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Abstract: In this paper we find a relationship between r2(S) and r2(� �� ) where S is a finite semigroup, ρis a congruence on 

S and S /ρis the quotient semigroup (/S/ ≥ 2and/ � �� / ≥ 2). We also determine r5(� �� ) under certain conditions. Moreover we 

find prime subsets of S/ρ. 
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1. Introduction 

In algebra many studies have been constructed based upon 

the notion “rank”. Problems about rank of a group, rank of an 

algebra and rank of a semigroup have been widely studied in 

many articles for years. 

In [3] the notion of rank of a semigroup and ranks of some 

certain semigroups are determined. In [1] and [2] the small 

rank, lower rank, intermediate rank, upper rank and large 

rank(i.e. r1(S), r2(S), r3(S), r4(S) and r5(S)) are defined. In the 

following definitions these ranks are given: 

r1(S)=max {k: every subset of cardinality k is independent} 

r2(S)=min{k: there exists a subset U of cardinality k such 

that U generates S} 

r3(S)=max {k:there exists a subsetU of S of cardinality k 

which is independent and which generates S} 

r4(S)=max { k:there exists a subsetU of S of cardinality k 

which is independent} 

r5(S)=min {k:every subsetU of cardinality k generates S} 

One can see that r1(S) ≤ r2(S) ≤ r3(S) ≤ r4(S) ≤ r5(S). Let S 

be a finite semigroup. Let U⊆ S. If for all x∈U, x ∉ U / {x} 

then U is an independent set. In [4] ranks of certain 

semigroups are determined. 

If x, y∈S and (s, t) ∈ρ and (xs, yt) ∈ρ then ρ is a 

congruence on S. If ρ is a congruence on S then ρ is a 

subsemigroup of S ×S.  S /ρ={xρ: x∈S}. If ρ is a congruence 

on S then S /ρ is a semigroup with the operation 

(xρ).( yρ)=(xy)ρ. S /ρ is the quotient semigroup.  

In [5] it is shown that if T=S or T= S /ρ then ri(T) ≤ ri(ρ) 

for i=2, 3, 4, 5. In general it is not equal. 

In this paper in Section 2 we determine the relationship 

between r2 (S) and r2(S/ρ). We also obtain some results about 

r5(S) and r5(S/ρ).  

Let S be a finite multiplicative semigroup. Let U ⊆ S. If for 

all a, b∈S, ab∈U implies a∈U or b∈U then U is called a 

prime subset of S. In Section 3 we obtain some results about 

the prime subsets of the quotient semigroup S /ρ. We also 

determine the union and intersection of two prime subsets of 

a finite semigroup S. 

2. Some Ranks of Quotient Semigroup 

We find a relationship between r2(S) and r2(S ⁄ρ) where S is 

a finite semigroup and ρ is a congruence on S (|S| ≥ 2 and | S 

⁄ρ| ≥ 2). We also show that 5( )
S S

r
ρ ρ

= whenr5(S) =|�|. 

Lemma 2.1: Let S be a finite semigroup and S ⁄ρ be the 

quotient semigroup where ρ is a congruence on S. Assume 

that |S| ≥ 2 and| S ⁄ρ| ≥ 2. Then r2(S/ρ) ≤ r2(S). 

Proof: Let S be a finite semigroup and |�| ≥ 2.Let ρ be a 

congruence on S. Let|�| ≥ 2 and |�/�|≥2. Let r2(S)=m. Then 

S has a minimal generating set A={x1, x2,…,xm}. Assume that 

r2(S/ρ)=m’. Assume that A’={x1ρ, x2ρ, …,xmρ}. Let sρ∈S / ρ. 

Since s∈S and S is a generating set s= 
1 2

...
ki i ix x x (1≤i1, 

i2,…ik≤m). Then sρ=
1 2

( )( )...( )
ki i ix x xρ ρ ρ . Thus A’={x1ρ, 

x2ρ,…,xmρ} is a generating set for S / ρ. Since r2(S/ρ)=m’ we 

have m’≤m. 

By the help of the next theorem we give a relationship 
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between irreducible elements of S and irreducible elements of 

S / ρ. 

Theorem 2.2: Let S be a finite semigroup and S ⁄ρ be the 

quotient semigroup where ρ is a congruence on S. Assume 

that |S| ≥ 2 and | S ⁄ρ| ≥ 2. If there is an irreducible element in 

S, there is also an irreducible element in S ⁄ρ. 

Proof:  Let x∈S be an irreducible element. We determine 

whether xρ∈ S / ρ is irreducible or not. Let xρ= yρ. zρ. Let 

yρ= {y1, y2, …,yn} and zρ={z1, z2, …,zm}. Let yρ. zρ= yzρ={ y1 

z1, y1 z2,…, y1zm, y2 z1, y2 z2,…, y2zm,…, ynzm}. Since xρ= yzρ , 

xρ=yzρ and x∈xρ there is ∃ k, l such that x= ykzl (1 ≤k ≤n, 1 

≤l≤ m). Since x is an irreducible element we have x=yk or 

x=zl. Thus  x∈ yρ or x∈ zρ. If x∈ yρ then since x∈xρ we 

have xρ∩ yρ ≠∅ . We obtain xρ= yρ. By the same way, if x∈ 

zρ and x∈xρ we have xρ∩ zρ ≠∅ . Then xρ= zρ. As a result 

xρ= yρ or xρ=zρ. As a result xρ∈ S / ρ is an irreducible 

element.  

In the following Theorem we give the relationship between 

r5(S) and an irreducible element of a finite semigroup. 

Theorem 2.3: (see[2],Corollary 4) Let S be a finite 

semigroup. S contains an irreducible element if and only if 

r5(S)=|�|. 
Lemma 2.4: Let S be a finite semigroup and S / ρ be the 

quotient semigroup where ρ is a congruence on S. Assume 

that |S| ≥ 2 and |S / ρ| ≥ 2. If r5(S)= |S| then r5(S / ρ)=| S / ρ|. 
Proof: By the previous theorem we have S has an 

irreducible element. So r5(S) =|�|. (��� [2]). Then by the 

previous theorem S ⁄ρ has an irreducible element. We obtain

5( )
S S

r
ρ ρ

= . 

3. Prime Subsets of a Semigroup 

In [6] Kumar J. and Krishna, K.V. have defined the prime 

subsets of a semigroup as follows. 

Definition 3.1: Let S be a finite multiplicative semigroup. 

Let U ⊆ S. If for all a, b∈S, ab∈U implies a∈U or b∈U then 

U is called a prime subset of S.  

In the following Theorem we determine the prime subsets 

of S / ρ. 

Theorem 3.2: Let U ⊆ S be a prime subset of S. Let 

U’={uρ: u∈U}⊆S / ρ. Then U’ is a prime subset of S / ρ. 

Proof:Let U ⊆ S be a prime subset of S. Then for all a, 

b∈S, ab∈U implies a∈U or b∈U. Let xρ={ s∈S: xρS} (x∈S). 

Let S / ρ={ xρ: x∈S} and U’={uρ: u∈U}. Assume that for xρ, 

yρ∈S / ρ, xρ. yρ∈U’. Then xρ.yρ=xyρ∈U’. Thus there is 

some u∈U such that xy=u. Since U is a prime subset of S we 

have x∈U or y∈U. We obtain xρ∈U’ or yρ∈U’. So U’ is a 

prime subset of S / ρ. 

Corollary 3.3: For every prime subset U ⊆ S, there exists a 

prime subset U’⊆ S / ρ. 

We try to determine the union of prime subsets of a finite 

semigroup S. In the next theorem we examine the union of 

prime subsets of S. 

Lemma 3.4: Let S be a finite semigroup and U1 and U2 be 

prime subsets of S. Then U1 ∪ U2 is a prime subset of S. 

Proof: Let xy∈ U1 ∪ U2. Then xy ∈ U1 or xy ∈ U2. Since 

U1 is a prime subset of S then x∈ U1 or y∈ U1. In each cases 

x∈ U1∪ U2 or y∈ U1∪ U2. We obtain U1 ∪ U2 is a prime 

subset of S. 

We also determine the intersection of prime subsets of S in 

the following Lemma. 

Lemma 3.5: Let S be a finite semigroup and U1 and U2 be 

prime subsets of S. Then U1 ∩ U2 is a prime subset of S. 

Proof: Let xy ∈ U1 ∩ U2. Then xy∈ U1 and xy∈ U2. Since 

U1 is a prime subset of S then x∈ U1 and y∈ U1. Also U2 is a 

prime subset of S. Then we have x∈ U2 and y∈ U2. We obtain 

x∈ U1 ∩ U2 and y∈ U1 ∩ U2. So U1 ∩ U2 is a prime subset of 

S. 

4. Conclusion 

In [5] Theorem 1 it is shown that r1(S)=r1(ρ)=r1(S/ρ) when 

ρ is not a royal semigroup. ((|S| ≥ 2and| S ⁄ρ| ≥ 2) If ρ is a 

royal semigroup then r1(S)= |S| and r1(S/ρ)=|S/ρ|. In Section 

2 we show that r2(S/ρ)≤r2(S). Moreover we show that

5( )
S S

r
ρ ρ

= when r5(S)=|�|. 

Let U ⊆ S be a prime subset of S. In Section 3 we 

determine U’⊆ S ⁄ρ which is a prime subset of S ⁄ρ. As a 

result for each prime subset of S one can find a prime subset 

of the quotient semigroup. So each prime subset of a 

semigroup S coincides with a prime subset of S ⁄ρ. 

Moreover we show that union of two prime subsets of a 

finite semigroup S and intersection of two prime subsets is 

also a prime subset of S. 
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