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Abstract: The energy equation for turbulent flow has been derived in terms of correlation tensors of second order, where 

the correlation tensors are the functions of space coordinates, distance between two points and time. An independent variable 

has been introduced in order to differentiate between the effects of distance and location. To reveal the relation of turbulent 

energy between two points, one point has been taken as the origin of the coordinate system. Correlation between pressure 

fluctuations and velocity fluctuations at the two points of flow field is applied to the turbulent energy equation. 
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1. Introduction 

The turbulent flow can be found in many areas of 

industry, such as the production of the composite materials, 

environmental engineering, chemical engineering, textile 

industry, paper making and so on. The turbulence is 

maintained by the turbulent energy production, where the 

dissipation and the buoyancy flux act as sinks for the 

turbulent energy. Numerical models for turbulent 

fluid-particle flows were reviewed by Crowe et al. [1]. The 

review was structured according to the turbulence models 

used for the continuous phase: turbulence energy dissipation 

models, large-eddy simulations, direct numerical 

simulations, and discrete vortex models. Oakey [2] 

examined the rate of dissipation of turbulent energy from 

simultaneous temperature and velocity shear microstructure 

measurements. Spectra of turbulence were examined for 

both temperature gradient and velocity shear. Saito and Saito 

and Lemos [3] derived a macroscopic two-energy equation 

model for turbulent flow in a highly porous medium and 

applied to a porous channel bounded by parallel plates 

Macroscopic continuity, momentum and energy equations 

are presented local non-thermal equilibrium is considered by 

means of independent equations for the solid matrix and the 

working fluid. 

Ozmidov [4] conferred the derivation of an eddy 

coefficient for the buoyancy flux on the foundation of a 

critical mixing distance. In the model of Ozmidov for 

oceanic turbulence there are mixing layers up to some 

vertical thickness determined by the stratification. Lilly et 

al. [5] estimated stratospheric mixing from high-altitude 

turbulence measurements. Nash and Moum [6] predicted 

microstructure of turbulent salinity flux and the dissipation 

spectrum of salinity. Williams and Gibson [7] measured the 

turbulence directly in the pacific equatorial undercurrent. 

Gargett [8] investigated the occurrence of oceanic 

turbulence with respect to fine structure. Osborn [9] 

recommended that the thick dissipation patches may be 

regions where the turbulence is supported by the Reynolds 

stress working against the local mean shear. This mean 

shear would be time variable, largely due to internal waves 

and hence would grow and decay with time. Weinstock [10] 

obtained vertical turbulent diffusion in a stably stratified 

fluid. Moum et al. [11] compared the turbulence kinetic 

energy dissipation rate estimates from two ocean 

microstructure profilers. Dillon and Caldwell [12] 

discussed the Batchelor spectrum and dissipation in the 

upper ocean.  

Luketina and Imberger [13] determined the kinetic 

energy dissipation for turbulent flow from batchelor curve 

fitting. Moum [14] explored the energy-containing scales of 

turbulence in the ocean thermo cline. Sarker and Ahmed 

[15] conferred the motion of fibers in turbulent flow in a 

rotating system. Osborn [16] examined the energetic of the 

current and balanced the turbulent energy equation to 

justify using as an estimation of the local production. Hinze 

[17] derived an expression for turbulent motion with the 

correlation between pressure fluctuations and velocity 
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fluctuations at two points of the flow field. Ahmed and 

Sarker [18] derived an equation for turbulent fiber motion in 

terms of second order correlation tensor, where the 

correlation tensors were the functions of space coordinates, 

distance between two points and time. In presence of dust 

particles, they derived another equation of turbulent fiber 

motion in terms of second order correlation tensor [19]. 

However, there are few studies relevant to the turbulent 

energy although it is prevalent in the industry. In view of all 

the work, the main aim of the present study is to derive 

energy equation of second order correlation tensor for 

turbulent flow with the aid of pressure-velocity correlation. 

2. Mathematical Model of the Problem 

The equations of motion and continuity for turbulent flow 

of a viscous incompressible fluid are  
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The energy equation for turbulent flow of a viscous 

incompressible fluid is given by  
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where iu  are the fluid velocity components; p is the 

unknown pressure field; υ  is the kinematical viscosity of 

the fluid; ρ  is the density of the fluid particle; ijlε  the 

three-dimensional permutation symbol, where ε  is the 

dissipation by turbulence per unit of mass; 
jΩ , the rotation 

vector and t is the time.  

We assume that the mean velocity 
iU  is constant 

throughout the region considered and independent of time, 

and we put  

( ) ,
Aiii uUU +=  

( )
Bjjj uUU +=

. 

The value of each term can be obtained by using the 

equations of motion for ju  at the point B  and for iu  at 

the point A . The energy equation for iu  at the point A is 

obtained from equation (3),  
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equation (4) can be written as 
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Multiplying equation (5) by ( )
Bju  we obtain 
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Where ( )
Bju  can be treated as a constant in a differential 

process at the point A .  

Similarly, the energy equation for ju  at the point B  is 

obtained as 
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Multiplying equation (8) by ( )
Aiu , we get 
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Where ( )
Aiu  can be treated as a constant in a differential 

process at the point B . 
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Addition of equations (6) and (9) gives the result 
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To expose the relation of turbulent energy at the point B  

to those at point A , it will give no difference if we take one 

point as the origin of A  or B  of the coordinate system.  

Let us consider the point A  as the origin. In order to 

differentiate between the effects of distance and location, we 

introduce as new independent variables, 
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Using the above relations in equation (10) and taking 

ensemble average on both sides, equation (10) becomes 
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Equation (11) represents the mean motion for turbulent 

energy with pressure-velocity correlation. 

It is noted that the coefficient of kU  has been vanished. 

The equation ( )11  describes the turbulent energy motion, 

where the motions with respect to a coordinate system 

moving with the mean velocity kU . Equation ( )11 contains 

the double velocity correlation ( ) ( )
BjAi uu , double correlations 

such as ( )
BjA up , triple correlations such as ( ) ( ) ( )

BjAkAi uuu  

where all the terms apart from one another. The correlations 

( )
BjA up  and ( )

AiB up form the tensors of first order, because 

pressure is a scalar quantity and the triple correlations 
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u u u  and ( ) ( ) ( )i k jA B B

u u u  form the tensors of 

third order. 

We designate the first order correlations by ( )
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Where, the index p indicates the pressure and is not a 

dummy index like i  or j  so that the summation 

convention does not apply to p . 

Also the term ( ) ( )
BjAlkikl uuΩε  and ( ) ( )

AiBlkjkl uuΩε  form 

the correlation tensors of second order, we designate these 

by jiD ,  and jiH ,  respectively. Thus we set   
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If we use the above relations of first, second and third 

order correlations in equation (11) then we obtain 
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Where all the correlations refer to the two points A  

and B .  

Now for an isotropic turbulence of an incompressible flow, 

the double pressure-velocity correlations are zero, that is,    
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In an isotropic turbulence it follows from the condition of 

invariance under reflection with respect to point A ,  
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The term ( ), ,ik j kj i
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This is the energy equation for turbulent flow in terms of 

correlation tensors of second order. 

If there are no effects of the dissipation ε  by the 

turbulence per unit mass then , ,0, 0i j i jD H= = so that the 

equation (14) takes the form 

2
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This equation represents the turbulent motion in terms of 

correlation tensors of second order, which is the same as 

obtained by Hinze [4]. 

3. Discussion and Conclusion 

The energy equation of second order correlation tensor for 

turbulent flow has been derived by averaging procedure, 

which consists of the correlations between pressure 

fluctuations and velocity fluctuations at the two points A and 

B of the flow field. The equation (14) demonstrates the 

energy equation of turbulent motion in terms of correlation 

tensors of second order. In the equation, all the terms 

jijijiji HDSQ ,,,, ,,,  are the second order correlation tensors 

where, 
jiQ ,
and

jiS ,
represents the velocity correlations at 

the two points A and B of the flow field; 
jiD ,
and 

jiH ,
 are 

the velocity correlations for turbulent energy. But in absence 

of the dissipation ε  by turbulence per unit of mass, the 

resulting equation (14) reduces to the equation (15) which 

confers the turbulent motion in terms of correlation tensors 

of second order. 
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