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Abstract: In this work, we review the construction of the linear operator associated with a class of linear regulator problems 

subject to the state differential equation. The associated linear operator is then utilized in the derivation of a New Quasi-

Newton Method (QNM) for solving this class of optimal control problems. Our results show an improvement over the 

Classical Quasi-Newton Method. 
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1. Introduction 

Optimal control theory is playing an increasingly 

important role in the design of modern systems. More 

specifically, control problems play an important role in 

aerospace, as well as in other applications, where for 

example, temperature, pressure, and other variables must be 

kept at desired values regardless of disturbances.[5]. In this 

paper, we propose a New Quasi-Newton method by adopting 

the quasi-Newton method algorithm to obtain the solution of 

the following scalar, linear, optimal control problem of the 

form: 

Problem A: 

min(�,�) 	 
��
(�) + ��
(�)����
�   (1.1) 

Subject to the constraint 

��(�) = ��(�) + ��(�);   0 ≤ � ≤ �  (1.2) 

�(0) =  ��   (1.3) 

where �  is the � × 1  state vector, �  is the " × 1  control 

vector, � is � × � constant matrix, � is � × " constant matrix, �  and �  are symmetric positive definite constant square 

matrices of dimensions �  and "  respectively. ��(�),  the 

derivative of the state, �(∙), with respect to time. 

As conventional with penalty function techniques, (1.1) to 

(1.3) may equivalently be written in the form: 

min(�,�) 	 
��
(�) + ��
(�) + $|| �� (�) −  ��(�) +�
� ��(�)||
� ��                                                                     (1.4) 

where $ > 0 , is the penalty parameter and $|| �� (�) −  ��(�) +  ��(�)||
 is the penalty term. We assume that  $ is 

a suitably chosen parameter to ensure good constraint 

satisfaction for each of the problems under consideration. 

The validity of this claim can be seen from a number of 

theoretical and numerical results in  (2, ** 61 − 85.. In here, 

we seek to apply the quasi-Newton method algorithm to (1.4). 

Based on (1.4), application of the QNM algorithm requires 

that an operator, 01, be determined such that;  

〈3, 013〉5 ≅ 	 
��
(�) + ��
(�) + $7��(�) −   ��(�) +�
� ��(�)7
� ��                                                                    (1.5) 

where 3�(�) = (�(�), �(�))  and ℋ is a suitably chosen 

Hilbert space. 

According to [8], the operator 01  is such that 

(019)(�) ≡ ;0<< 0<
0
< 0

= ;�(�)�(�)= = ;(0<<�)(�) +(0
<�)(�) +
(0<
�)(�)
(0

�)(�)=      (1.6) 

and the composite units of the linear operator (0<<�)(�),
(0<
�)(�), (0
<�)(�) >�� (0

�)(�) are given by:  

(0<<�)(�) = −$(��(0) −  ��(0).?@�ℎ(t) 

+ $ 	 (��(B) −  ��(B).�CBℎ(� − B)�BD
� − 	 ((� + $�
)�(B) −D

�$���(B). ?@�ℎ(� − B)((> + $�
)�(0) − $���(0).�CBℎ(�) +
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EFGH(D)
EFGH(�) 
(> + $�
)�(�) − $���(�) + $?@�ℎ(�)(��(0) −
 ��(0). −  $ 	 (��(B) −  ��(B).�CBℎ�

� (� − B)�B +
	 ((� + $�
)�(B) − $���(B).�

� ?@�ℎ(� − B)�B 

− ((� + $�
)�(0) − $���(0).�CBℎ(�)�, 0≤ � ≤ �     (1.7) 

(0
<�)(�) = $���(�) −  $���(t), 0 ≤ � ≤ �            (1.8)  

(0<
�)(�) = $��(0)?@�ℎ(�) −  $ 	 ��(B)�CBℎ(� −D
�B)�B + $ 	 ���(B)?@�ℎ(� − B)�BD

� +  $���(0)�CBℎ(�) +
EFGH(D)
EFGH(�) 
$���(�) −  $��(0)?@�ℎ(�)  +
$ 	 ��(B)�CBℎ(� − B)�B�

� + $ 	 ���(B)?@�ℎ(� − B)�B�
� +

 $���(0)�CBℎ(�)�     0≤ � ≤ �                                     (1.9) 

(0

�)(�)=  ��(�) + $�
�(�), 0≤ � ≤ �         (1.10) 

where (0<<�)(�), (0<
�)(�) , (0
<�)(�)  and (0

�)(�)  are 

respectively given by (1.7) – (1.10). Reader should see [7] 

for the proof.  

2. Classical Quasi-Newton Algorithm 

Nonlinear problems in finite dimensions are generally 

solved by iteration.[8], for the minimization problem, and [7], 

for systems of equations, introduced new methods which 

although iterative in nature, were quite unlike any others in 

use at the time. These papers together with very important 

modification and classification of Davidon’s work by [4] 

have sparked a large amount of research in the late sixties 

and early seventies. 

This work has led to a new class of algorithm which has 

been called by the names quasi-Newton or modification 

methods. The methods have proved themselves in dealing 

with systems of n equations in n unknowns, and the 

unconstrained minimization of functionals. [3]  

The basic idea behind any quasi-Newton method is to 

eliminate computation of the Hessian in every iteration and 

the methods are based on Newton’s method to find the 

stationary point of a function, where the gradient is zero or 

near zero. The Hessian is updated by analyzing successive 

gradient vectors instead. Detailed overviews of quasi-Newton 

methods are presented in [8] and [7]. The search direction is 

obtained by solving 

�I* = −∇K(�I) 

That is, from the Newton’s equation but with the Hessian 

replaced by �I , a positive definite matrix. Quasi-Newton 

methods require only the gradient of the objective function to 

be supplied at each iterate.[8]. Since second derivatives are 

not required, quasi-Newton methods are more efficient than 

Newton’s method and display a super linear rate of 

convergence. 

In place of the true Hessian   ∇
K(�I) , they use an 

approximation   �I , which is updated each step to take 

account of the additional knowledge gained during the step. 

The various quasi- Newton methods differ in the choice of 

�I . The first quasi-Newton method is the DFP which was 

soon superceeded by BFGS. 

The BFGS method named after Broyden, Fletcher, 

Goldfarb and Shanno who discovered it in 1970. It is 

numerically stable and has a very effective “self-correcting 

properties” account for its superior performance in practice 

[9]. If the matrix LI incorrectly estimates the curvature in the 

objective function, and if this bad estimate slows down the 

iteration, then the Hessian approximation will tend to correct 

itself within a few steps. 

Since the search direction  * = −LI∇K(�I), this has the 

advantage that we don’t need to solve a linear system to get 

the search direction, but only do a matrix/vector multiply. 

The BFGS update formula is as follows: 

LIM< = LI + NONOPNOPQO − 5OQOQOP5O
QOP5OQO   

By taking the inverse, the BFGS update formula for �IM<(@. R LIM<S< ) is obtained: 

LIM<S< = �IM< =  �I + T<MNOPUONO
NOPQO V QOQOPQOPNO − QONOPUOMUONOQOPNOPQO   

The BFGS, preserve positive definiteness of the Hessian 

approximations if and only if 3I�BI > 0.(see theorem 1 for 

the proof) 

Theorem 1. Let �F  be a symmetric positive-definite matrix, 

and assume that �FM<  is obtained from �F  using the BFGS 

update formula. Then  �FM< is positive definite if and only if 3F�BF > 0.[9] 

Proof. If �F  is positive definite, then it can be factored as �F = WW�  where W  is a nonsingular matrix (Cholesky 

factorization of �F). If this factorization is substituted into the 

BFGS formula for �FM<, then 

�FM< = WXW�  

Where = Y − Q̂Q̂P
Q̂PQ̂ + N[N[P

N[PN[  , B̂ = W�BF , and 3[ = WS<3F  �FM< 

will be positive definite if and only if X is. To test if X is 

positive definite, we test if \�X\ > 0 for all \ ≠ 0. let  ^< be 

the angle between \ and B̂ ,  ^
 the angle between  \ and  3[ ,  

and  ^_ is the angle between B̂ and 3[. Then  

\�X\ = \�\ − (\�B̂)

B̂�B̂ + (\�3[)


3[�B̂  

= 7\7
 − 7\7
7B̂7
`CB
^<7B̂7
 − 7\7
73[7
`CB
^
73[7 .  7B̂7`CB^_
 

= 7\7
 a1 − `CB
^< + 73[7`CB
^
7B̂7`CB^_ b 

= 7\7
 aB@�
^< + 73[7`CB
^
7B̂7`CB^_ b 

If 3F�BF > 0, then 3[�B̂ > 0 and `CB^_ > 0; hence \�X\ >0 and X is positive definite. If  3F�BF < 0, then `CB^_ < 0; in 

this case, \ can be chosen so that \�X\ < 0 and so X is not 

positive definite. This completes the proof. 
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Given a quadratic functional 

d(�) = d� + 〈>, �〉5 + 〈�, ��〉5 

For �, >   in Hilbert space with �  being a positive, 

symmetric linear operator. The quasi-Newton algorithm is 

described in the following steps: 

Step 1: Guess the initial element, �� 

Step 2: Compute the gradient, e� 

Step 3: Compute the descent direction, *� = −��e� ;  �� = Y 

Step 4: Compute the step length, fF = gOPgO
hOPihO 

Step 5: Update the descent sequence, �IM< = �I + fI*I  

Step 6: Update the gradient  eIM< = ∇f(xlM<) 

Step 7: Test for convergence K(�I) >�� 7eI7 

Step 8: Determine the vector updates  

BI = �IM< − �I 

3I = ∇K(�IM<) − ∇K(�I) 

Step 9: compute the new Hessian approximate 

�IM< =  �I + T<MNOPUONO
NOPQO V QOQOPQOPNO − QONOPUOMUONOQOPNOPQO   

Step 10: compute the next descent direction 

*IM< = −�IM<∇K(�IM<)  

Step 11: return to step 3 

In the iterative steps 2 to 10 above, *I denotes the descent 

direction at the mDH step of the algorithm, fI denotes the step 

length of the descent sequence 
�I�, Y�  denotes the identity  (� × �)  matrix, K  denotes the objective function, �  is the 

linear operator, BI is the difference between two consecutive 

variable values, 3I  is the difference between two consecutive 

gradient values and eI denotes the gradient of K at �I. 

3. A New Quasi-Newton Algorithm 

The proposed New Quasi-Newton algorithm for solving 

the control problem (1.1) is as follows:  ?�R* 1: o�RBB �ℎR @�@�@>p RpRqR��B, ��, ��  ?�R* 2: �Cq*��R �ℎR er>�@R��B: e�,�; e�,�  ?�R* 3: �Cq*��R �ℎR �RB`R�� �@rR`�@C�B  

t�,� = −��,�e�,� t�,� = −��,�e�,� ;  �� = Y  

?�R* 4: �Cq*��R �ℎR B�R* pR�eℎ�B:  
fF,� = gPv,wgv,w

hPv,wxhv,w, fF,� = gPv,ygv,y
hPv,yxhv,y  

?�R* 5: z*�>�R �ℎR �RB`R�� BR"�R�`RB  

�FM< = �F + fF,�*F,� , �FM< = �F + fF,�*F,�  

?�R* 6: z*�>�R �ℎR er>�@R��B  

eFM< = ∇K(�FM<(�), �FM<(�), �.  
?�R* 7: �RB� KCr `C�|RreR�`R }@�ℎ  

K(�F(�), �F(�), �) >�� 7eF7  

?�R* 8: �R�Rrq@�R �ℎR |R`�Cr �*�>�RB  

BF,� = �FM< − �F  , BF,� = �FM< − �F 
3F,� = ∇K(�FM<) − ∇K(�F) ,    3F,� = ∇K(�FM<) − ∇K(�F)  

?�R* 9: �Cq*��R �ℎR �R} LRBB@>� >**rC�@q>�RB  

 �FM<,� = �F,� + ;<MNPv,wUvNv,w
NPv,wQv,w = ;Qv,wQPv,w

QPv,wNv,w= − ;Qv,wNPv,wUvMUvNv,wQPv,w
NPv,wQv,w =  

�FM<,� = �F,� + ;<MNPv,yUvNv,y
NPv,yQv,y = ;Qv,yQPv,y

QPv,yNv,y= − ;Qv,yNPv,yUvMUvNv,yQPv,y
NPv,yQv,y =  

?�R* 10: �Cq*��R �ℎR �R�� �RB`R�� �@rR`�@C�B  

*FM<,� =  −�FM<,�∇K��FM<,�� ,   *FM<,� =  −�FM<,�∇K��FM<,��  

?�R* 11: �R��r� �C B�R* 4  

In the iterative steps 2 to 10 above,*F  denotes the descent 

direction at the @DH step of the algorithm, fF denotes the step 

length of the descent sequence 
�F�, Y  denotes the identity  (� × �)  matrix, K  denotes the objective function, 0  is the 

control operator, BF is the difference between two consecutive 

variable values, 3F  is the difference between two consecutive 

gradient values and eF denotes the gradient of K at �F. Based 

on the seventh step of the QNM in solving this class of 

problems, the following can be used to set the stopping 

conditions: 

1. The function is said to have converged when the 

gradient value is zero. In order words, all other things as 

from that point become tend to zero. 

2. The Gradient Norm can also be used as the stopping 

criterion to determine the convergence of the function as the 

gradient norm tends towards zero. 

3. The result can be compared with the analytical results or 

existing results using other methods. 

Note: Two or more of these will be used to determine the 

convergence of the problems to be tested herein. 

4. Test Problems 

We now compare performance of our New Quasi-Newton 

method (NQNM) with that of the Classical Quasi-Newton 

Method (CQNM) on a number of control problems. The 

following problems were used (throughout, $ is the penalty 

constant which may be randomly chosen): 

P1. min(�,�) 	 
�
(�) + �
(�)�<
� ��; 0 ≤ � ≤ 1 

Subject to ��(�) =  3�(�) +  2�(�); 0 ≤ � ≤ 1 

 �(0) =  1 

In an unconstrained form, this becomes 

q@�(�,�) 	 
�
(�) + �
(�) + $7��(�) − 3�(�) + 2�(�)7
���<
�   

P2.   q@�(�,�) 	 
2�
(�) + 2�
(�)���<
�  
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Subject to   ��(�) =  3�(�) +  �(�); 0 ≤ � ≤ 1 

 �(0) =  1 

which in unconstrained form reduces to 

q@�(�,�) 	 
2�
(�) + 2�
(�) + $7��(�) − 3�(�) + �(�)7
���<
�   

P3.    q@�(�,�) 	 
0.5�
(�) − �
(�)���<
�  

subject to  ��(�) =  3�(�) +  2�(�);     0 ≤ � ≤ 1 

 �(0) =  1 

Or   q@�(�,�) 	 
0.5�
(�) − �
(�) + $7��(�) + 3�(�) − 2�(�)7
���<
�   

P4. q@�(�,�) 	 
−�
(�) − �
(�)���<
�  

subject to   ��(�) =  3�(�) +  2�(�);     0 ≤ � ≤ 1 

 �(0) =  1 

Or   q@�(�,�) 	 
�
(�) + �
(�) + $7��(�) − 3�(�) + 2�(�)7
���<
�    

The computational results of the problems in P1-P4 are 

discussed hereunder using the gradient norm values of the 

CQNM and the NQNM as the bases of comparison. We 

present our computational results for the above problems in 

Tables 1-4 below while a general discussion of the results 

follow thereafter.  

Table 1. Computational Results for Problem (P1) 

Classical Quasi-Newton Algorithm (CQNM) New Quasi-Newton Algorithm  (NQNM) 

Itrn. X U Gradient Norm Itrn. X U Gradient Norm 

0 1 1 179.799889 0 1 1 179.799889 

1 0.40577413 1.28610875 33.0453725 1 -1.07214044 1.99769725 319.343042 

2 0.40460426 1.28693977 32.9403232 2 -1.74013304 0.61032799 9.60106989 

10 0.38930823 1.30003421 31.8162596 10 -1.79970474 0.64500731 0.140696e-3 

490 0.29664104 1.32436588 0.51684382e-6 14 -1.79970557 0.64500779 0.51583707e-6 

Table 2. Computational Results for Problem (P2) 

Classical Quasi-Newton Algorithm  (CQNM) New Quasi-Newton Algorithm (NQNM) 

Itrn. X U Gradient Norm Itrn. X U Gradient Norm 

0 1 1 250.343764 0 1 1 250.343764 

1 0.74056277e-1 1.21251167 13.6915398 1 -0.514307 1.3475559 98.3981051 

2 0.73787764e-1 1.21258203 13.5804814 2 -0.7929404 0.13370078 8.3689144 

10 0.71516393e-1 1.21321725 13.1857362 10 -0.95077218 0.27507636 0.20949144e-1 

14659 -0.16148132e-1 0.79296301 0.19145828e-6 24 -0.95105385 0.27529469 0.19177078e-6 

Table 3. Computational Results for Problem (P3) 

Classical Quasi-Newton Algorithm  (CQNM) New Quasi-Newton Algorithm  (NQNM) 

Itrn. X U Gradient Norm Itrn. X U Gradient Norm 

0 1 1 2.23606798  0 1  1  2.23606798  

1 0.99234303  1.01531394  0.26605812  1 1.01036537  0.97926925  0.92971534  

2 0.99239681  1.01514268  0.2678443  2 -0.7929404  0.13370078  8.3689144  

10 0.99234086  1.01488661  0.28612792  10 -0.95077218  0.27507636  0.20949144e-1  

   
  24 0.99797326  0.97871204  0.31102406e-6  

Table 4. Computational Results for Problem (P4) 

Classical Quasi-Newton Algorithm  (CQNM) New Quasi-Newton Algorithm  (NQNM) 

Itrn. X U Gradient Norm Itrn. X U Gradient Norm 

0 1 1 178.011236 0 1 1 178.011236 

1 0.41753686 1.30229099 29.4141379 1 -1.34458504 2.21680996 366.851474 

2 0.41669374 1.30289397 29.3126686 2 -2.05812417 0.84194188 13.338083 

10 0.40765154 1.31064779 28.2702834 10 -1.99074176 0.80447785 0.3983206e-5 

    
12 -1.99074174 0.80447784 0.95184684e-7 

 



56 Felix Makanjuola Aderibigbe et al.:  On Application of a New Quasi-Newton Algorithm for Solving Optimal Control Problems 

 

 

5. Conclusion 

From the table of results for P1, it is observed that at the 

14
th

 iteration, the terminating norm of the gradient is 

0.51583707e-6 using the NQNM while the closest value to it 

using the CQNM is at the 490
th

 iteration which signifies a 

significant improvement over the CQNM. From the table of 

results for P2, it is observed that at the 24
th

 iteration, the 

gradient norm is 0.19177078e-6 using the NQNM while the 

closest value to it using the CQNM is at the 14659
th

 iteration 

which also signifies an improvement over the CQNM. From 

the tables of results for P3 and P4, it is seen that the closest 

values to that of the 24th and 12
th

 respectively using the 

NQNM could not be reached using the CQNM. Hence, the 

introduction of the control operator which was constructed by 

[7] into the classical quasi-Newton algorithm has improved 

the convergence profile. Since the efficiency of the CGM rest 

on the operator, this justifies the use of the operator in the 

CQNM as to improve the performance of the CQNM.  
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