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Abstract: The purpose of this paper is to develop a computer oriented decomposition program for solving Interval Linear 

Programming (ILP) Problems. For this, we first analyze the existing methods for solving ILP problems. We also discuss the 

main stricter of Decomposable Interval programming (DIP) problems. Then a decomposable algorithm is analyzed for 

solving DIP problems. Using “Mathematica”, we develop a computer oriented program for solving such problems. We 

present step by step illustration of a numerical example to demonstrate our technique. 

Keywords:  LP, ILP, DILP Computer Program 

1. Introduction 

Linear programming (LP) is a technique for determining 

on optimum schedule (such as maximizing profit or 

minimizing cost) of interdependent activities in view of the 

available resources.  Programming is just another word for 

‘planning’ and refers to the process of  determining  a 

particular  plan of action from amongst  ‘linear’ stands for 

indicating that all relationships involved in a particular 

problem are linear. Any LP consists of four parts: a set of 

decision variables, the parameters, the objectives function 

and a set of constraints. The constraints may be equalities 

or inequalities [1]. In particular,  an LP  can be written as 

Maximize                ��x 

Subject to (s.t.)      Ax� b                                               (1) 

x≥0 [2]. 

General Form of ILP 

An interval linear program or interval linear 

programming problem is any problem of the form [3] 

(ILP): maximize c
t
X 

s.t.                  b
-
≤ AX ≤ b

+ 

where, c =(��), b- 
=(���), �� 	 
����, 

and A=(���)(i=1,…,n;j=1,…,m) are given, with �� � ��. 

Let S be the set of points satisfying the constraints 

S={x
 ��: �� � �� � ��}. 

A point x
S is called a feasible solution of ILP problem 

if S� � otherwise infeasible. 

If (1) is bounded then it is equivalent to the ILP 

Maximize                ��x 

s.t.                  –Me ≤ Ax ≤ b 

0 ≤   x  ≤ Me 

where, e is a vector of once and 

M is a sufficiently large positive scalar [4]. 

There are a few methods for solving the ILP problems. 

Rober and Ben-Isreal [15] discussed a new iterative method 

for solving ILP in 1970. That method applies general LP 

and is shown to be a dual method with multiple substitution. 

Gunn and Anders [16] show that the simplex method for LP 

and ILP are identical which is shown in a comparison 

between simplex method for LP and ILP problems. Radimir 

Viher [18] develop an analogous theorem to solve ILP 

problems. Nakahara Sasaki and Gen [19] investigate a LP 

problem with interval coefficients and proposed a new 

concept of constraints based on probability. None of the 

above papers addressed the decomposition of ILP problems. 

In our paper, we will develop a decomposable technique for 

solving ILP problems. 

Decomposable Interval Programming Problem (DILP) 

An interval linear programming problem is a special type 

of interval problem [5]. A decomposable interval program 

(DILP) is any problem having the form [4] 

(DILP): Maximize ��x 

s.t.                 ��� � ��� � ��� ��� � ��� � ��� 
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Where �� and �� are nonsingular,��� � ���, and ��� � ���. 

In the next section, we will show how an ILP can be 

converted to DILP. Hence we will discuss an existing 

method to solve DILP. We will present our algorithm and 

corresponding coding using Mathematica in section IV. 

Using numerical example we will show that the results are 

same which are found using existing method and our 

algorithm. 

The rest of the paper is organized as follows. In Section 

2, conversion of ILP to DILP will be shown. For solving 

DILP a method related to the Dantzig-Wolfe decomposition 

principle will be discussed in section 3. In section 4, we 

will present our algorithm and computer technique to solve 

DILP. In section 5, we will conclude the paper. 

2. Convertion of ILP to DILP 

Conversion of  ILP to DILP is shown in this section [6]. 

In general the general ILP form is given below [4] 

(ILP): maximize c
t
X 

s.t.                  b
-
≤ AX ≤ b

+ 

Now let us consider ILP in the following form 

(ILP): maximize c
t
X 

s.t.                ��� � ��� � ��� ��� � ��� � ��� ��� � ��� � ��� 

where, �� 
 ��� � , �� 
 �!! �
 and �� 
 �
"���!� � . That 

is �� is a nonsingular submatrix of A,  �� is any submatrix 

having full row rank whose rows are not in �� and ��  is 

made up of the rows A not in �� or ��. Note that q is not 

uniquely defined, but as we shall see later it is desirable to 

make q as large as possible (q=0 is always possible). 

Clearly we can always choose  �$� � %� � �$�, a subset of the constraints (ILP) such 

that (
��% ) 
 ��� �. 

Problem (ILP) is not changed by including some 

constraints more than once, so that ILP can be written as 

follows. 

(ILP): maximize c
t
X 

s.t.                      ��� � ��� � ���  ��� � ��� � ���                               �$� � %� � �$�                   ��� � ��� � ��� 

Finally, observe that �& is an optimal solution to (ILP) iff 

(�&, (& ) is an optimal solution to the following bounded 

problem which has the form 

(DILP): maximize            ��X 

s.t.  )���0 + � ,�� 00 -"���!. )�(+ � )���0 + 

/����$����0 � /�� 0% 0�� -"���!0 )�(+ � /����$����
0. 

 �� , ��  and ��  can be identified by Gauss-Jordan 

elimination method. A procedure for identifying 

appropriate  �� , �� , �� and B is demonstrated in the 

following example 

Numerical Example 1 

Transfer the following ILP problem to form DILP. 

(DILP): maximize �� 1 �� 

s.t.  

2
34

12345:
;< �

2
34

12 120=12
1=10 :

;< )����+ �
2
34

23456:
;< . 

Solution 

Applying Gauss-Jordan eliminations to A we obtain 

(pivots marked by asterisk): 

2
34

1&2 120=12
1=10 :

;< ~
2
34

10 10000
1&0=2:

;<~

2
34

10 00000
100:

;<. 

Since rows 1 and 3 contained pivots we conclude 

that �� 	 )1 10 1+  is a suitable nonsingular sub matrix of A. 

Rearranging A with matrix ��  at the bottom we get 

2
34

2=1 2=1210
011 :

;<. 

To find next sub matrix we repeat the above 

procedure

2
34

2 &=1 2=1210
011 :

;< ~
2
34

10 10000
=2 &01 :

;< ~
2
34

10 00000
100:

;< 

We conclude that row 4 of A is linearly dependent on 

row 2 (since all its elements vanished after step 1) so that 

row 4 must fall in ��. Furthermore since r=2 pivots were 

found before reaching the bottom r rows we conclude that 

B=0.Therefore, �� 	 )2 22 0+  (rows 2 and 4 contained 

pivots), �� 	 
=1 =1� and B=0. 

The equivalent DILP is as follows 

(DILP): maximize �� 1 �� 

s.t.  @130A � @1 1 00 1 00 0 1A @����( A � @240A 

@254A � @ 2 2 02 0 0=1 =1 =1A @����( A � @365A. 

3. Existing Decomposition Method 

In this section we discuss a method, for solving DILP 
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which is related to the Dantzig-Wolfe decomposition 

principle [4]. 

The general form of DILP is 

(DILP): Maximize ��x 

s.t.                 ��� � ��� � ��� ��� � ��� � ��� 

This may be written as 

(DILP): Maximize ��x 

s.t.                         �� 	 �B ��� � ���� � ��� ��� � ���B � ���. 

Let  C�={x
 �D: ��� � ��� � ���E and let F�  be the finite 

matrix whose columns are the extreme points of C�. Since �� 
is nonsingular, C�  is a bounded polyhedron so that �B 
 C� 
iff  �� 	 F�G�, H�G� 	 1, G� I 0(i.e. �� is a convex combination 

of the extreme points of C� ).An analogous result holds 

for  C� ={x 
 �D: ��� � ��� � ��� }and the corresponding 

matrix F� whose columns are the extreme points of C�. 
Consequently, DILP may be written as 

(DILP):  maximize         ��F�G� 
s.t.                         F�G� = F�GB 	 0                                         H�G� 	 1.                                         H�GB 	 1. G�,GB I 0. 

This problem has standard linear programming form 

except that the columns of F�  and F J is not immediately 

known. Indeed, we shall solve the constraints using the 

simplex algorithm with a special technique for generating 

the columns of F� and F� one at a time as needed. 

Suppose that a basic feasible solution to the constraints is 

in hand with simplex multipliliers 

(K�, … , KD , M�, M�) = (π, M�, M�).Let the columns of F� and F� be denoted by N�� (i=1,…. , OJ) and NB�(i=1, … ,OJ) 

respectively. A vector@N��10 A or @=NB�01 A can enter the basis if 

(π, M�, M�)@N��10 A - ��N�� = (K = ��)N�� 1 M� P 0 

or (π, M�, M�) @=NB�01 A = - KNB� 1 M�<0     respectively. 

The smallest relative cost Q is defined as 

λ= min {RSTU�V((K = ��)N�� 1 M� ), RSTUBV(- KNB� 1 M�)} (2) 

Following the standard simplex procedure we bring into 

the vector with the smallest relative cost. If λ I 0  ,the 

solution is optimal. 

Thus we extreme points N�& and NB& such that 
K =���g�& 	 RSTU�V((K = ��)N��� and =KNB& 	 RSTUBV(- KNB��.But RSTU�VX
K = ���N��Y 	 RSTZ
[�

K = ����� so that 

N�& 	 ∑ ����]���
^�_ 1 ∑ �����
^�̀ ]��. 
Where ����= (]��, … , ]�D) and - ��,� 	 aS: 
K = ���]�� I, P 0E. 

(i.e. N�& is an extreme point solution of the sub problem RSTZ
[�

K = �����). 

Likewise  NB&= ∑ ����]̂��
 �̂_ 1 ∑ �����
 �̂̀ ]̂� 
Where, ���� 	 (]̂�, … , ]̂D) and -��,� 	{i: -π]̂� I, P 0}. 

If λ<0 either @N�&10 A or @NB&01 A enter the basis depending on 

which has the lowest relative cost. The simplex iteration is 

then completed to obtain a better basic feasible solution and 

the entire procedure is repeated. 

If λI 0 the present solution, say (G�&, GB&) to F�G� = F�GB 	 0 

is optimal. An optimal solution to (DILP) is then �&=∑ N��G��&�
cd  = ∑ NB�GB�&�
ce                     (3) 

where, f� 	 aS: G�� g 0E and f�= {i:GB� g 0}. 

An initial basic feasible solution can be found using 

artificial variables. One approach is to being with the 

enlarged problem 

Maximize                   ��F�G� =  hH�i 

s.t.  @ F� =F�H� 00 H� -D��A @G�GBiA 	 @0D �11 A                           (4) 

G� , GB ,z I0 

Where M is a sufficiently large scalar, using 

{H�, … . , HD��} as the starting basis. If λI 0 while some of 

the artificial variable are still in the basis at a non-zero level, 

problem (DILP) has no feasible solution. 

A slightly different approach for obtaining an initial 

basic feasible solution to the constraint is to find any 

extreme points of C� and C�. If we call these points N k  and NB 

respectively, then    

@N��10 A , @=NB�01 A , l mH�00 n , … . . , l @HD00 A          (5) 

is a suitable starting basis to the equivalent problem 

Maximize                   ��F�G� =  hH�i 

s.t@ F� =F�H� 00 H� -D��A @G�GBiA 	 @0D �11 A            (6) 

G� , GB ,z I0 

The sign in front of  mH�00 n in (5) will depend on the sign 

of (N��� = NB�� ) and has purposely been left ambiguous to 

simplify notation. 

Numerical Example 2 
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Find the optimal solution of the ILP problem 

(ILP): maximize �� 1 2�� 

s.t.                    0� �� � 6 

0� �� � 8 

2� �� 1 �� � 6 =9 � =3�� 1 �� � 9. 

Solution 

Given that 

(ILP): maximize �� 1 2�� 

s.t.                    0� �� � 6 

0� �� � 8 

2� �� 1 �� � 6 =9 � =3�� 1 �� � 9. 

A decomposable interval problem has the form, 

(DILP): maximize ��� 

s.t.                       ��� � ��� � ��� ��� � ��� � ���. 

The given problem is a decomposable interval problem 

having ��� 	 )00+,�� 	 )1 00 1+, 

����=)1 00 1+, ��� 	 )68+. 

��� 	 ) 2=9+,�� 	 ) 1 1=3 1+, 

���� 	 /�$ = �$�$ �$ 0,   ��� 	 )69+. 

Now C� 	 a� 
 ��: 0 � �� � 6, 0 � �� � 8E C� 	 a� 
 ��: 2 � �� 1 �� � 6, =9 � =3�� 1 �� � 9E. 

The equivalent problem of the given problem is 

Maximize                   ��F�G� =  hH�i 

s.t.  @ F� =F�H� 00 H� -D��A @G�GBiA 	 @0D �11 A 

G� , GB ,z I0 

Where                 �� 	 )12+�
 

F�G� 	 
q N��rk
�s� G��� 

Z=(i�, i�� 

F� 	 @N�� … N�rk1 … 10 … 0 A ; F� 	 @=NB� … =NBrk0 … 01 … 1 A ; -D�� 	
/=10 0=100 00 0 

Iteration-0: 

According to the problem N�� 	 ������ 	 )1 00 1+ )68+ 	 )68+ 

NB� 	 ������ 	 /�$ = �$�$ �$ 0 )69+ 	 /= �$�t$ 0. 

The optimal function is 

Maximize )12+� X∑ N��rk�s� G��Y = h
i� 1 i�� 

=)12+� N��G�� 1 0. GB = h
i� 1 i�� 

=
1 2� )68+ G�� 1 0. GB = h
i� 1 i�� 

=22G�� 1 0. GB = h
i� 1 i�� 

Subject to 

2
334

6 348 = 274
=1 00 =1

1 00 1 0 00 0 :
;;< / G�GBi�i�

0 	 /00110 

G�, GB, i�, i� I 0. 

Now the columns of 

B = 

2
34

6 �$8 = �t$
=1 00 =11 00 1 0 00 0 :

;< form a basis. 

Now inverse of B is 

%�� 	
2
334

0 00 0 1 00 1
=1 00 =1  6 348 = 274 :

;;< 

Therefore the solution is 

vG��GB�i�i�
w 	 %��  /00110 

G�� 	 1,     GB� 	 1,    i� 	 �t$ ,      i� 	 x$ 

Here simplex multipliers are 

(K, M�, M�) = (22, 0,-M,-M)%�� 

= (M, M, 22-14M, 6M) y π= (M, M), M� 	 22 = 14h,M� 	 6h 

Iteration-1: 

π-��= (M, M)- )12+�
 

= (M, M)- (1, 2) 

= (M-1, M-2) 

Since 

(π- �� ) ]�� 	 
h = 1 h = 2� )10+ 	 M-1>0 and (π- ��)]�� 	 
h = 1 h = 2� )01+ 	M-2>0 

So, N�& 	 0 )10+ 1 0 )01+ 	 )00+ 
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Again, -π ]̂� 	 
=h =h� /�$�$0 	 =h P 0  and -

π]̂� 	 
=h =h� /��$�$ 0 	 0 

So,  Nz & 	 6 /�$�$0 = 9 /��$�$ 0 	 /�x${$ 0 

The corresponding relative costs are 

(π-��)N�& 1 M� 	 =14h 1 22 P 0 

-π NB& 1 M� 	 
=h =h� /�x${$ 0 1 6h = = �x|$ = {|$ 1
6h =

��$|��$|$ 	 0 

The smallest relative cost Q 	 min aRSTU�VX
π = ���N�& 1 M�Y, RSTUBV
=πNB& 1M��E=min {22-14M, 0 } 

=22 = 14h < 0 

Thus @N��10 A 	 /00100 enters the basis. 

y %�� @N��10 A=

2
34

0 00 0 1 00 1=1 00 =1  6 �$8 = �t$ :
;< /00100 =/10680. 

Applying the minimum ratio rule the ratios are 

(∞,∞,1/6,1/8). Hence column 4,/ 0=100 0 replaced by /00100. 

The new basis vectors are the columns of 

B=  

2
34

6 �$8 = �t$
=1 00 01 00 1 0 10 0 :

;< 

Inverse of the matrix is 

              %�� 	
2
334

0 ��0 0 0 �t��0 1=1 �$0 ���
0 {���1 ��t�� :

;;<. 

Similarly after the iterations we get the solution is 

vG��GB�i�G��w 	 %�� /00110=

2
334

�t��1{���x��:
;;< 

y G�� 	 �t�� , GB� 	 1, i� 	 {��� , G�� 	 x�� 

Simplex multipliers are 

(K, M�, M�) = (22, 0, -M, 0) 

%��= (22, 0, -M, 0) 
2
334

0 ��0 0 0 �t��0 1=1 �$0 ���
0 {���1 ��t�� :

;;< 

= (M, 
��� = �$ h, 0, �{t�� = {��� h). 

The smallest relative cost Q 	 min aRSTU�VX
π = ���N�& 1M�Y, RSTUBV
=πNB& 1 M��E =min {0, 0}= 0 

So the optimal basic feasible solution is �& 	 ∑ N��G��& 	 �$ )08+ 1 �$ )00+ 	 )06+  Or �& 	
∑ NB�GB�& 	 �� /�x${$ 0 1 x� /��$�t$ 0 	 )06+ 

The optimum value is �� 1 2��= 0 + 2.6 = 12. 

4. Algorithm for Solving ILP 

In this section, we will present our algorithm for solving 

ILP. 

Algorithm 

An algorithm for the technique is given below 

Step-1: First we will enter the basis matrix B and 

constant matrix, a row matrix for simplex multipliers, two 

matrixes �� �T� �� for constraints. We will find a solution. 

Step-2: Then compute N�& and NB& . 

Step-3: Find relative cost for each. After that find 

minimum relative cost λ. If the relative cost is greater or 

equal to zero the solution is optimal. Otherwise, any 

column of the basis matrix will change by the column   

@N��10 A or @=NB�01 A  depending on the minimum relative cost. 

Step-4: Using the minimum ratio rule the corresponding 

column of the variable is changed by the column found 

before. 

Computer Code for Solving ILP 

In this section, we will develop a computer code using 

computer algebra Mathematica [12]. This is given as 

follows. 

Itration-1 
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Now we get the solution as follows 

 

 

 

 

Now the minimum ratio is 5/32. So column 4 is replaced 

by @N��10 A 	 /00100. 

Similarly, after some iterations we get the solution given 
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below 

 

So that the optimal basic feasible solution is �& 	 ∑ N��G��& 	 �$ )08+ 1 �$ )00+ 	 )06+ Or 

�& 	 q NB�GB�& 	 16 v15494 w 1 56 v=34274 w 	 )06+ 

The optimum value is �� 1 2�� 

=0 + 2.6 

= 12 

5. Conclusion 

In this paper, we have analyzed a decomposable method 

for solving interval linear programming problems. We then 

developed a computer technique using Mathematica which 

reduces our time and effort for solving such problems. In 

the  decomposable process, ILP has to be converted into a 

decomposable ILP (DILP) which  is used to solve ILP 

problems. But in this method a lot of calculations have to 

be done which is time consuming and mistakes can be 

occurred. Our computer technique was developed 

according to the DILP method and it minimizes these 

difficulties. So our computer technique is an effective 

process for solving ILP after converting it into a DILP.  

Numerical examples are illustrated to demonstrate our 

technique. 
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