|Y(t)|

“ds < CE[| () ds + C(E| WO +E[F@)| ) +CE[ (| F +z) + 5‘U(s)‘ )d 3
Form Gronwall inequality, we can obtain the following

E[7 o[ + Ejf|2(s)|2ds < C(E| H()f + £|§(T)|2)+ CEIOTO 5o+l + 5‘5(1)‘2)%

50

EIOT(|?(¢)|2 +|Z(;)|2)dr < C(E| [ + dE|):/(T)|2) + CELTO SOl +z20f + 5‘(7@)@%.(3.71)
Combined with the above estimates (3.70) and (3.71), The constant of the full C>0, the following is available.

e[ [U0[ di+E[3)] < 5C(E (|o@fa+Elpa) +E J'OT‘Z?(t)rdt + E|§(T)|Zj

1 . . .
o, = ic It is easy to see, for each fixed 00 [O, 50], the mapping is compressed, that is to say,

ds.

124
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E[ U] i+ E5f < ;(E [ T‘ﬁ (t)‘zdt +E }(T)zj.

E(3(T), D(y(T))) = E jOT E( AU (1) = AU (1)),U () .

From that, we could know

LE LT E{ALU@) - AT 0).U(0)dr <0

Thus the existence of the fixed point of mapping,
conclusion is proved.

Existence and uniqueness theorem of solutions of
MF-FBDSDE is given below.

Theorem 3. We suppose the (H1)-(H3) are tenable, thus
MF-FBDSDE exist uniqueness solutions in the

Mz (0, T;Rn+n+nx1+nxd )

Proof

(Uniqueness) We take U =(»,Y,z,2) and U =(y.Y.,7.2)
as too solutions of the equation (3.68). We continue to use the
mark in 3.5.2 lemma. Application formula. /z6to < ».Y > on
[0, T]

We can get,

E(3(1),®(y(T))) = E jOT E <A(t, U(0) =~ At U 0),U(2))dt.

According to assumption (H.3), we can know
T — -~
LE jo E'(A(U (1)~ AU (£),U(0))dt <.

So U =U', Uniqueness is proved.
(Existence) when a =0 ,The equation(3.69)has only one

solution in M *(0,T; 0" ")
According to Lemma3.5.2, we can know
There exists positive 0, = 8,(k,A, i, ) so to any

5000, 41, xO0", 90X (Q,F,,P;0"),
(E)’ﬁ)’GO’gO)DMZ(O’T;D)1+n+nXl+nXd)’

When a =0, The equation(3.69)has only one solution.
Because J, only relies on (k,A,4, ) | Repeat the above
process many times, Leading tol< N9, <1+ 9, .Particularly,
when a=1 ,take (F,f,.G,.g,)=0 , @=0 | The
equation(3.69)has only one solution in M *(0,7; 0" """

Conclusion is proved.
Note: hypothesis (H.3) could be replaced by the following

E (4.6~ 40.8).U-0) 2 ulu -0,

(H3.5.3)

U =(»,Y,2,2)",U=(.Y,z,2) .U =(,Y',z,Z"),
U'=(7.7.7.Z)" 00" x0"x0"™ <0, 0: 0[0, 7).

E(P(y,) =D, 3)y =) <=Bly=3[ .0p,y 00",

Where 4 and [ both are positive constant.

Theorem 5. We suppose the (H1), (H2) and (H3)  are
tenable, thus MF-FBDSDE exist uniqueness solutions in the

Mz (0, T;Rn+n+nx1+nxd )

4. Probabilistic Representations of Non
Local SPDEs Solutions

Using the above MF-FBDSDEs, discuss the non
probabilistic local SPDE solutions. For any x[JR", consider
the following WF-FBDSDE:

dy(s) =Ef (5,(s))ds +E'g(s,&()dW (5) = 2(s)dB(s),
dY(s) = E'F(s,&(s))ds + jf E'G(s,&(s))dB(s) = Z(s)dW (s),
y(0) = x,Y(T) =E®(y'(T), (1)),

whered(s) = (¥(s),Y(5),2(5), Z(5), ¥'(5), Y '(5),2'(s), Z'(s)),
F:[6,T]x0"x0"x0™ xO0™ x0" x 0" x0"™ x0™ - 0",
fi[6T]x0"x0" x0™ x 0™ x0" x0" x0™ x 0™ - 07,
G:[t,T]|x0"x0"xO" x0™ x0" x0"x0" x0™ - 0™,
g:[6.T]xO"xO" xO™ xO™ x0" x 0" xO™ xO0™ - 0",

o:0"x0" - 0",

We suppose that (F,f.Y,¥,0)

of MF-FBDSDE

is deterministic, there exist uniqueness solution
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(»(5).¥(s).2(s).Z(s)),s O[t.T] of MF-FBDSDE. We suppose that

u (t,x) =y (t),v(t,x) =0 (t)
According the uniqueness solution of MF-FBDSDE, we know that for any #<s <T , we could obtain the following,
Y (s) =Y (s) S uls, " (s)).

In order to mark is simple, for @ = F, f,G, g, we suppose that
P(s,y"" (5),x) = EL[P(s, »"" (), x,u(s, ™" (5)) (s, x), (s, " (),
(s, %), v(5,y™ (5)), (s, ).

Notice the marks in the second quarter, we know that
s,y (5),%) = EL@, 5, " (@, 9), x,u(s, " (), u(s, %), (5, " (6,5)), (s, %), (s, 5" (& ,5)), v(s, X))].

If there exist A is the following second-order quasilinear nonlocal SPDE:

u(t,x) = E[@(" (), 01+ [ Duts, )+ F(s, 3" (5),0))ds + [ pGs, v (s),x)d B(s)

Ou(t, x) (1, x) = gG(t, " (1),x), p+q =1, # 0, p,¢ O,
v(t,x) = Ou(t,x)g(t, y** (¢),x),0(t,x) [0, T]x 0",

Lu,
where u:0,x0" - O0",0u=|:
Lu,
0, U AAT 0.x azuk
Luy (,x) —Zh(t z (1), x)—(l x)+— ZE( ), (27 (1), x) (t,x)
21 j=1 axla.x/.
- (b, ), X, X))k =1,
245 10 6
We can obtain the following: right. (Y,Z) is only determined by equation (3.72)
Theorem3.5.6.Suppose (F, f,G,g,®) is deterministic in Proof We only need to prove
MF-FBDSDE(3.72). L (). &(5.3% (5).x) D (s, (s)):08 55} s

There is only one solution in MF-FBDSDE(3.72).F,f,G and

g are three order continuous differentiable. ® is two order the  solution of MF-BDSDE. T.hus we  suppose
continuous differentiable. 1=t <t <t,<...<t, =T, we can obtain the following

If (u,V)is the solution of nonlocal SPDE(3.74), so (3.73) is
u(z’ 4 ) u(tzﬂﬂ i u(tl’ 4 )_u(tH )+u(tl7 b ) u(t1+l’ Lis
=-[" Du(t,.,z’"*(s)>ds+L”‘ Cu(t, 2 (5)2(s)dB(s) + [ g“(tf,z°~*0 (5,2 ($)Tu(s, 2" ())dW (s)
fin1 t,x 2 0,x, t,x fin1 - 0,%, 1L,X\ T
][ Duts, 2+ A2 (9,200 |ds+ [ pGs, 2 (s),2/)dB(s),

Here we used to meet the Ito formula and U condition equation. Finally, the cell length tends to 0. We can obtain the
following

u(t, 2() ~u(T,2(T) = [ (5.2 (), (9))ds + [ Gls.2 (51,2 (D)dBs) + [ £(5.2" (51,2 () Du(s, 2 ()W (5).
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It is easy to verify Y”X(S)I:u(S,y”X(S)),Z"X(S)!:é(S,yO’x" (S),X)DM(S,}/’X(S)) have the same solution with

MF-BDSDE.

Note 3.5.7. (I) in non local SPDE, When p=0, the non local SPDE (3.73) degradation as follows

u(t,x) = E[®(z"" (T),x)] + LT[D u(s,x)+ H(s, 2" (s),x)lds,
Ou(t, x) iz, x) = G(t, 2 (¢), x),
v(t,x) = Ou(t,x)g(t, Z0% (®),x),0(t,x)0[0,T]x0O".

II) (3.73) can be called non local
Feynman-Kac formula.

IIT) (3.73) to PDE with algebraic equations to the mean
field.

SPDE  (3.74)
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