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Abstract: Since Pardoux and Peng firstly studied the following nonlinear backward stochastic differential equations in 1990.
The theory of BSDE has been widely studied and applied, especially in the stochastic control, stochastic differential games,
financial mathematics and partial differential equations. In 1994, Pardoux and Peng came up with backward doubly stochastic
differential equations to give the probabilistic interpretation for stochastic partial differential equations. Backward doubly
stochastic differential equations theory has been widely studied because of its importance in stochastic partial differential
equations and stochastic control problems. In this article, we will study the theory of doubly stochastic systems and related topics
further.
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1. Introduction

2. The Control Problem of Mean-Field
Andersson and Djehiche, Buckdahn, Djehiche and Li,

Meyer Brandis, ksendal and Zhou, and Lihave studied the
optimal control problem about Mean-field s tochastic
differential system .Inspired by the above problems, in the
paper, we study the optimal control problem about Mean-field
backward doubly stochastic system. In the situation that
control field to the convex and coefficient contains control
variable, Using convex variational and dual technology, we
present the local and global stochastic maximum principle,
proved a sufficient conditions of optimality (verification
theorem) and a necessary condition[1-4].

Backward Doubly Stochastic System

For simple marking, make m=n=d =[1=k =k, =1,
Given convex subset U [J R*, allowing the control set is
defined as

u, ={0:[0, 7] xQ - U|v is F, -measurable,

E[' 10 dr <+eo}

For any o00u,,é0L0(Q,F,,P;R),
following MF - BDSDE:

consider  the

v T T - T -
Y (1) =&+ L r/ (5,YY(5),ZY (5),0(s))ds — j[ ZY%(s)d W(s) + j[ e (s,YY(5),Z° (s5),0(s)) d B(s),

Where i=f,g

[‘l (s, YU (s), ZU (s),u(s)) = jQ @ (s,0,0,Y" (5,w),Z" (5,0),v(5,0),Y" (5,60),Z" (5,0),0(s,0 ) P(d &),

And 67 : Q> x[0,T]xRXxRxUXRxRxU - R, 6%:Q*%X[0,T]XRXRXUXRXRXU - R
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Performance indicators is

T v v
JwD) = EJ.O M (5,79 (5).2% (s).0(s))ds + E[E'h(Y, (@), Y, ()], 6]

Where

M s, 7" (s), 2" (s), 0(s)) = jQ I(5,0,00,Y" (5,0),Z" (5,0),0(5,0),Y" (5,00 ), 2" (5,00 ),0(s,0) ) P(dc))

h:Q*xRxR - R,
[:Q*X[0,T]xRXRXUXRxXRXU - R,

Control problem is looking for admission control to make performance indicators reaching the minimum value on the u,, .

Supposing that [5-6]

(H1) (1) &7,6¢,1,h is continuously differentiable about ,¥',z,z',v,v' and the derivative of h and i is linear growth.

(2) 6',6° meet uniform Lipschitz condition about ( z,%2'v, v’) .

In other words there exist L;,K,,q;, for i =y,z,y,z.v,v',j =3,4 making

: I 1 I 3 I I T
“9‘/ (t,wd,y,z2,¥,,2 0,0 )¢ (t,w,d,y,,2,, ¥, ,2, ,Uy,U, )

SLy|yl _y2|+Lz

z —zz| +Ly,

SKyZ- |y1 _y2|2 +Ky2" y1' _y2,

yl’ _yZ, +Lz'

T T T I I I
Hg(t,wyw'yynZUM »Z1 U0, )_gg(tsa%ajyyzyzz’)b SANUNS

: 2 2 2
+K v, -0, + K]

r_t
Ul UZ

+L, |U1 —U2| +L,

r r
2 T

>

2

2
T I I I
u -0, +a'3|zl—z2|+a'4 21 T2y,

D(t9a)9aj)D[OaT]xQza(y,'az,'ayjlaz,">U,'>U,")DRGai :152

T
And EJ.O E'eg(z,w,a/)fdmoo, l=f,g

Where & (t,w,w') =8, (t,w,',0,0,0,0,0,0),a, +a, <I.
Under the above assumptions, for any v(-)D u, , there
exists a unique solution (Y",Z") os? (O,T;R) x M? (0, T;]R)

of the equation (1). And the performance index defined is
reasonable.[7-8]

Assumed u ([)] is the optimal control. (Y ([)],Z([)]) is the

corresponding optimal trajectory. v([)] meet U ([)]+v([)]D

u,, .because of the convexity of u, , for any

0<e<tut (J=a(+ev(00 u,, .
solution (YE ([)],Zf([)]) of u°
Lemma 1. hypothesis (H1) is established, forany ¢0[0, T],

there exists a unique

2 2
E‘Y‘g -V ()| < Cez,Eﬂzf (s)=2(s)| ds < C&?.

Proof. Notice that Y®(r)—Y(r) to meet the following
MF-BDSDE:

YE@0) =Y (@) = [ 17 (5.7 (5, Z° (s () =T (5, 7 (). Z(s). d(s) s

00 (5, Y7 (), 27 () () =¥ (5, 9(5), 2(), ()1 B(s) = (Z(5) = 2(5))d W (s)

2

Yé) -1

Applying [to formulas to

E(‘Y‘E O -7 + ﬂzf (s)=2(s)

+E.[tT

According to (H1), there is

ds) = 2E [ (7o) =P (5,7 (5), 2 (5" (5) =T (5, ¥ (5), Z(5),d(s) s

F¢(s,YE(s), 25 (5),u’ (s)) = T4 (s, Y (5), Z(s),(s))  ds



103 Hong Zhang et al.: Maximum Principle and the Applications of Mean-Field Backward Doubly Stochastic System

Blye o -v0f +E[7]28 ) -2 ds < KE[" Y -7 ds+k,eE[ u(s)| ds
| I , Jots)

Where k,(i =1,2)is constant rely on (H1). According Gronwall Inequality and Burkholder-Davis-Gundy Inequality, results

are verified.
For simple marking, make

a(0)= a(Clw, o, Y (L), Z(Cw), 4(Cw), ¥ (G1d), Z(C ), i (G ),
a® (0= a(Cw o, Y* ([k), Z° (L), u” (5k), Y * (Ckd), Z° (), u (L)),

() =w(0)+ [ F (s.£(s)n(s)ds + [ G, (s.£(s).r(s))aB(s) =[ (s)am (s). e)
Where
F(5.6(5)n(s) =E| 8 (s)£()+ 8- (s)n(5) 6+ ()€ (5) 46+ (5)7 (5) |
G (5.£()1(5) = E| 8, (5)€(s) + 8- (s)n (5) + " ()€ (5) + € ()7 (5) ]
And
()= [ B8 (5)0(s)+07w (s)0'(5) |ds [ B[ 80 (5)0(s) 6 (5) 0/ (s) [aB(s).
Marked

B0, (5)¢(s)] = [,0" (s we)é (s.0)P(da),
E'[e?, (5)& (s)] =[ 8, (s.0.d) (5. P(de).

Under the above assumptions, for any v(-) U u,, , there exists a unique solution (f(t) N/ (t)) 0s® ([0, T] ; R) x M? (0, T; R) of

the equation (2).
Lemma 2. Marked

lim sup E[y* ()] =0, lim Ef,

£-0,q0,7]

(1) ar =0. 3)

(yg,Zf) is the solution of the equation as follows,

-dy* (1) =

ETLI ()7 () + 72 (1) 27 () + 17 (1) ' () + £ (1) 27 (1) + 1 (1) J

+E g (1) (1) + 85 (1) 2" (1) + &5 ()" (1) + 85 () 2 (1) + & (1) JaB (1)
) —z¢ (¢)aw (1),
¥ (r)=0,

Where o= f,g y ?t,w = ?t,w +A (wa _i}t,w) , L_lt,a) = ;lt,w +A (Mtgw _;lt,&))

5 (0= 1,0 (W Zsostc Vs, Zoas s i
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and
5 (9= 0 (3=, (3] e +| & (9-6"- (O] +| & (90" ()] €
+ & (=67 (] +] & (3-8 (V)0 #] 52 (- (D01
(o) on [1.7]

(o) ds = 26] (3 () B L7 (5) 0" (5) 2 ()2 () 12 (5) 7 (5) %+ £ )2 (5) 1 () )l
+EJ, B (5) " () + &2 (s) = (s)+g; () (5) + &5 (s) =" (5) + & (s) ] s

According to (H1), there is

Applying [to formulas to

| ds+C,,

Where k is constant, when & — 0}, C, — 0. According Gronwall Inequality, results are verified. Because of u# ([)] is the

optimal control,

&' (u () -7 (u(0) |20 @)

According to lemma 2, there is
lemma 3. Hypothesis (H1) was established, then the following variation inequality is established"”'":

EJ E[1 ()€ () +1: ()7(s) +1v (5)& (s) +1: (s)'(s) +1u ()0 (5) # (5) ' (5) Jds
+BE b, (Vo Fow )&+ (Foo Tow ) & | 20 5)

Where

Proof.
EE e [ (¥ ¥5) |~ h(Vow Vow) =EEE [ b, (Yow Vo ) (Y5, ~Vow)dA +EEE™ [y (Yo, You )(¥y = You )dA

- EE[h, (Yo,w,Yo,w)fO’w +h, (VouVow )&y |6 - 0
Where ?O,a) = ?O,w +/] (Yogw _?O,w) .

-I{Ej [ (e }dt}—»EJ‘ T1 ()€ () +1 () (s) 1 ()€ (5) +1o ()7 () + 1 ()0 () + 1o () (s) s

so (5) is verified.
Considering the adjoin equation:

p(1) = (FooTow )+ E'h, (Fous Fou) + [ 5 (s.p(5).a (s))ds +]/Gu(s. (). () ()~ [ a(s)TB(5). (6)

Where

—~

F(s.p():0(5) =B [0, (5) p () + 6%, (s)q(s) +1. (s) | B[00 (s) " (s)+ € () (s)+1ur ().
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G, (51 (5):a(5)) =E| 8- (5) p(s) +6°-(s)a (s) +1- (5) | +E [ €= () " () + € (5) 4" (s)+ L. (5) |
Ely (s)=[ 1 (5.0, )P(de),

E*[é?y' (s)p* (s)} :.[Qé?yv (s,a)*,a))p(s,a)*)P(da)*).
Define the Hamiltonian function H:[O,T]XRXRXRXRXRXRXRXR — Ras follows
H(taYpZl’UlaYZrzz’Uz’paCI) :Hf(t,a),cd,yl,zl,ul,yz,zz,uz)p+9g (tawsCdaYle’UlaYZrZz’Uz)q

+l(l,&),Cd,ylaz]aupyz’ZZ’UZ) @

By the variational inequality (7), we present MF - BDSDEs stochastic control problem of stochastic maximum principle.

Theorem 1,(stochastic maximum principle) Assumed (I? (D],f([)],ﬁ([)]) is the optimal trajectory of the control
problem{(1),(2)},Ov0U,a.e. tD[O, T],a.s.

[E'ﬁu (t,0,))+E'H, (t,w*,w)} [Qu—&(t))z() (8)
where
H(twd) = H (6w ¥ (60) 2 (n0)u(0). 7 (16), 2(n.6)u (), p(n0).9(s o) ©)

Proof. Applying Ito formulas to <q‘ (t), p (t)> ,we can get

€60, =E[] [, (5)€(5)+L (5)7(5) 41, ()€ () +L. (5)'(s) Jds ~E[, E[ & ()0 (5) p(s) + €% (s) (s)a s) s
-E[[ €[ 8. (s)0(s) p(5)+ 6" (s)u(s)a s) s
According (5) ,we can get
E[,E|8s (5)0 (5)p(s) + 8w ()0 (s)a (s) +1 () (s) |as
+E[[E| 070 (5)u(s) p(s)+ 8 (s)0(s)a (s) +1u (s) o (5) | ds 2 0

According Hamiltonian function, we can get

Forany vOU,F isthe any element of 0 — Algebra (F,) ,setting

LAl(S), sD[O,t),

v, sO[t,,t+¢€),wdF,
u(s), sO[t,.r+¢€),wDQ-F,
&(5), sD[t+£,T],

We can know v(s) Ou,, ,because U (t) meet ;l(t) +U(t) Ou,, ,setting U(t) = U(t) ~u (t) , The above inequalities can be

rewritten as
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Bl [ [ EH. (s, 00)+E Ho (5,0,0) |du-a(s))ds 0
Differential on a variable £ at &= 0, we can get
Bl [ E'H, (t,w.0)+E Ho (1.60,0) | fu-u(r)) 20
So (8) is verified.

3. Mean-Field Backward Doubly Stochastic LQ Problem

This section, we apply the maximum value principle to Mean-field backward doubly stochastic LQ problem.
1 1y2 l 2y72
4 (Yoo Yow) =5 QX0+ OV
2 2
And

(8.6, 4. Z, 0, Y, 07,50, y) = A (5)Y, 4B (5)Z, , +C' (5)0,  + A* (5)Y, o + B (5)Z, s +C (5)0,

LN/ E e N/

(S wa} Yvw’Zrm’Uv(d’Yv(J’er’ ) :Dl (S)YS,(:J+E1 (S)ZS,(:J+F1 (S)Us,w+D2 (S)YS,KJ +E2 (S)ZS,KJ +F2 (S)US,KJ

(S C()CJ YA&)’ZA&J’UA w’Y:(d’Zs,(d’Us,a/) :%[Ml (S)Yjw*-Nl (S)Zsz,w+W1 (S)Usz,w-'-Mz (S)bej +N2( ) +WZ szJ]

Where A’ :[O,T]XQ2 — R is bounded. (s,w,w')HAi (s,w,w') is 9’ measurable (similarly, other coefficient

satisfies the hypothesis). M, N' are nonnegative, R’ is positive. The state equation is
v, =€+ B () v + (B8 (5)) 220+ [B'C () oo ds +[ B[4 ()02 + B () 22 2 (s) 0, Jas

[ {[ED ()]0 +[BE (5)] 20 +[E'F' () oo} 4B,y +] {0 ()10 + ()22 + F* (s)0,,, ]} 4B,

j z¢,dw, ,, (10)
Performance indicators is
I(00) = ([ (M (sl 3 )z ew (s)oz, Jas+ e ol )
;E(j E [M ()72 [ + N2 (s) Zs”a,2+W2(s)|Us’a,|2}ds+E'[Q02 x;ja,z}).

In order to mark is simple, put A (S.a), o ) for A’ (S) . Hamiltonian function is

H(8,00,60,3,,2,,%,,35,25,v3, 0:q) =[ A ()3, +B'(s) 7, +C' (s) v, + 4* (5) 3, + B (5) 2, +C* (s)v, | p
+[D'(s)y, +E' (s) 2, + F' (s)w, + D* (s) 3, + E* (5) 2, +F7 (s)v, |q
e[V ()37 N (s) 2 40 ()07 0% ()32 4 2 (s) 22+ ()07
According Theorem 1, we can get
0=E[C'(s)p, +F' (s)q, +W' (s)u [+ E[C* (s) p, + F* (s) g+ (s)u. |, (11)

Where
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E*[C1 (S)pJ IIQCI (s,wd)) p(s,w)P(ddt),
w2 (s)u(s) |= [ 0 (5.0, @)u(s, ) P(das),
E’ [Cz (S)p3:| :JQCZ (s,ai,w)p(s,ai)P(dai),

And
p(t) = E'[Qé?o,w] +E [QOZ )A/o,wJ +J.Oth (s,p(s),q(s))ds +J‘; G, (s,p(s),q(s)) EW(S) —I;q(s)dB (s), (12)
And
Fo(s.p(5).a () 24 (5) p(s) + D' (5)a(s)+ M (5)] 4B [ ()" (5) D7 ()" (5) +20° (s)
G, (5.0(5).g(s)) =B [ (5) p(s) £ (s)a(s)+ M (5)] +E (5 (5) " (5) +E* s} (5)+ 3 (s)]
Theorem 2. Assumes u that satisfy (9), the (p, g) is the solution of equation (10), the above LQ problem have unique solution
Proof.
J(v)-J(a) Z%ELTE'[MI (s)( 2]+N1 (s)(zgw |Zow zﬂds
+%EJ‘0T E'[W1 (S)OUS’("'Z |t 2j+M2 (s)( zﬂds
+%EJOTE'[N2 (s)( Z. ‘ )+W2 (|U o s w‘ Hds +%EE'[Q&(Y&,2 - f’o,wzj+Q§( zﬂ
>E[ E [ Voa(V2 =T ew) #N' (5) Zew( 220, —2s,w)}ds +ELTE'[W1 (5)ttsco (U0 = t100) + M2 (5) Vo (¥ =T )st

+EIOTE'[N2 ()220 (22 = 2o )+ ()it (01 =00 ) s +EE 01T 0o (12, =T+ 03 T (12 ~Fow )|

A

2
U
Yo

5,00

2
v —_—
Yo

v |? v 2 ~
Zigl — Yol —[Yow

Applying j;; formulasto p (Yf’w -Y s,a)) on [O,T ]

EE[QOYM( Yow)+Q0Yow(Yow—YowH B[ E[C () pow+ F ()4, ) (U0 — i) ds
B[ B M () Voo (V=P # N (5) Zuo (22 = 2o s +E[ B[ € () (00 =) Py + 2 (5) (00 =t000 ). s
EJ) B[ M ()T (V2 =T )+ N () 2o (22 = 2o s,

We can get
7(0) = (0) 2 B, B[C6) 00t (5)a00 | (000is0) ds
+E[ TE'[W1 ()0t (U ot ) #17 (5)ot 5 (s =0 ) s+ jOTE'[cz ()01 0500 ) Pyt 72 (5) (000 =100 s o |5
=B [ B (5) oot (5)4 0 (U omtso)sE, [[E 1 (5) o o0 ot o [ 12 ()t (00,0 m00) s
+E fo E'[C2(s)p; +F2(5)g) |(vy.0mtts.0)ds

Theorem 2 is verified.



Pure and Applied Mathematics Journal 2015; 4(3): 101-108

4. Summary

108

Theorem 1,(stochastic maximum principle) Assumed ()7 ([)],Z([)],ﬁ ([)]) is the optimal trajectory of the control

problem{(1),(2)}, OvOU,ae. t D[O,T],a.s.

[EH (o) +EH, (16,0) |fu-u(r) 20

where

A(nww) = H(6w.d.¥(1,0),2(t.0)u(t0). Y (1.0).2(1.6).0(1.6). p(1.0) 4 (1, 0))

Theorem 2. Assumes # that satisfy (9), the (p, g) is the

solution of equation (10), the above LQ problem have unique
solution.
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