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Abstract: Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an 

allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth 

model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was 

compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter 

increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of 

determination (R
2
), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov Smirnov test and 

Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh 

over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards 

nonlinear growth models better than the classical Richards growth model. 
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1. Introduction 

Richards’s model is an extension of logistic model and was 

developed by Richards in (1959) simply by introducing 

another parameter into the Logistic growth equation, the 

parameter allow the shape of the upper part of the curve to be 

independent of the shape of the lower part, while still having 

an equation that tends towards an exponential form at low 

values of the response variable. 

This additional parameter makes the Richards equation 

more popular. The Richards equation continues to be the most 

popular of the growth equations because of its flexibility; it is 

used for diverse purposes, including modeling tree growth, the 

growth of juvenile mammals and birds, and comparisons of 

treatment effects on plant growth. 

When b = 1 the Richards equation matches the logistic 

equation, but for b>1 the maximum slope of the curve is 

Height > K/2, and when b < 1 the maximum slope of the curve 

is when Height < K/2. This allows a wider range of curves to 

be produced, but as b tends towards zero, the lowest value of 

Height at the point of inflexion remains greater than K/e, 

where e represents the base of the natural logarithm. In fact, as 

b tends towards zero the Richards growth curve tends towards 

the Gompertz growth curve, which has its steepest slope at 

Height = K/e, and does not tend towards an exponential form 

for low Height (Richards, 1959). The model has the following 

differential form; 

��
�� = �� �1 − 	�
�

�
 
A mathematical description of a real world system is often 

referred to as a mathematical model. A system can be formally 

defined as a set of elements also called components. A set of 

trees in a forest stand, producers and consumers in an 

economic system are examples of components. The elements 

(components) have certain characteristics or attributes and 

these attributes have numerical or logical values. Among the 

elements, relationships exist and consequently the elements 

are interacting. The state of a system is determined by the 

numerical or logical values of the attributes of the system 

elements. Experimenting on the state of a system with a model 

over time is termed simulation (Kansal et al. 2000). 
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Using Hyperbolic

Sustainable forest management relies to a large extent, 

measure on the predictions of the future conditions of 

individual stands which is achieved by predicting the 

increment from the current stand structure and updating the 

current values at each cycle of iteration using a functional 

growth model. Trees structural changes over time can be 

monitored and modeled under different cutting cycles, cutting 

intensities and optimal management policies can be arrived at 

based on the results of such simulation runs.

Forest managers rely on growth and yield models to assess

whether their short-term plans will meet long

sustainability goals. Growth models assist forest researchers 

and managers in many ways. Some important uses include the 

ability to predict future yields and to help consider alternative 

cultivation practices. Models provide an efficient way to 

prepare resource forecasts, but a more important role may be 

their ability to explore management options and silvicultural 

alternatives EK, A.R., E.T. Birdsall, and R.J.Spear (1984)

Oyamakin & Chukwu (2014) assert that  g

provide a reliable way to examine silvicultural and harvesting 

options, to determine the sustainable timber yield, and 

examine the impacts of forest management and harvesting on 

other values of the forest. Forest managers may require 

information on the present status of the resource (e.g. numbers 

of trees by species and sizes for selected strata), forecasts of 

the nature and timing of future harvests, and estimates of the 

maximum sustainable harvest. Forest simulation models or 

forest growth models are very useful for forest managers and 

forestry researchers in many respects. A forest growth model 

aims to describe the dynamics of the forest closely and 

precisely enough to meet the needs of the f

researcher. 
The total height (Ht) of a tree is important for 

and estimating tree volume, stand characteristics and features

through site index, but accurate measurement of this variable 

is time consuming. As a result, foresters often choose to 

measure only a few trees’ heights and estimate the remaining 

heights with height-diameter equations. Foresters can also use 

height-diameter equations to indirectly estimate height growth 

by applying the equations to a sequence of diameters that were 

either measured directly in a continuous inventory or 

predicted indirectly by a diameter-growth equation

1993). The diameter-growth prediction method

in modeling growth and yield of trees

approximations in measuring the diameter of trees

(1967) investigated several equations for Douglas

included tree diameter outside bark at breast height (D

an explanatory variable. 

In this paper, an alternative nonlinear growth model called 

the hyperbolic Richards growth model was introduced and 

compared with the existing classical Richards

an improvement on the logistic growth model. 

of the well-known features in biological creatures (Burkhart 

and Strub, 1974). It describes the changing size of something 

over time. 
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2. Materials and Methods

Consider a nonlinear model  

�� = ���
� = 1,2, . , � , Where �  is the response variable, 

independent variable, B is the vector of the parameters 

be estimated (��, ��…… . , ��),�
the number of unknown parameters, 

observation. The estimator of �
the sum of squares residual ���

����� � ∑ !�"�#�
Under the assumption that the 

independent with mean zero and common variable 

��  and �$ are fixed observations, the sum of squares residual 

is a function of B, these normal equations take the form of

∑ %�� � ���� , &"�#�

For ' � 1,2, … , ( . When the model is nonlinear in the 

parameters so are the normal equations consequently, for the 

nonlinear model consider the table 2, it is impossible to obtain 

the closed solution of the least squares estimate of the 

parameter by solving the ( normal e

(3). Hence an iterative method must be employed to minimize 

the ))�*�  (Draper and Smith 1981, Ratkowsky 1983

Marquardt 1963, Seber & Wild 1989

The hyperbolic functions have similar names to the 

trigonometric functions, but they are defined in terms of the 

exponential function. The three main types of hyperbolic 

functions, and the sketch of their graphs are giving below.

Fig 1. Cosh Function

Fig 2. Sinh Function
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��� , &+ , ��                            (1) 

is the response variable, �  is the 

independent variable, B is the vector of the parameters �- to 

�� is a random error term , ( is 

the number of unknown parameters, �  is the number of 

�-’s are found by minimizing 

�����) function 

!�� � ���� , &+.�                     (2) 

Under the assumption that the ��  are normal and 

independent with mean zero and common variable /�. Since 

are fixed observations, the sum of squares residual 

is a function of B, these normal equations take the form of 

&+0 	12�34,5+167 � � 0                 (3) 

. When the model is nonlinear in the 

parameters so are the normal equations consequently, for the 

nonlinear model consider the table 2, it is impossible to obtain 

the closed solution of the least squares estimate of the 

normal equations describe in Eq 

(3). Hence an iterative method must be employed to minimize 

(Draper and Smith 1981, Ratkowsky 1983, 

, Seber & Wild 1989, Fekedulegn 1996). 
The hyperbolic functions have similar names to the 

functions, but they are defined in terms of the 

exponential function. The three main types of hyperbolic 

their graphs are giving below. 
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Fig 3. Tanh Function. 

According to Oyamakin et al. (2013), the hyperbolic sine 

function and its inverse provide an alternative method for 

evaluating; 

9 1
√1 + ;� <; 

If we make the substitution, then; 

=1 + ;� = =1 + )��ℎ��?) = =@A)ℎ��?) = cosh	�?) 
Where the second equality follows from the identity cosh

2
(u) 

− sinh
2
(u) = 1 and the last equality from the fact that cosh(u) > 

0 for all u. Hence; 

9 1
√1 + ;� <; = 9 cosh	�?)

cosh	�?) <?
= 9<? = ? + @ = )��ℎG��;) + @ 

The following proposition is a consequence of the integral 

above i.e. 

<
<; )��ℎG��;) =

1
√1 + ;� 

Also, using the substitution x = tan (u), − H
� < ? < H

� , that 

9 1
√1 + ;� <; = JAK L; + =1 + ;�L + @ 

Since two anti-derivatives of a function can differ at most 

by a constant, there must exist a constant k such that 

)��ℎG��;) = JAK L; + =1 + ;�L + M 

for all x. Evaluating both sides of this equality at x = 0, we 

have 

0 = )��ℎG��0) = log�1) + M = M 

Thus k = 0 and 

)��ℎG��;) = JAK L; + =1 + ;�L 
for all x. Since the hyperbolic sine function is defined in 

terms of the exponential function, we should not find it 

surprising that the inverse hyperbolic sine function may be 

expressed in terms of the natural logarithm function. 

3. Hyperbolastic Richards’ Growth 

Model (HRGM) 

��
�� = � �1 − 	�
�

�
 	� + P
√1 + ��� 

��
�� = � �
� − ��


� 
 	� + P
√1 + ��� 

Multiply through by 
�	�A	AQ�R��; 

� ���� = ��
� −��) 	� + P

√1 + ��� 
Separating variables give; 


� ��
��
� − ��) = 	� + P

√1 + ��� <� 


� ��
�
� −��T� = 	� + P

√1 + ��� <� 
Divide LHS by 
���T� to have; 

�G�G�
�� − 
G� <� = 	� + P

√1 + ��� <� 
Using substitution method we have that; 

Let U = �� − 
G� such that <U = −Q�G�G�<� 

<� = <U
−Q�G�G� 

Substituting and integrating we have that; 

−1Q J�	U = �� + PR�@)��ℎ��) + V� 

−1Q J�	��� − 
G�) = �� + PR�@)��ℎ��) + V� 

J���� − 
G�)G�� = 	�� + PR�@)��ℎ��) + V� 

��� − 
G�)G�� =	WXYZT[\Y]��"^�Z) 
It therefore follows by little Algebra that; 

� = 

�1 + WXG�[YZT[\Y]��"^�Z)])�� 

Therefore, we shall apply the two models below on 

Age-height and Age-Diameter of pines (pinus caribaea) 

growth; 

(1) � = _
`�Ta*bc[defghdij4kl�e)]mnc

+ o , and � =
_

`�Ta*bc[defghdij4kl�e)]mnc
+ o 
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(2) � = _
`�Ta*bdcemnc

+ o, and  � = _
`�Ta*bdcemnc

+ o 

4. Results and Discussion 

4.1. Figures and Tables 

Table 1. Summary of model selection criteria computed for the Proposed and 

Source models. 

Models SSE N K R SQ MSE AIC 

Source(ht) 29.431 17 4 90.90% 2.264 17.33019834 

Proposed(ht) 15.579 17 5 95.20% 1.298 8.516078661 

Source(dbh) 4.06 17 4 99.10% 0.312 -16.3445163 

Proposed(dbh) 2.999 17 5 99.40% 0.25 -19.49388555 

The table 1 below shows the estimated parameter for 

exponential and hyperbolic exponential growth model with 

their respective coefficient of determination (R
2
), MAE and 

MSE for age-height/age-diameter models. 
Also, the predicted and observed height and diameter were 

plotted to show the relationship and how best the models 

predicted the observed data on height and diameter of pines. 

This is also shown in the figure below: 

 

Fig 4. Observed Height against Predicted height (Richards growth model). 

 

Fig 5. Observed Height against Predicted height (Hyperbolic Richards 

growth model) 

 

Fig 6. Observed Diameter against Predicted diameter (Richards growth 

model). 

 

Fig 7. Observed Diameter against Predicted diameter (Hyperbolic Richards 

growth model). 

4.2. Testing for Independence of Errors (Run test) and 

Normality of Error (Shapiro-Wilk Test) 

Table 2. Result of the test of independence of Residuals using Run Test. 

Residual Test Value No of Runs Z 
Asymp. Sig.(2 

tailed 

Richards. 

Height 
-0.0218 5 -1.802 0.072* 

Richards. 

Diameter 
 0.0041 7 -0.899 0.369ns 

HRichards. 

Height 
-0.0047 6 -1.494 0.135ns 

HRichards. 

Diameter 
-0.0012 8 -0.381 0.703ns 

* Significant at 10%, ** significant at 5%, *** significant at 99% and ns not 

significant. 

Two assumptions made in the models are: 

� Errors are independent 

� Errors are normally distributed. 

These assumptions were verified by examining the 

residuals. If the fitted models are correct, residuals should 

exhibit tendencies that tend to confirm or at least should not 

exhibit a denial of the assumptions. 

Hence, we tested the following hypotheses stated below; 

H0: Errors are independent (Using Runs Test) 

H1: Errors are not independent 
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And 

H0: Errors are normally distributed (Using Shapiro-Wilk 

test) 

H1: Errors are not normally distributed 

Let m be the number of pluses and n be the number of 

minuses in the series of residuals. The test is based on the 

number of runs(r), where a run is defined as a sequence of 

symbols of one kind separated by symbols of another kind. A 

good large sample approximation to the sampling distribution 

of the number of runs is the normal distribution with mean; 

pXR� = 2U�
U + � + 1 

and,  

qR��R�@X�/�) = 2U��2U� − U − �)
�U + �)��U + � − 1) 

Therefore, for large samples like ours the required test 

statistic is; 

r = �� + ℎ − s)
/ ∼ u�0,1) 

where, 

ℎ = v						0.5, ��	� < s−0.5, � > s y 
Also, the required test statistic for the test of normality 

(Shapiro-Wilk test) is given by; 

z = ��
Q  

Where; 

�� ={R�M){;"T�G| − ;�|)} 
and, 

Q ={�;� − ;̅)� 

In the above, the parameter k takes the values; x(k) is the kth 

order statistic of the set of residuals and the values of 

coefficient a(k) for different values of n and k are given in the 

Shapiro-Wilk table. H0 is rejected at level α i.e. W is less than 

the tabulated value. 

Table 3. Result of the test of normality of Residuals using K-S & S-W Tests. 

Residual 
Kolmogorov-Sminov Shapiro-Wilk 

Statistic Asmp. Sig. Statistic Asmp. Sig. 

Richards. 

Height 
0.262 0.003*** 0.841 0.008*** 

Richards. 

Diameter 
0.143 0.200ns 0.955 0.532ns 

HRichards. 

Height 
0.172 0.193ns 0.953 0.509ns 

HRichards. 

Diameter 
0.126 0.200ns 0.952 0.488ns 

* Significant at 10%, ** significant at 5%, *** significant at 99% and ns not 

significant. 

5. Conclusion 

Finally, our proposed model showed a promising results and 

using the above discussed data sets, they fitted the data with 

smaller AIC, MSE, and higher prediction accuracy than its 

source model. We strongly believe that choosing a flexible and 

highly accurate predictive model such as ours can 

significantly improve the outcome of a study because the 

accuracy of a model is what determines its utility. Hence, we 

recommend usage of our proposed models to the scientific 

community and practitioners and urge comparison of them 

with classical models before decisions on model selection are 

made. We have succeeded in introducing a new growth model 

using the hyperbolic sine function. The mean function of top 

height and Dbh over age using the Hyperbolic Richards 

growth model predicted closely the observed values of top 

height and Diameter of Pines better than the source model. 
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