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Abstract: A precondition that uses the special structure of the algebraic system arising from the discretization of a 

fractional partial differential equation on the red black ordering grid is introduced. Comparison with the numerical solution 

of the classical Poisson’s equationis considered. A graphical representation for the precondition is illustrated. The 

performance of our treatment is calculated for different values of the fractional order. The results of the implementation of 

the SOR and the KSOR with the help of MATLAB are given in compact tables. The value of the relaxation parameter is 

chosen on the bases of the graphical representation of the behavior of the spectral radius of the iteration matrices. Also, the 

natural ordering grid is considered.  

Keywords: Fractional Boundary Value Problem, SOR, KSOR and Precondition 

 

1. Introduction 

Differential and integral equations are used in modeling 

physical phenomena. In recent years a considerable 

amount of progress has been made in using fractional order 

partial differential equations (FPDE) in modeling different 

fields of science. FPDE can be seen as a generalization of 

the classical partial differential equations (PDE) in the 

sense that it takes into account the memory and hereditary 

properties of the physical phenomena. As it was in the 

classical PDE there is no general method that can be used 

in solving FPDE. Numerical solution of FPDE has 

received great progress in the recent years. There is no 

doubt that the work of Young introduced in his Ph.D. 

thesis in 1950 as well as in his famous book in 1971 

represents a major shift in the developments of the 

numerical treatment of structured large linear systems that 

arise from the discretization of PDE. Young introduced the 

successive over relaxation method SOR during his 

numerical treatment of Poisson’s equation [1, 

2].Young,also considered the methods of labeling the grid 

points and their effect on the structure of the resultant 

linear algebraic system. Youssef in 2012 introduced a new 

variant (KSOR) of the SOR method [3]. Precondition is a 

technique used in the recent years to adopt the 

convergence of iterative methods. Our aim is to introduce a 

precondition suitable to discretize FPDE and to compare 

its performance when applied to both SOR and KSOR 

methods. The Poisson's equation is: 

�� ����� � �����	u�x, y	 � f�x, y	 , ��, �	 � �         (1) 

Where, D = {(x, y): (x, y) � [0, L] � [0,L] 

Subject to the Dirichlet-boundary conditions: 

u(0,y) = u(x,0) = u(L, y) = 0; and u(x, L) = g(x). (2) 

Also[4]considered the fractional Poisson’s equation, in 

the form: 

� � ����� � ������ u�x, y	 � f�x, y	, where 1 � �  2,  (3) 

Subject to the same boundary conditions in (2) and he 

used the finite difference method to approximate the 

fractional derivatives 

We consider the corresponding fractional order Elliptic 

FPDE by the form: 

� � ���"� � �#��#� $��, �	 � %��, �	; (1< (α and β) ≤ 2) (4) 

Note1: equation (4) can be seen as a generalization to 

both equation (1) and equation (3). 
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2. Finite Difference Approximations 

It is well known that the five point’s finite difference 

approximation for equation (1) can be written in the form  4'(,) � '(*+,) � '(,+,) � '(,)*+ � '(,),+ � -.%()(5) 

In order to obtain the finite difference approximation of 

the fractional order equation (3), we use the treatment 

introduced in [4] for approximate Caputo’s fractional 

derivative of order α, (1 � �  2) in the form: �"/01 $2�( , �)3 45 6/07,8*.6/,8,6/97,8 �:*1	;� , and  

��801 $2�( , �)3 4 6/,807*.6/,8,6/,897 �:*1	;�5 (6a) 

It is well known that the central finite difference 

approximation of the second order derivative is given by: <.$2�( , �)3<�. 4 '(,+,) � 2'(,) � '(*+,)-. � =;��	, 
Where,  |=;��	|  ?$@"A$�B	��, �	A-./12,           (6b) 

where=; is the truncation error. 

The corresponding finite difference approximation of 

the Caputo’s fractional order derivative of order α is: 

6/07,8*.6/,8,6/97,8 �:*1	;� 4 �"/01 $2�( , �)3 � ;D9�EF"AG�D	�"/	A+. �:*1	5 ;  (6c) 

Similarly,  

6/,807*.6/,8,6/,897 �:*1	;� 4 ��801 $2�( , �)35 � ;D9�EF"AG�D	2�83A+. �:*1	 (6d) 

Accordingly, the difference approximation for eqn. (3) 

can be written in the form: 

6/07,8*.6/,8,6/97,8 �:*1	;� � 6/,807*.6/,8,6/,897 �:*1	;� � �%(,),  

which can be rearranged as in the classical form (5) as:  4'(,) � '(*+,) � '(,+,) � '(,)*+ � '(,),+ �  �3 � �	-1%() (7) 

Also there is another two treatments in approximating 

the fractional derivatives inequation (4), 

The first treatment is the direct discretization methodin 

this method the integral in Caputo’s formula is replaced by 

a finite sum of integrals at the discretization points, and 

approximatethe second orderderivative by using the 

standard finite difference formula, then the finite 

difference formula of Caputo’s fractional derivative takes 

the form: 

�"1$��, �	J5 K 1
Г�2 � �	 L M <.$�?, �	<?."N07

"N
(*+
OPJ �� � ?	.*1*+Q? 

�"1$(,) KJ5 +;�Г�:*1	 ∑ SO12'(*O,+,) � 2'(*O,) �(*+OPJ                                                                         �'(*O*+,)	    (8) 

Where, SO1 � T�U � 1	.*1 � U.*1V,  
letSWX � *+;#Г�:*Y	 SWY;  SO � *+;�Г�:*1	 SO1 

Then, the finite difference scheme for eqn(4) take the 

form: ∑ SO2'(*O,+) � 2'(*O) � '(*O*+) 3(*+OPJ �              � ∑ SWX2'()*W,+ � 2'()*W � '()*W*+3)*+WPJ � %()
      (9) 

It is clear that when α= β, one can easily see that:  

SWX � SO= 
*+;�Г�:*1	 S1. 

Also, the system in (7) can be obtained from (9) by 

taking the first term in the sum with b0=1 for all 1< α ≤ 2.  

The second treatmentfor the fractional derivatives [5-7], �"1$2�( , �)3JZ*[ � �"1$2�( , �)3JZ*[  

            � lim∆"`J 1�∆�	1 L aO1
b

OPJ 'b*O,) ;  aO1
� Γ�U � �	

Γ�U � 1	Γ���	 

�"1$��, �	J5� �"1$��, �	 �JZ*[ L �O*1
Γ�U � 1 � �	

c*+
OPJ

<O$��, �	|"PJ<�O  

�"1$2�( , �)3 �Jd*[ +;� ∑ eO1(,+OPJ '(*O,+,) � f�-	,  

Depending on the use of Grunwald-Letnikov (G-L) [5]).  

Accordingly, the finite difference approximation to 

eqn(4), take the form: 

∑ eO1(,+OPJ '(*O,+)
+∑ eWY),+WPJ '()*W,+

=%()
(10) 

Where %() � %2�( , �)3;  '(,) � '2�( , �)3,   
2�( , �)3 � �, �( � g-; �) � h- ; - � ij ; 

kJl � 1; k+l � �m;  kOl � l�l*+	n�l*O,+	O! ; U p 1;  
eO1 � �q+kO1; eWY � �q.kOY; q+ � � +;�� , q. � � +;#�  (11) 

Inthe finite difference treatment the PDE or the FPDE 

are replaced by an Algebraicsystem of equations which can 

be written in the form 

AU=f,                                     (12) 

where A is (N-1)
2� (N-1)

2
 coefficients matrix, U and f 

are two (N-1)
2 �  1 matrices, where  ' � r')+, ')., n , ')b*+st

 and % � T%)+, %)., n , %)b*+Vt  ; h � 1, … , j � 1. 

Usually the system in (12) is very large and the matrix 

of coefficientsA has special structure.  
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3. Coefficients Matrix of the Linear 

Algebraic System 

The structure of the matrix of coefficients depends on 

the method of discretizing, the domain and the labeling of 

the grid points 

Let  %() � %2�( , �)3;  '(,) � '2�( , �)3,  
2�( , �)3 � �, �( � g-; �) � h- ; - � ij, 

Labeling of grid points [8]: in the finite difference 

treatment of classical PDE there are different methods of 

labeling the grid points, two of  them are the 

Lexicographic ordering figures1 a and the Chequer-board 

ordering (Red-Black ordering) figures 1.b. 

 
Figure1a.Lexicographical ordering. 

. 

Figure1b.Chequer-board ordering. 

 

Figure 1c.  

 

Figure 1d.  

Figure 1c illustrate the linking between the function 

values at the grid points for classical (integer) case and 

figure 1d illustrate the linking between the function values 

at the grid points for fractional order case, it is clear that 

the memory and hereditary properties of fractional 

derivatives can be noticed from figure 1d. 

It is well known that the coefficient matrix for the 

algebraic system corresponding to equation (5) or equation 

(7) with the labeling of grid points in figures(1a and 1b)can 

be written in the block form (figures 2 and 3). 

 
Figure2.Lexicographical ordering for formula (5 and 7) at N=5. 

This can be described as the following block structure. 

v � w xg%U � y�1zg%y � U { 1 0        }~-�qag?��, x � w 4  g%h � g�1  g%h � g { 1,0        }~-�qag?��      (13) 

Wherez denotes the identity matrix of order 4 and B is a 

block sub-matrix of order 4. 

 

Figure3.Chequer-board ordering for formula (5 and 7) at N=5. 

It is clear that the coefficients-matrix for the fractional 

order case equation (7), has the same structure as in 

equation (13) and the difference will be in the free column 

f in the right side of system (12). 

Itshould be noticed that this representation does not 

reflect the memory and hereditary properties of fractional 

derivatives. 

The matrix representation of the finite difference 

scheme in equation (9) or equation (10) with respect to the 

labeling of grid points in figures (1a and 1b) can be written 

in the following forms: 

The coefficients-matrix of the system in equation (10) is: 

A � � x1          %}q U � y                             e�,+X z  %}q U � y � � � 1,2 … j � 1eJX         %}q h � g � 1                 0         }~-�qag?�                       
�       (14) 

x1 � � e+ � e+X       %}q h �  ge�,+             %}q g � h � ~ � 1,2, … j � 1eJ               %}q h � g � 1                              0                                  }~-�qag?�                
� 

U1,1 U2,1 U3,1 U4,1 U1,2 U2,2 U3,2 U4,2 U1,3 U2,3 U3,3 U4,3 U1,4 U2,4 U3,4 U4,4

4 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

-1 4 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0

0 -1 4 -1 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 -1 4 0 0 0 -1 0 0 0 0 0 0 0 0

-1 0 0 0 4 -1 0 0 -1 0 0 0 0 0 0 0

0 -1 0 0 -1 4 -1 0 0 -1 0 0 0 0 0 0

0 0 -1 0 0 -1 4 -1 0 0 -1 0 0 0 0 0

0 0 0 -1 0 0 -1 4 0 0 0 -1 0 0 0 0

0 0 0 0 -1 0 0 0 4 -1 0 0 -1 0 0 0

0 0 0 0 0 -1 0 0 -1 4 -1 0 0 -1 0 0

0 0 0 0 0 0 -1 0 0 -1 4 -1 0 0 -1 0

0 0 0 0 0 0 0 -1 0 0 -1 4 0 0 0 -1

0 0 0 0 0 0 0 0 -1 0 0 0 4 -1 0 0

0 0 0 0 0 0 0 0 0 -1 0 0 -1 4 -1 0

0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 4 -1

0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 4

U1,1 U3,1 U2,2 U4,2 U1,3 U3,3 U2,4 U4,4 U2,1 U4,1 U1,2 U3,2 U2,3 U4,3 U1,4 U3,4

4 -1 0 -1 0 0 0 0 0

4 D -1 -1 0 -1 0 0 0 0

4 -1 0 -1 -1 -1 0 0 0

4 0 -1 0 -1 0 -1 0 0

4 0 0 -1 0 -1 0 -1 0

4 0 0 0 -1 -1 -1 0 -1

4 0 0 0 0 -1 0 -1 -1

AT 4 0 0 0 0 0 -1 0 -1

-1 -1 -1 0 0 0 0 0 4 A

0 -1 0 -1 0 0 0 0 4

-1 0 -1 0 -1 0 0 0 4

0 -1 -1 -1 0 -1 0 0 4

0 0 -1 0 -1 -1 -1 0 4

0 0 0 -1 0 -1 0 -1 D 4

0 0 0 0 -1 0 -1 0 4

0 0 0 0 0 -1 -1 -1 4
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The special case of system in equation (

andeO1 � eWY , then the coefficients-matrix 

B1=

���
���
� 2e+ eJ  0 n      0e. 2e+ eJ n      0e:�eb*:eb*.eb*+

e.�eb*Beb*:eb*.

2e+�eb*�eb*Beb*:
��nn

0eJ2e+e.e:

A=

���
���
� x1 eJz  0 n      0e.z x1 eJz n      0e:z�eb*:zeb*.zeb*+z

e.z�eb*Bzeb*:zeb*.z
x1�eb*�zeb*Bzeb*:z

��nn
e
ee

Thecoefficients-matrix A is of order 

whereB1 is N-1 �  N-1 block matrix,

identity matrix 

Figure5. Lexicographical ordering; formula (14

Theorem: the coefficients-Matrix for system (9) is non

singular, so the system (12) has unique solution.

Proof: fromGershgorin's, theOremthe eigenv

1)
2 �  (N-1)

2
, A matrix lie in union of (N

centered at aii with radius Ri =∑ A�()Ab)P+)�(
From figure 5 and equation (13), also 0; eOl p 0 %}q U � 2; ∑ eOl�OPJ � 0; then

L eOl
(,+
OPJ � �e+l , m � � ,

U1,1 U2,1 U3,1 U4,1 U1,2 U2,2 U3,2 U4,2 U1,3 U2,3 U3,3

 - 2b0 -2b*0 b0 0 0 b*0 0 0 0 0 0 0

b0 -2b1  - 2b0 -2b*0 +b*1 b0 0 0 b*0 0 0 0 0 0

b1 -2b2 b0 - 2b1 +b2  - 2b0 -2b*0 +b*1 b0 0 0 b*0 0 0 0 0

b2 -2b3 b1 - 2b2 +b3 b0 - 2b1 +b2  - 2b0 -2b*0 +b*1 0 0 0 b*0 0 0 0

b*0 -2b*1 0 0 0  - 2b0 -2b*0 +b*1 b0 0 0 b*0 0 0

0 b*0 -2b*1 0 0 b0 -2b1 b1 - 2b0 -2b*0+b*1 b0 0 0 b*0 0

0 0 b*0 -2b*1 0 b1 -2b2 b0 - 2b1 +b2 b1 - 2b0 -2b*0+b*1 b0 0 0 b*0

0 0 0 b*0 -2b*1 b2 -2b3 b1 - 2b2 +b3 b0 - 2b1 +b2 b1 - 2b0 -2b*0+b*1 0 0 0

b*1 -2b*2 0 0 0 b*0 -2b*1+b*2 0 0 0  - 2b0 -2b*0+b*1 b0 0

0 b*1 -2b*2 0 0 0 b*0 -2b*1+b*2 0 0 b0 -2b1 b1 - 2b0 -2b*0+b*1 b0

0 0 b*1 -2b*2 0 0 0 b*0 -2b*1+b*2 0 b1 -2b2 b0 - 2b1 +b2 b1 - 2b0 -2b*0+b*1

0 0 0 b*1 -2b*2 0 0 0 b*0 -2b*1+b*2 b2 -2b3 b1 - 2b2 +b3 b0 - 2b1 +b2

0 0 0 0 b*1 -2b*2 0 0 0 b*0 -2b*1+b*2 0 0

0 0 0 0 0 b*1 -2b*2 0 0 0 b*0 -2b*1+b*2 0

0 0 0 0 0 0 b*1 -2b*2 0 0 0 b*0 -2b*1+b*2

0 0 0 0 0 0 0 b*1 -2b*2 0 0 0
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, formula (9), 1 ≤ α ; β ≤ 2. 

equation (9) for α = β, 

matrix take the form: 0    00     0
+

0�eJ2e+e.

0�0eJ2e+���
���
�
;  

0 0    00 0     00eJzx1e.ze:z
0�eJzx1e.z

0�0eJzx1 ���
���
�
  (15) 

is of order (N-1)
2 �  (N-1)

2
, 

matrix, I is N-1 �  N-1 

 

14), N=5; 0 < α,β ≤ 2. 

Matrix for system (9) is non-

) has unique solution. 

the eigenvalues of (N-

, A matrix lie in union of (N-1)
2
 circles A A. 

(13), also eOl  , ∑ eOl�OPJ �
then 

, � 

�(( � �e+ � e+X	 � ��q+�
R( � LA�()Ab

)P+)�(
� L(OO

�  L eO
(,+
OPJO�(

�
�  ��q+� �

Now we have that aii + R

this strict inequality true at (α and β) fractional, then the 

eigenvalues of A are (0 >� p
that: A is invertible, and since R

strictly diagonal dominant, the

system (7) has a unique solution for (1 < α, β < 2 ). 

Moreover A is L-matrix,  

Figure6.Chequer-board ordering; 

SOR and KSOR [1- 3, 8 - 

Solving large linear systems is a problem in itself. Many 

authors considered the iterative techniques for solving such 

systems. The successive over relaxation (SOR) method 

[1,2, 8] is one of the most used 

large systems. The SOR method depends on a relaxation 

parameter� � �0, 2	 . The choice of  ����	 which minimizes the spectral radius of the iter

matrix ���Z  is the most important and

use of the SOR method. Although, 

determining ���� in case of system (

for the selection of ���� in general. 

in [3] in 2012 is another variant of the SOR me

which the domain of the relaxation parameter is extended 

to R-[-2, 0] instead of (0, 2). ���Z � �� � �i	*+
a-�q� �

����Z � 2�1 � �X	�
a-�q� �X �

The Precondition technique

techniques are used to accelerate the rate of convergence 

of iterative methods. In solving linear systems iteratively 

there are many varieties of preconditions. 

U4,3 U1,4 U2,4 U3,4 U4,4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

b*0 0 0 0 0

0 b*0 0 0 0

0 0 b*0 0 0

b0 0 0 b*0 0

b1 - 2b0 -2b*0+b*1 0 0 0 b*0

0  - 2b0 -2b*0+b*1 b0 0 0

0 b0 -2b1 b1 - 2b0 -2b*0+b*1 b0 0

0 b1 -2b2 b0 - 2b1 +b2 b1 - 2b0 -2b*0+b*1 b0

b*0 -2b*1+b*2 b2 -2b3 b1 - 2b2 +b3 b0 - 2b1 +b2 b1 - 2b0 -2b*0+b*1

U1,1 U3,1 U2,2 U4,2 U1,3 U3,3 U2,4

g1+g*1

g3 g1+g*1

g1+g*1

g3 g1+g*1 LA1

g*3 g1+g*1

g*3 g3 g1+g*1

g*3 g1+g*1

g*3 g3

g2 g*0 g0

g4 g2 g0

g*2 g*0 g0

g*2 g2 g*0 g0

g*2 g2 g*0 g0

g*2 g4 g*2

g*4 g*2 g*0

g*4 g2 g2

��*���	 
 ��*���	 
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� q.�	, then since   

A L|�(O|(,+
OPJO�(

� L|�(W|(,+
WPJW�(

�                                � L eWX
(,+
WPJW�(� q.�	 � �e+ � e+X	 

+ Ri< 0, aii - Ri>�2�q+� � q.�	, 

this strict inequality true at (α and β) fractional, then the p �2�q+� � q.�		 , this mean 

is invertible, and since Ri<�e+ � e+X	 =aii ,i.e A is 

strictly diagonal dominant, then A is non-singular and 

unique solution for (1 < α, β < 2 ). 

 

board ordering; formula (14), N=5; 1 < α,β ≤ 2. 

 11]: 

Solving large linear systems is a problem in itself. Many 

the iterative techniques for solving such 

systems. The successive over relaxation (SOR) method 

used iterative methods tosolve 

. The SOR method depends on a relaxation 

The choice of  � (the optimum value 

which minimizes the spectral radius of the iteration 

is the most important and difficult part in the 

. Although, there is a formula for 

in case of system (5) there is no method 

in general. The KSOR introduced 

another variant of the SOR method in 

which the domain of the relaxation parameter is extended 

).  	 +2�1 � �	� � �'3,  � � �0,2	. 
	 � �Xi3*+�� � �X'	,  

� = � T�2,0V. 
technique [8-11]: precondition 

techniques are used to accelerate the rate of convergence 

. In solving linear systems iteratively 

varieties of preconditions. In general, a 

U4,4 U2,1 U4,1 U1,2 U3,2 U2,3 U4,3 U1,4 U3,4

g*0 g0

g2 g*0 g0 W

g2 g*2 g*0 g0

g*2 g4 g2 g0

g*2 g*0 g0

g*2 g2 g*0 g0

g*4 g*2 g2 g*0

g1+g*1 g*4 g*2 g4 g2

g1+g*1

g3 g1+g*1

g1+g*1 LA2

g3 g1+g*1

g*3 g1+g*1

g0 g*3 g3 g1+g*1

g*3 g1+g*1

g*0 g*3 g3 g1+g*1



 Pure and Applied Mathematics Journal 2014; 3(1): 1-6 5 

 

good preconditioned P should meet the following 

requirements: 

• The preconditioned system should be easy to solve. 

• The preconditioner should be cheap to construct 

andapply. 

The first property means that the preconditioned 

iteration should converge rapidly, whilethe second ensures 

that each iteration is not too expensive. Notice that these 

two requirements are in competition with each other. It is 

necessary to strike a balance between the two needs with a 

good preconditioner. Sometimes the preconditioned matrix 

is well structured than the original matrix. Figure(6) 

corresponding to the chequer-board ordering (odd even 

ordering) the numbers eBX  appears in the element position 

(7,9) and (8,10)  can be annihilated by using a precondition 

matrix without affecting the structure of the block sub 

matrices as illustrated in figure (7) and figure (8) 

 

 

The preconditioned system is written in the form 

P(AU=f) or ApU=fp                              (15) 

Where,   P = P2 P1 

With  

P1 =   

P2 =   

For more details you can see [8] and [9].  

In general, if we have a coefficient matrix of order 2ℓ 

with submatrices of order ℓ  this precondition must be 

designed to annihilate the elements in positions �ℓ � 1, ℓ �1	 and the elements in positions �ℓ � 2, ℓ � 1	  and then 

annihilate the element in position�ℓ, ℓ � 2	.  

Numerical example: consider the structure of the 

coefficient matrix in figure (6) after calculating the 

numerical values of the coefficient matrix take the form 

illustrated in figure (7) 

 

Figure7.Coefficient matrix for formula (14),N=5; α=β =1.5. 

As a result of applying the precondition described above 

we obtain the following matrix  

 
Figure8,the preconditioned matrix. 

In the following table we summarize the results of 

calculating the spectral radius of the iteration matrices to 

both the SOR and the KSOR methods for the coefficient 

matrix given in figure (6) with different values of (α and β), 

and for slandered coefficients-matrix (A) and precondition-

matrix (PA). 

Table1.the values of the relaxation parameter ω and the corresponding spectral radius of the iteration matrix  ρ(T)  for the SOR and the KSOR 

corresponding to the chess ordering. 

order SOR KSOR 

α β ω £ (TA) ω £ (TPA) ω* £X (TA) ω* £X(TPA) 

1.2 1.2 1.05431 0.06955 1.05231 0.06135 -19.455 0.069 -20.131 0.061 

1.4 1.2 1.06831 0.09548 1.06491 0.08931 -15.635 0.095 -16.404 0.089 

1.6 1.2 1.08651 0.12453 1.08151 0.11466 -12.565 0.124 -13.285 0.115 

1.8 1.2 1.10651 0.17721 1.10991 0.17366 -10.378 0.176 -10.095 0.174 

 
Where £ ��¤	 is the spectral radius of the iteration matrix 

corresponding to the original system and  £ ��¥¤	  is the 

spectral radius of the iteration matrix corresponding to the 

preconditioned system 

i-j 8 9 10 11

7 0 g*4 0 0

8 g1+g*1 0 g*4 0

9 0 g1+g*1 0 0

10 0 g3 g1+g*1 0

i- ͢j 8 9 10 11 8 9 10 11 8 9 10 11 8 9 10 11

7 0 g*4 0 0 0 0 0 0 0 0 0 0 0 g*4 0 0

8 g1+g*1 0 g*4 0 → g1+g*1 0 g**4 0 → g1+g*1 0 g*4 0 → g1+g*1 0 0 0

9 0 g1+g*1 0 0 0 g1+g*1 0 0 0 g1+g*1 0 0 0 g1+g*1 0 0

10 0 g3 g1+g*1 0 0 g3 g1+g*1 0 0 0 g1+g*1 0 0 0 g1+g*1 0

i- ͢j 7 8 9 10 11

7 1 0  - q*1 0 0

8 0 1 0 0 0

9 0 0 1 0 0

10 0 0 - q*2 1 0

i- ͢j 7 8 9 10 11

7 1 0 0 0 0

8 0 1 0 - q*1 0

9 0 0 1 0 0

10 0 0 0 1 0

U1,1 U3,1 U2,2 U4,2 U1,3 U3,3 U2,4 U4,4 U2,1 U4,1 U1,2 U3,2 U2,3 U4,3 U1,4 U3,4

33.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -11.2 0.0 -11.2 0.0 0.0 0.0 0.0 0.0

-0.7 33.5 0.0 0.0 0.0 0.0 0.0 0.0 -4.2 -11.2 0.0 -11.2 0.0 0.0 0.0 0.0

0.0 0.0 33.5 0.0 0.0 0.0 0.0 0.0 -4.2 0.0 -4.2 -4.2 -11.2 0.0 0.0 0.0

0.0 0.0 -0.7 33.5 0.0 0.0 0.0 0.0 0.0 -4.2 -0.3 -4.2 0.0 -11.2 0.0 0.0

-0.7 0.0 0.0 0.0 33.5 0.0 0.0 0.0 0.0 0.0 -4.2 0.0 -11.2 0.0 -11.2 0.0

0.0 -0.7 0.0 0.0 -0.7 33.5 0.0 0.0 0.0 0.0 0.0 -4.2 -4.2 -11.2 0.0 -11.2

0.0 0.0 -0.7 0.0 0.0 0.0 33.5 0.0 -0.3 0.0 0.0 0.0 -4.2 0.0 -4.2 -11.2

0.0 0.0 0.0 -0.7 0.0 0.0 -0.7 33.5 0.0 -0.3 0.0 0.0 0.0 -4.2 -0.3 -4.2

-4.2 -11.2 -11.2 0.0 0.0 0.0 0.0 0.0 33.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-0.3 -4.2 0.0 -11.2 0.0 0.0 0.0 0.0 -0.7 33.5 0.0 0.0 0.0 0.0 0.0 0.0

-4.2 0.0 -11.2 0.0 -11.2 0.0 0.0 0.0 0.0 0.0 33.5 0.0 0.0 0.0 0.0 0.0

0.0 -4.2 -4.2 -11.2 0.0 -11.2 0.0 0.0 0.0 0.0 -0.7 33.5 0.0 0.0 0.0 0.0

0.0 0.0 -4.2 0.0 -4.2 -4.2 -11.2 0.0 -0.7 0.0 0.0 0.0 33.5 0.0 0.0 0.0

0.0 0.0 0.0 -4.2 -0.3 -4.2 0.0 -11.2 0.0 -0.7 0.0 0.0 -0.7 33.5 0.0 0.0

-0.3 0.0 0.0 0.0 -4.2 0.0 -11.2 0.0 0.0 0.0 -0.7 0.0 0.0 0.0 33.5 0.0

0.0 -0.3 0.0 0.0 0.0 -4.2 -4.2 -11.2 0.0 0.0 0.0 -0.7 0.0 0.0 -0.7 33.5

coefficients-matrix --- chess numbering --- at α = 1.5  β = 1.5 

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.333 0.000 -0.333 0.000 0.000 0.000 0.000 0.000

-0.021 1.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.125 -0.333 0.000 -0.333 0.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 -0.125 0.000 -0.125 -0.125 -0.333 0.000 0.000 0.000

0.000 0.000 -0.021 1.000 0.000 0.000 0.000 0.000 0.000 -0.125 -0.008 -0.125 0.000 -0.333 0.000 0.000

-0.021 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 -0.125 0.000 -0.333 0.000 -0.333 0.000

0.000 -0.021 0.000 0.000 -0.021 1.000 0.000 0.000 0.000 0.000 0.000 -0.125 -0.125 -0.333 0.000 -0.333

-0.001 -0.003 -0.023 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 -0.125 0.000 -0.125 -0.333

0.000 -0.001 0.000 -0.023 0.000 0.000 -0.021 1.000 0.000 0.000 0.000 0.000 0.000 -0.125 -0.008 -0.125

-0.125 -0.333 -0.333 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.010 -0.132 -0.007 -0.333 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.125 0.000 -0.333 0.000 -0.333 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.000 -0.125 -0.125 -0.333 0.000 -0.333 0.000 0.000 0.000 0.000 -0.021 1.000 0.000 0.000 0.000 0.000

0.000 0.000 -0.125 0.000 -0.125 -0.125 -0.333 0.000 -0.021 0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 -0.125 -0.008 -0.125 0.000 -0.333 0.000 -0.021 0.000 0.000 -0.021 1.000 0.000 0.000

-0.008 0.000 0.000 0.000 -0.125 0.000 -0.333 0.000 0.000 0.000 -0.021 0.000 0.000 0.000 1.000 0.000

0.000 -0.008 0.000 0.000 0.000 -0.125 -0.125 -0.333 0.000 0.000 0.000 -0.021 0.000 0.000 -0.021 1.000

coefficients-matrix; at α=β=1.5 - Chess numbering ,,,after using Preconditions to change A(7,9) and A(8,10) to zero
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4. Conclusions 

The memory and hereditary properties of fractional 

derivativesdoes not appear in the finite difference 

representation (7) it is similar tothe integer case except for 

the right hand side term as illustrated in the matrix structure 

in figure (2) and figure(3). In the finite difference form (9) 

and (10) for the fractional order case the behavior of the 

approximation of the fractional derivatives appears in the 

matrix structure as illustrated in figure (4), figure (5) and 

figure(6). The precondition introduced meets the second 

requirement of precondition, it is easy to construct. 

The SOR and the KSOR have the same behavior but 

with different values of the relaxation parameters for both 

the original system and the preconditioned system as shown 

in table 1.  

The structure of the resultant algebraic system will be 

our concern in a next subsequent work! 

This paper shows the stander formula of coefficient 

matrices respect to two numbering methods, 

Also, it shows that the system in formula(9) has exact 

and has unique solution for (1 < α, β < 2 ). 

 

References 

[1] D. M. Young, Iterative solution of large linear systems, 
Academic Press, New York (1970). 

[2] D. M. Young, Iterative methods for solving Partial 
difference equation of Elliptic type, Ph. D. thesis, 
Department of mathematics, Harvard university Cambridge, 
mass, may 1, 1950.  

[3] I. K,Youssef, on the successive overrelaxation method, 
Journal of math. and statistics 8 (2): 172-180,2012. 

[4] V. D.Beibalaev ,Ruslan P. Meilanov, the Dirihlet problem 
for the fractional Poisson’s equation with caputoDerivatives, 
afinite difference approximation and a numerical solution. 
Thermal scince:year, val,16, 2012. 

[5] K. B. Oldham and J. Spanier,the Fractional Calculus, 
Academic Press, New York, NY, USA, 1974. 

[6] Lijuan Su and Pei Cheng, A Weighted Average Finite 
Difference Method for the Fractional Convection-Diffusion 
Equation, Hindawi Publishing Corporation Advances in 
Mathematical Physics Volume 2013. 

[7] N. G. Abrashina-Zhadaeva and I. A. Timoshchenko, Finite-
Difference Schemes for a Diffusion Equation with Fractional 
Derivatives in a Multidimensional Domain, ISSN 0012-
2661, Vol. 49, Differential Equations, 2013. 

[8] YousefSaad, Iterative Methods for Sparse Linear Systems, 
by the Society for Industrial and Applied Mathematics, 2003. 

[9] D. J. Evans, M. M. Martins, M. E. Trigo, On preconditioned 
MSOR Iterations, Intern, J. Computer Math, Vol. 59, pp. 
251-257.  

[10] Michele Benzi, Preconditioning Techniques for Large 
Linear Systems, Journal of Computational Physics 182, 
418–477 (2002). 

[11] O. Settle, C. C. Douglas, I. Kim, D. Sheen, On the 
derivation of highest-order compact finitedifference 
schemes for the one- and two-dimensional poisson equation 
with dirichlet boundary conditions, SIAM Journal on 
Numerical Analysis, Vol. 51, No. 4 , (2013). 

 


