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Abstract: In this work, we review the construction of the linear operator associated with a class of linear regulator problems
subject to the state differential equation. The associated linear operator is then utilized in the derivation of a New Quasi-
Newton Method (QNM) for solving this class of optimal control problems. Our results show an improvement over the

Classical Quasi-Newton Method.
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1. Introduction

Optimal control theory is playing an increasingly
important role in the design of modern systems. More
specifically, control problems play an important role in
aerospace, as well as in other applications, where for
example, temperature, pressure, and other variables must be
kept at desired values regardless of disturbances.[5]. In this
paper, we propose a New Quasi-Newton method by adopting
the quasi-Newton method algorithm to obtain the solution of
the following scalar, linear, optimal control problem of the
form:

Problem A:
Ming, ) [ {Ax?(t) + Bu?(t)}dt (1.1)
Subject to the constraint
x(t) =Cx(t) +Du(t); 0<t<T (1.2)
x(0) = xq (1.3)

where x is the n x 1 state vector, u is the g X 1 control
vector, C is n X n constant matrix, D is n X g constant matrix,
A and B are symmetric positive definite constant square
matrices of dimensions n and g respectively. x(t), the
derivative of the state, x(+), with respect to time.

As conventional with penalty function techniques, (1.1) to
(1.3) may equivalently be written in the form:

Min ey fy (AX2() + Bu?(t) + ul| #(t) — Cx(t) +

Du(t)||?} dt (1.4)

where p > 0, is the penalty parameter and u||x(t) —
Cx(t) + Du(t)||? is the penalty term. We assume that p is
a suitably chosen parameter to ensure good constraint
satisfaction for each of the problems under consideration.
The validity of this claim can be seen from a number of
theoretical and numerical results in [2,pp 61 — 85]. In here,
we seek to apply the quasi-Newton method algorithm to (1.4).
Based on (1.4), application of the QNM algorithm requires
that an operator, (, be determined such that;

3, Qy)u =[] {AX?(t) + Bu?(t) + plli(t) — Cx(t) +

Du(t)||?} dt (1.5)

where yT(t) = (x(t),u(t)) and H is a suitably chosen
Hilbert space.
According to [8], the operator ( is such that

A _[Q1 Q] [x(®] _ [(Q110)(®) +(Q12w) (D)
@0 =32 7 [o) = e nm rio-ane

and the composite units of the linear operator (Qq,x)(t),
(Q12w) (1), (Q21x)(t) and (Q,u)(t) are given by:

(Qu1%) (1) = —u[x(0) — Cx(0)]Sinh(t)

+u [ [2(s) = Cx(s)]Cosh(t — s)ds — [} [(A + uC?x(s) -
uCx(s)] Sinh(t — s)[(a + uC?)x(0) — uCx(0)]Cosh(t) +

(1.6)
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Sinh(t) {(a + uCHx(T) — uCx(T) + uSinh(T)[x(0) —

Sinh(T)
Cx(0)] — ufoT[J'c(s) — Cx(s)]Cosh (T — s)ds +
S T(A + uC»x(s) — uCx(s)] Sinh(T — s)ds

— [(A + uC®x(0) — uCx(0)]Cosh(TH},0< ¢t <T  (1.7)

(Qz1x)(t) =uCDx(t) — ubx(t),0<t <T (1.8)

(Q1,w)(t) = ubu(0)Sinh(t) — ufot Du(s)Cosh(t —
s)ds + u fot CDu(s)Sinh(t — s)ds + uCDu(0)Cosh(t) +

Sinh(t) )
Sinh(T) {uCDu(T) — ubu(0)Sinh(T) +

U fOT Du(s)Cosh(T — s)ds + u fOT CDu(s)Sinh(T — s)ds +
uCDu(0)Cosh(T)} 0<t <T (1.9)

(1.10)

(Qzzw)(O)= Bu(t) + pD?u(),0<t <T

where (Q11x)(t), (Q12%)(t) » (Q21%)(t) and (Q22x)(t) are
respectively given by (1.7) — (1.10). Reader should see [7]
for the proof.

2. Classical Quasi-Newton Algorithm

Nonlinear problems in finite dimensions are generally
solved by iteration.[8], for the minimization problem, and [7],
for systems of equations, introduced new methods which
although iterative in nature, were quite unlike any others in
use at the time. These papers together with very important
modification and classification of Davidon’s work by [4]
have sparked a large amount of research in the late sixties
and early seventies.

This work has led to a new class of algorithm which has
been called by the names quasi-Newton or modification
methods. The methods have proved themselves in dealing
with systems of » equations in n unknowns, and the
unconstrained minimization of functionals. [3]

The basic idea behind any quasi-Newton method is to
eliminate computation of the Hessian in every iteration and
the methods are based on Newton’s method to find the
stationary point of a function, where the gradient is zero or
near zero. The Hessian is updated by analyzing successive
gradient vectors instead. Detailed overviews of quasi-Newton
methods are presented in [8] and [7]. The search direction is
obtained by solving

Bip = =Vf (xi)

That is, from the Newton’s equation but with the Hessian
replaced by B, , a positive definite matrix. Quasi-Newton
methods require only the gradient of the objective function to
be supplied at each iterate.[8]. Since second derivatives are
not required, quasi-Newton methods are more efficient than
Newton’s method and display a super linear rate of
convergence.

In place of the true Hessian V2f(x,), they use an
approximation B, , which is updated each step to take
account of the additional knowledge gained during the step.
The various quasi- Newton methods differ in the choice of

By,. The first quasi-Newton method is the DFP which was
soon superceeded by BFGS.

The BFGS method named after Broyden, Fletcher,
Goldfarb and Shanno who discovered it in 1970. It is
numerically stable and has a very effective “self-correcting
properties” account for its superior performance in practice
[9]. If the matrix H,, incorrectly estimates the curvature in the
objective function, and if this bad estimate slows down the
iteration, then the Hessian approximation will tend to correct
itself within a few steps.

Since the search direction p = —H, Vf(x;), this has the
advantage that we don’t need to solve a linear system to get
the search direction, but only do a matrix/vector multiply.

The BFGS update formula is as follows:

T T
H =Y, + Yk __ HgSksgHp
k+1 = Hi T T
Vi Sk SiHiSk

By taking the inverse, the BFGS update formula for
By, (i.e Hil,) is obtained:

T T
SkYi Bk +BrkYkSk

T T
-1 _ _ 1+Yy BrYk | SkSk
Hk+1 - Bk+1 - Bk + ( - T

Yk Sk

yisk ) shvk

The BFGS, preserve positive definiteness of the Hessian
approximations if and only if yls, > 0.(see theorem 1 for
the proof)

Theorem 1. Let B; be a symmetric positive-definite matrix,
and assume that B;,, is obtained from B; using the BFGS
update formula. Then B;,; is positive definite if and only if
yisi > 0.[9]

Proof. If B; is positive definite, then it can be factored as
B; = LLT where L is a nonsingular matrix (Cholesky
factorization of B;). If this factorization is substituted into the
BFGS formula for B;, 4, then

Biy, = LWLT
Where=l—£—i—ﬁ §=1Ts;, and y = L'y, B,
§Ts ' 9Ty s i> y Vi i+1

will be positive definite if and only if W is. To test if W is
positive definite, we test if v"Wv > 0 for all v # 0. let 8, be
the angle between v and §, 8, the angle between v and ¥,
and 65 is the angle between § and j. Then

@'8)?  @'y)?
T8 973

vTWu =vTv —

_ oy 2 IS Pcos?0,
BE

IvlI?11911*cos?6,

IFIl. lI$licosbs

I9llcos?0,
= |[vlI? |1 - cos?6, + —7———
”””[ 051 T 5licos6s

yl|cos?6
= |lvl? [sinzﬂl + [Fllcos”6, 2]

[18||cosBs

If yI's; > 0, then $78 > 0 and cosf; > 0; hence v" Wv >
0 and W is positive definite. If y['s; < 0, then cosf; < 0; in
this case, v can be chosen so that " Wv < 0 and so W is not
positive definite. This completes the proof.
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Given a quadratic functional
F(x) = Fy+(a,x)y + (x,Ax)y

For x,a in Hilbert space with A being a positive,
symmetric linear operator. The quasi-Newton algorithm is
described in the following steps:

Step 1: Guess the initial element, x,

Step 2: Compute the gradient, g,

Step 3: Compute the descent direction, py = —Bogo ; By =1
k9K

PrADK

Step 5: Update the descent sequence, x4 = X, + a;px
Step 6: Update the gradient g ,; = Vf(Xyx;1)

Step 7: Test for convergence f(x;) and || gl

Step 8: Determine the vector updates

Step 4: Compute the step length, a; =

Sk = Xk+1 — Xk
Vi = Vf (xge1) — V(i)

Step 9: compute the new Hessian approximate

T T
B =B, + 1+Y BV \ SkSk
k+1 = Dk T T

Yk Sk SkVk

T T
SkYk Bk +BrYkSk
yEsk

Step 10: compute the next descent direction

Pr+1 = — BV (Xks1)

Step 11: return to step 3

In the iterative steps 2 to 10 above, p, denotes the descent
direction at the k" step of the algorithm, @, denotes the step
length of the descent sequence {x,}, I, denotes the identity
(n x n) matrix, f denotes the objective function, 4 is the
linear operator, s;, is the difference between two consecutive
variable values, y, is the difference between two consecutive
gradient values and g, denotes the gradient of f at x;.

3. A New Quasi-Newton Algorithm

The proposed New Quasi-Newton algorithm for solving
the control problem (1.1) is as follows:
Step 1: Guess the initial elements, x,, u,
Step 2: Compute the gradients: go; Gou
Step 3: Compute the descent directions
Pox = =Box9ox Pouu = —BouGou; Bo =1
Step 4: Compute the step lenghts:

p _ gTi,xgi,x _ gTi_ugi,u
ix » Uiu pTi,qui,u

pTi,pri,x
Step 5: Update the descent sequences
Xiv1 = X+ ApxDix > Wivr = Uy T Xy Pigy
Step 6: Update the gradients
V%042 (6), w44 (0), t]

Step 7:Test for convergence with

Ji+1 =
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[ (@), u; (), ) and || g;ll

Step 8: Determine the vector updates
Six = Xi+1 — Xi Siu

2 = V(i) = VD), Yiw =V (wisa) — V(W)

Step 9: Compute the new Hessian approximates

1+yT ixBiVix 51x5
Biyix =Bix + [

yT ixS sT ixYix

= Ui — Y

T T
] [51 xY i,xBi"'BiYi,xs i,x]
yTi,xSi,x

B =B 1+y iu Biyiu SluS iu SzuyTi,uBi"'BiYi,usTi,u
i+1,u — Piu +

T .
yT iuS sT iuYiu YiuSiu

Step 10: Compute the next descent directions

Bi+1,xvf(xi+1,x) » Pi+tu = _Bi+1,uvf(xi+1,u)

Step 11: Return to step 4

In the iterative steps 2 to 10 above,p; denotes the descent
direction at the it" step of the algorithm, a; denotes the step
length of the descent sequence {x;}, I denotes the identity
(n X n) matrix, f denotes the objective function, Q is the
control operator, s; is the difference between two consecutive
variable values, y; is the difference between two consecutive
gradient values and g; denotes the gradient of f at x;. Based
on the seventh step of the QNM in solving this class of
problems, the following can be used to set the stopping
conditions:

1. The function is said to have converged when the
gradient value is zero. In order words, all other things as
from that point become tend to zero.

2. The Gradient Norm can also be used as the stopping
criterion to determine the convergence of the function as the
gradient norm tends towards zero.

3. The result can be compared with the analytical results or
existing results using other methods.

Note: Two or more of these will be used to determine the
convergence of the problems to be tested herein.

Pi+1x = —

4. Test Problems

We now compare performance of our New Quasi-Newton
method (NQNM) with that of the Classical Quasi-Newton
Method (CQNM) on a number of control problems. The
following problems were used (throughout, u is the penalty
constant which may be randomly chosen):

PL. mingg, [, (26 +u?(®)}ds:0<t <1
Subject to x(t) = 3x(t) + 2u(t);0<t <1
x(0)=1
In an unconstrained form, this becomes
Min ) fo 2O +u? () + ulli () — 3x(8) + 2u(®)|1?}de

P2. MiN () f01{2x2(t) + 2u?(t)}dt
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Subjectto x(t)= 3x(t) + u(t);0<t<1
x(0)=1

which in unconstrained form reduces to

MiN ) Jo (222 () + 202 () + plli () — 3x() + u(®)]|2}de

P3. MiN ey J {0.5%() — u?(t)}dt
subjectto x(t) = 3x(t) + 2u(t); 0<t<1

x(0)=1

Or ming,y, f01{0.5x2(t) —u?(t) + ullx(@) + 3x(t) — 2u()||?}dt

P4. Min () fol{—xz(t) —u?(t)}dt

subjectto x(t) = 3x(t) + 2u(t);

x(0)=1

The computational results of the problems in P1-P4 are
discussed hereunder using the gradient norm values of the
CQNM and the NQNM as the bases of comparison. We
present our computational results for the above problems in
Tables 1-4 below while a general discussion of the results

follow thereafter.

Table 1. Computational Results for Problem (P1)

Or mingeyy f, (@) +u?(0) + pllx(t) — 3x(t) + 2u(t)[|?}dt

Classical Quasi-Newton Algorithm (CQNM)

New Quasi-Newton Algorithm (NQNM)

Itrn. X U Gradient Norm
0 1 1 179.799889
1 0.40577413 1.28610875 33.0453725
2 0.40460426 1.28693977 32.9403232
10 0.38930823 1.30003421 31.8162596
490 0.29664104 1.32436588 0.51684382¢-6

Itrn. X U
0 1 1
1 -1.07214044 1.99769725
2 -1.74013304 0.61032799
10 -1.79970474 0.64500731
14 -1.79970557 0.64500779

Gradient Norm
179.799889
319.343042
9.60106989
0.140696¢-3
0.51583707¢-6

Table 2. Computational Results for Problem (P2)

Classical Quasi-Newton Algorithm (CQNM)

New Quasi-Newton Algorithm (NQNM)

Itrn. X 6] Gradient Norm
0 1 1 250.343764
1 0.74056277e-1 1.21251167 13.6915398
2 0.73787764e-1 1.21258203 13.5804814
10 0.71516393e-1 1.21321725 13.1857362
14659 -0.16148132e-1 0.79296301 0.19145828e-6

Itrn. X 8]

0 1 1

1 -0.514307 1.3475559
2 -0.7929404 0.13370078
10 -0.95077218 0.27507636
24 -0.95105385 0.27529469

Gradient Norm

250.343764
98.3981051
8.3689144

0.20949144e-1

0.19177078e-6

Table 3. Computational Results for Problem (P3)

Classical Quasi-Newton Algorithm (CQNM)

New Quasi-Newton Algorithm (NQNM)

Itrn. X 6] Gradient Norm
0 1 1 2.23606798

1 0.99234303 1.01531394 0.26605812

2 0.99239681 1.01514268 0.2678443

10 0.99234086 1.01488661 0.28612792

Itrn. X U

0 1 1

1 1.01036537 0.97926925
2 -0.7929404 0.13370078
10 -0.95077218 0.27507636
24 0.99797326 0.97871204

Gradient Norm
2.23606798
0.92971534
8.3689144
0.20949144e-1
0.31102406¢-6

Table 4. Computational Results for Problem (P4)

Classical Quasi-Newton Algorithm (CQNM)

Itrn. X 8]
0 1 1
1 0.41753686 1.30229099
2 0.41669374 1.30289397
10 0.40765154 1.31064779

Gradient Norm

178.011236
29.4141379
29.3126686
28.2702834

New Quasi-Newton Algorithm (NQNM)

Itrn. X 6]
0 1 1
1 -1.34458504 2.21680996
2 -2.05812417 0.84194188
10 -1.99074176 0.80447785
12 -1.99074174 0.80447784

Gradient Norm
178.011236
366.851474
13.338083
0.3983206e-5
0.95184684e-7

0<t<1
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5. Conclusion

From the table of results for P1, it is observed that at the
14™ iteration, the terminating norm of the gradient is
0.51583707¢-6 using the NQNM while the closest value to it
using the CQNM is at the 490™ jteration which signifies a
significant improvement over the CQNM. From the table of
results for P2, it is observed that at the 24" iteration, the
gradient norm is 0.19177078e-6 using the NQNM while the
closest value to it using the CQNM is at the 14659™ iteration
which also signifies an improvement over the CQNM. From
the tables of results for P3 and P4, it is seen that the closest
values to that of the 24th and 12" respectively using the
NQNM could not be reached using the CQNM. Hence, the
introduction of the control operator which was constructed by
[7] into the classical quasi-Newton algorithm has improved
the convergence profile. Since the efficiency of the CGM rest
on the operator, this justifies the use of the operator in the
CQNM as to improve the performance of the CQNM.
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