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Abstract: The aim of this research is to derive Schrödinger equation from calculus of variations (variational principle), 

so we use the methodology of calculus of variations. The variational principle one of great scientific significance as they 

provide a unified approach to various mathematical and physical problems and yield fundamental exploratory ideas. 
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1. Introduction 

The calculus of variations is a field of mathematical 

analysis that deals with maximizing or 

minimizing functional, which are mappings from a set 

of functions to the real numbers. Functional are often 

expressed as definite integrals involving functions and their 

derivatives. The interest is in extremal functions that make 

the functional attain a maximum or minimum value 

or stationary functions, those where the rate of change of 

the functional is zero. In quantum mechanics, 

the Schrödinger equation is a partial differential 

equation that describes how the quantum state of 

some physical system changes with time. It was formulated 

in late 1925, and published in 1926, by 

the Austrian physicist Schrödinger. In classical mechanics, 

the equation of motion is Newton's second law, and 

equivalent formulations are the Euler–Lagrange 

equations and Hamilton's equations. In all these 

formulations, they are used to solve for the motion of a 

mechanical system, and mathematically predict what the 

system will do at any time beyond the initial settings and 

configuration of the system. In quantum mechanics, the 

analogue of Newton's law is Schrödinger's equation for a 

quantum system, usually atoms, molecules, and subatomic 

particles; free, bound, or localized. It is not a simple 

algebraic equation, but (in general) a linear partial 

differential equation. The differential equation describes 

the wave function of the system, also called the quantum 

state or state vector. In this research we deduced 

Schrödinger equation from varitional principle so we 

introduce Schrödinger equation, canonical equations and 

variational problems and the Hamiltonian-Jacobi equation 

1.1. 1-Canonical Equations and Variational problems 

In several problems of physics and mechanics it is 

convenient to recast Euler's equations in canonical form, 

which makes possible a general approach to variational 

problems. Further, the new variable introduced in the 

process admit of a simple physical interpretation. 

Consider the extremum of the functional 
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Where ( ) ( )xyxy n,...,1  satisfy certain boundary 

conditions at 1x and 2x .The Euler equations are 

0=− ′ii yy F
dx

d
F  ni ,...,2.1=                 (2) 

Which constitute a system of n ordinary differential 

equation in ( ) ( )xyxy n,...,1 .We introduce 

( )nyi yyyxFp
i

′′= ′ ,...,,...,, 11  ni ,...,2.1=          (3) 

Which together with ),...,2.1( niyi = are called 

canonical variables for the above functional. The variables 

iy and ip are known as canonically conjugate variables. 

Then (2) gives 
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Then the system of equation (3) can be solved as 

( )1 1, ,..., , ,...,i i n ny x y y p pω′ =  

When these are substituted into (4) ,we get a system of 

first-order equations as 
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Henceforward the parentheses in the second equation of 

(5) signify that iy′  in F are replaced by iω .We now 

introduce the Hamiltonian function 
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Then the system (6) can be written as 
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This system is referred to as the Hamiltonian (canonical) 

system of Euler's equations and of 2n-ordinary equations in 

2n unknown functions ( )xyi  and ip . 

1.2. 2-The Hamiltonian-Jacobi Equation 

Consider the functional in (1), the Euler equation for this 

functional admit of solutions involving 2n arbitrary 

constants. Here specification of two points A and B in the 

space of variables nyyx ,..,, 1  through which an extremal 

must pass gives precisely 2n equations for determining 

these constants. Hence in the general case there appears a 

discrete set of extremals joining these points .Let ABI  be 

the value of the functional on each of these extremal,A 

being regarded as the initial and B as the terminal point. Let 

A be fixed while ( )nyyyxB ,...,,, 21  is regarded as a 

movable point. Then ABI  is a function 

of ( )nyyyx ,...,,, 21  and we write 

( )nAB yyyxSI ,...,,, 21=                           (8) 

If B changes its position (6) gives 
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Which in turn leads to 
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It then follows that S satisfies the following partial 

differential equation of first order 
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Which is known as Hamiltonian –Jacobi equation. 

1.3. 3-Schrödinger Equation and Variatinal principle 

Now we derive the fundamental equation of quantum 

mechanics (Schrödinger equation) from a variational 

principle. 

First we define an operator known as the Hamiltonian 

operator as follows: 

( )zyxVkH ,,2 +∇−≡                       (10) 

Here ( )mhk 22 8/ π= , where h  and m stand for the 

Plank's constant the mass of the principle whose motion is 

considered in a field of potential energy V .We now seek a 

ware function Ψ  

Possibly complex extremize the functional 

( )∫∫∫ ΨΨ ∗ dxdydzH                           (11) 

Subject to the constraint 

∫∫∫ =ΨΨ ∗ ,1dxdydz                        (12) 

Where 
∗Ψ is the complex conjugate of Ψ .The 

integration is over a fixed domain of yx, and z , We 

further assume that the admissible function Ψ and 
∗Ψ either vanish at corresponding points on opposite 

boundaries. As a consequence 

∫∫∫ ∫∫∫ Ψ∇⋅Ψ∇−=Ψ∇Ψ ∗∗
dxdydzdxdydz

2  

Introducing Lagrange multiplier λ , we then find the 

extremum of the functional 

( )[ ]∫∫∫ ∫∫∫ ΨΨ−ΨΨ+ΨΨ+Ψ+ΨΨ= ∗∗∗∗∗
dxdydzVkKdxdydz zzyxx λ

 

The Euler equation are 
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Which reduce to 
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Ψ=Ψ+Ψ∇− λVk
2                          (13) 

This is written as Ψ=Ψ λH  

If we multiply this by 
∗Ψ and integrate over the domain 

of ,,, zyx the left side becomes the stationary integral (11) 

which depend by E .Hence by (12) we have E=λ , so 

(13) reduces to Schrödinger equation. It is worth pointing 

out here that there is an interesting and important 

connection between Hamiltonian-jacobi equation for 

classical system and the Schrödinger equation for a 

quantum mechanical system .In fact ,if we put the wave 

function 
( )Shie /=Ψ ,where S is the action function of the 

classical system (8),then the Schrödinger equation reduces 

to the Hamiltonian –Jacobi equation(9) provided S is much 

larger than Plank's constant h .Thus in the limit of large 

values of action and energy ,the surfaces of constant phase 

for the wave function Ψ reduce to surfaces of constant 

action S for the corresponding classical system. In this 

case, wave mechanics reduces to classical mechanics just 

as wave optics reduces to geometrical optics in the limit of 

very small wavelength. It may be noted that the Klein-

Gordon equation 
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(c=velocity of light) representing a possible wave 

equation for a relativistic particle (though it is not correct 

for an electron or proton)can be constructed in 
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2. Conclusion 

The main result of this research we deduced Schrödinger 

equation by using variational principle and additional result 

we deduced Schrödinger equation is reduces to the 

Hamiltonian –Jacobi equation. 
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