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Abstract: Atheory is developed for the interaction of arcetlemagnetic field with one-particle quantum-coefirstates
of charge carriers in semiconductor quantum datss shown that the oscillator strengths and dipatements for the
transitions involving one-particle states in quamtdots are gigantic parameters, exceeding the sfporeling typical pa-
rameters of bulk semiconductor materials. In thetext of dipole approximation it is establishedttti@ gigantic optical
absorption cross sections in the quasi-zero-dimeasisystems make it possible to use the systeraffiaignt absorbing
materials.
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1. Introduction

At present, the optical properties of quasi-zeroapproximation, the spectrum of such quantum-codfine
dimensional structures are extensively studie@[B, 4, 5]. states can be described as a spectrum of a changer én
Such structures commonly consist of sphericalhe spherically symmetric well with infinitely higtvalls
semiconductor nanocrystals (the so-called quantwts d [7].

(QDs)) with a radiusa = 1 - 10 nm grown in The present paper uses the effective mass meththe in
semiconductor (or dielectric) matrices. The studieshis dipole approximation to study absorption and sciaigeof
field are motivated by the fact that such hetergpha light by one-particle quantum-confined states afctrbn
systems represent promising materials for the dgveént (hole) in QDs. The electron (hole) transitions ledw
of the components of nonlinear nanooptoelectrotocbe intraband energy levels in QDs are considered #s we
used, specifically, for controlling optical signats optical

computers [3, 5] or for manufacturing active layarfs . .
injection semiconductor nanolasers [2, 3, 4, 5]. 2. Char ge Carriers Energy Spectrum In

In the work [5] the optical properties of an ar@fyinAs Quasi-Zero-Dimens onal Nanosystems
and InSb QDs in the GaAs and GaSb matrices and the
corresponding operational characteristics of imjectasers,
with the active region on the basis of this arragre
studied experimentally. In these studies, a larberts
wavelength shift of the laser emission line waseobed for
the array of QDs. In such an array, the energytapmcof
charge carriers is completely discrete [6, 7]hd QDs are
smaller thana ~ 1 — 7 nm in size. In the first-order

We consider a simple model in which a quasi-zero-
dimensional system is defined as a neutral spHerica
semiconductor QD of radiusa and permittivity e,
embedded in a surrounding medium with permittivity
Let an electrond) and a holeh), whose effective masses
are, correspondinglyn. andm,, be in motion in this QD.
Let the spacing between the electron or hole ardQ@b
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center ber, or rp. We assume that the bands for electronslamiltonian of the electron-hole pair [9]:
and holes are parabolic. Along with the QD radiighe

L n2 B2 )
characteristic lengths of the problem a&g an, andae, = —; -8~ A + Ver(re, 1) +U(r,, ry,a) + E,, (3)
Ame =M
where
5 5 5 2 where the first two terms in the sum define theekin
a, = ;A" fm,e*, a, = ;. /mye-, Q)

energy of the electron and holg; is the energy band gap
in the bulk (unbounded) semiconductor with the
Q= &, hzfpez, perm|tt|V|t_y £2; Veh(re, r,) is the energy of the electron-hole

Coulomb interaction
are the Bohr radii of the electron, hole and exciio the o
semiconductor with the permittivity,, respectively, ang Van (1o, 1) =
= (memy)/(me + my) is the exciton effective mass. All of the
characteristic lengths of the problem are muchelathan
the interatomic spacing, [8]:

-
e” 2a

177, (4)
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with the angle® between the vectorsg andry, andU (re, 1y,
a) is the energy of interaction of the electron antetwith
a, & & 8o > 8 (2) the polarization field induced by the electron dmde at
the spherical interface between the two media.aoitrary

This allows us to treat the motion of the electamd  y4jyes of:;, ande;, the interaction energy (re, Iy, a) can be
hole in the QD in the effective-mass approximation. represented analytically as [4,7]:

In the context of the above-described model and
approximations for a quasi-zero-dimensional systém,

Ulre,mp,a) =

e2p i
o ; [(rgry/a2)2—2(r r,/a?)cos8+1]1/2 - (5)
eZp w0 dy(az /Thy)ae(y—az/‘rh) eZp o dy(a2 /Tey)ae(y—azj-re)
2(sy+s5)a "0 Ire =g/ Th)l B 2(sy+s5)a "0 [Tp =V (TR /Te)l ’

where @(x) is the unit-step function anfl = (g, —&5)/(e1
+&), ¢ = &lle1 +ey) are parameters. In the bulk of a QD,
the electron (hole) energy levels can originateeiiTh
energies are defined as [6, 7]:

AEy (@) = E,: ,— Eny(a) < kT, ©)

Taking into account (6), we can rewrite inequalfty as

2 [/
.ﬁ? R

_ 2
2maga® L ©) 2memat kT

Eni(a) = -=n(a) «1 (10)

where the subscriptsn( ) refer to the corresponding Formula (6) describing the spectrum of charge egstin
quantum size-confined states. Hene, and | are the @& QD is applicable to the lowest statasl) that satisfy the
principal and azimuthal quantum numbers for thetesa  inequality

(hole) andg,, are the roots of the Bessel function, i.e., AE, ,(a) < AV, (a),
Ji12(pny). For the quantum-confined levels to originate, it '

is necessary that, in the Hamiltonian (3), thetetec(hole) whereEy(a) is the depth of the potential well for electrons
energyE, (@) (6) be much larger than the energy of theén the QD. For example, for the CdS QDs whose sizes
interaction of the electron (hole) with the polatian field  satisfy inequality (8), the value ¥ is 2.3 - 2.5 eV [10].

U (@) (5 generated at the spherical QD-dielectric |f condition (8) is satisfied, we can use, for glectron
(semiconductor) matrix interface [4,7] and the ggenf the  (hole) wave function in a QD, the wave function af

11)

Coulomb electron-hole interaction (4): electron (hole) in a spherical quantum well witfiritely
high walls [9]:
ﬁZ 23
E,(a) = 0 > U@~ () .
2Mg ()@ 2&za _ h+1/2'[§9n,1}\32
I.IJ‘H,J‘.,?’TI (T) 83 {p) - YJ‘.,m(B; {p) J, (Gﬂ )a\.’?" (12)
Condition (7) is satisfied for QDs of radii 1+3/218nl
w02 wherer = r. orr = ry, is the distance of the electron or hole
& _n

a K ag Tae(h) (8) from the QD center@ and(? are the azimuthal and polar
angles that define the orientation of the radiugareof the
At room temperatureT,, the discrete levels of the electron (hole)Y,, are the normalized spherical functions
electron (holeE, (a) (6) in the QD are slightly broadened (m is the magnetic quantum number of the electromode),
if the energy separation between the levels is andJ,(x) are the Bessel functions.
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3. Resultsand Discussion The polarizabilityA’(w, a) can be easily determined if
the QD is considered as a single giant ion. Letr#agus of

QD bea (8). In such QD, the quantum-confined states of
&harge carriersn( I) (6) are formed. At room temperature,
these states are slightly broadened, satisfyingjuialgy
(10). In this case, the polarizability of the chedgQD,
A(w, @), can be expressed in terms of the matrix element
of the dipole moment of the transiti@n o(a) (16) between
the lowest $and D states as [8]:

3.1. Dipole Approximation

In the frequency region corresponding to the abov
considered states of charge carriers in QD buik/)((6),
the wavelength of light is much larger than the elisions
of these statesz(a,, &,). Therefore, the behavior of these
states is adequately described in the dipole apipnaxion.

In this case, the operator of the dipole momentthef

electron (hole) located in the QD bulk is expresseffl1]: “ o? ot
3 A (w,a] - g .;uzl'a}—m)'—"wl'l(a)’ (18)
— g1 0 0 — Cl 1t -
D) =5 =;0°@), D) =er (13)
where
To estimate the value of the dipole moment, it is 5 5
suffcient to consider the transition between thevelst for :%ﬂl[wl(a)—wo(a)]wl,g(aﬂ (19)

discrete states (6), e.g., between the groundssiaia = 1,
=0,m=0)and p (n=1, =1,m=0). To calculate the is the oscillator strength of the transition ofreuge carrier
matrix element of the dipole moment of the chargeier with the effective masm, (orm;,) from the ground 4
transition from the & state to the {d state,D;q(a), we
assume that the uniform field of the light wakéw, t) is ) i ,
directed only along the axi&(w is the wave frequency). In &€ correspondingly, the energies of the disctend P
this case, we take the dipole mom@it) (13) induced by '€vels by formula ()T, (a) is the width of the g level
the field E(w, t) as the perturbation responsible for sucH6,7]. Taking into account formulas (6) and (16) wan
dipole transition. The expression for the dipolerment of ~€xpress the oscillator strength (19) of the tréomsias

the transitionD, o(a) follows from formulas (13) and the

state to the A state;pw1(a) = E;1(a) andpwo(a) = E; o(a)

42( S, {9])2

expression for the dipole moment of the transitioriree For— ',('Pf - ”7) 09671074 (20)
space o s%a?
DS, (a) = {1s|D°()|1p) = e{1s|r|1p). (14) We assume that the frequenoyof the wave of light is

far from the resonance frequeney ,, of the discrete f

On substitution of (12) into formula (14) and iniion, state and, in addition,that the broadeninggq), of the

we obtain the expression for the dipole moment haf t level is small, i.e. /o, < 1);_-”,19”* for the qualitative
transition in free space as follows: estimate of the QD polarizabili#’(w, a) (18), we obtain,
' with regard to (6), the following expression:

D,°(a) = 0.433ea (15) .
_ _ A’ (a) = Yoaew) (i) a2 1)
Then, according to (15) and (13), the dipole monwént @i mo \ap '
the transition in the QD with the permittivityy in the . ) )
surrounding matrix with the permittivity is where G, = 1?/m, e* ) iS the Bohr radius of an electron in
free space.
Dl'da) =4 x 0.433e a A= &:1/(281 + 82). (16)

Now we write the expression for the cross sectibn o
elastic scattering of the electromagnetic wave with
3.2. Optical Absorption of One-Particle Quantum- frequencyw by the QD of radiua [11] as:

Confined Sates ~
osdo, @) = 2’31} (wlc)[A(a)]? (22)
Using the above results for the matrix element hef t
dipole moment of the transitid, o (16), we can elucidate .
the behavior of the semiconductor quasi-zero-dinosias 4. Conclusions
systems on absorbing the energy of electromagfielitin
the frequency region corresponding to the energfethe

guantum-confined states in the QB,(a) (6). The ) . X o
absorption cross section of a spherical QD of =digan for interpreting the experimental data. Similamtork [10]

be expressed in terms of the polarizability of @, a), we can assume that under the experimental condition
as [10, 11] the work [5] the annealing of the arrays of InAgldnSb

QDs in the GaAs and GaSb matrices at the temperatar
oapd®, @) = dn(w/O)A(w, ), (17) 293K induces the thermal emission of a light etattrso

) that a hole alone remains in the QD bulk. In thise; the
where o is the frequency of the external electromagneti¢aciron may be localized at a deep trap in theixat the
field.

In conclusion, we briefly discuss possible physical
situations in which the results obtained above lmarused
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distance d from this trap to the QD center is largmpared From the estimates presented in the table it fcdlohat,
to the QD radiusa (d > a), the Coulomb electron-hole for QDs of radiia ~ 2.0 — 5.0 nm, the absorption cross
interaction Ve(re, 1) (4) in the Hamiltonian (3) can be section can be as giganticass~ 10" *° snf. This value is
disregarded. As a result, the one-particle quartanfined eight orders of magnitude larger than the typicmsoaption
hole statesr I), with the energy spectruff, (a) described cross sections for atoms [12]. Since the scattedruss
by formula (6), appear in the QD bulk. sectionsos. (24) under the experimental conditions in the
Now we roughly estimate the cross sections of aptic work [5] are negligible compared to the correspagdi
absorptiono,,s (17) and (21) and scattering, (22) at the absorption cross sectionsps (23) Gsdoas ~ 109 the
quantum-confined hole state in the QDs for thectete(5  estimates fob,.are not included in the table [12].
— | p) transition under the experimental conditionsSjf [  The gigantic optical absorption cross sections ha t
For the rough estimation of the cross sections pifcal  quasi-zero-dimensional systems treated above dtothe
absorption and scattering, we use expressions (A7)and  yse of such nanostructures as new efficient absorok
(22) on the assumptions that the frequency of 9Bt gjeciromagnetic waves in a wide wavelength rangiabie

wave o is far from the resonance frequeney of the 5 ar wide limits in accordance with the nature bé t
discrete hole state in the QD and that the broaddrii(a) materials in contact

of the energy leveEy(a) = hiw,(a) (6) is small [6, 7]
(/o4 < 1). In this case, the absorption cross sectign
and the scattering cross sectigptake the following forms: References
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