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Abstract: A theory is developed for the interaction of an electromagnetic field with one-particle quantum-confined states 
of charge carriers in semiconductor quantum dots. It is shown that the oscillator strengths and dipole moments for the 
transitions involving one-particle states in quantum dots are gigantic parameters, exceeding the corresponding typical pa-
rameters of bulk semiconductor materials. In the context of dipole approximation it is established that the gigantic optical 
absorption cross sections in the quasi-zero-dimensional systems make it possible to use the systems as efficient absorbing 
materials. 
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1. Introduction 
At present, the optical properties of quasi-zero-

dimensional structures are extensively studied [1, 2, 3, 4, 5]. 
Such structures commonly consist of spherical 
semiconductor nanocrystals (the so-called quantum dots 
(QDs)) with a radius a ≈ 1 − 10 nm grown in 
semiconductor (or dielectric) matrices. The studies in this 
field are motivated by the fact that such heterophase 
systems represent promising materials for the development 
of the components of nonlinear nanooptoelectronics to be 
used, specifically, for controlling optical signals in optical 
computers [3, 5] or for manufacturing active layers of 
injection semiconductor nanolasers [2, 3, 4, 5]. 

In the work [5] the optical properties of an array of InAs 
and InSb QDs in the GaAs and GaSb matrices and the 
corresponding operational characteristics of injection lasers, 
with the active region on the basis of this array, were 
studied experimentally. In these studies, a large short-
wavelength shift of the laser emission line was observed for 
the array of QDs. In such an array, the energy spectrum of 
charge carriers is completely discrete [6, 7], if the QDs are 
smaller than a ≈ 1 − 7 nm in size. In the first-order 

approximation, the spectrum of such quantum-confined 
states can be described as a spectrum of a charge carrier in 
the spherically symmetric well with infinitely high walls 
[7]. 

The present paper uses the effective mass method in the 
dipole approximation to study absorption and scattering of 
light by one-particle quantum-confined states of electron 
(hole) in QDs. The electron (hole) transitions between 
intraband energy levels in QDs are considered as well. 

2. Charge Carriers Energy Spectrum in 
Quasi-Zero-Dimensional Nanosystems 

We consider a simple model in which a quasi-zero-
dimensional system is defined as a neutral spherical 
semiconductor QD of radius a and permittivity ε2, 
embedded in a surrounding medium with permittivity ε1. 
Let an electron (e) and a hole (h), whose effective masses 
are, correspondingly, me and mh, be in motion in this QD. 
Let the spacing between the electron or hole and the QD 
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center be re or rh. We assume that the bands for electrons 
and holes are parabolic. Along with the QD radius a, the 
characteristic lengths of the problem are ae, ah, and aex, 
where 

 ,           (1) 

, 

are the Bohr radii of the electron, hole and exciton in the 
semiconductor with the permittivity ε2, respectively, and µ 
= (memh)/(me + mh) is the exciton effective mass. All of the 
characteristic lengths of the problem are much larger than 
the interatomic spacing a0 [8]: 

a, ae, ah, aex ≥ a0                             (2) 

This allows us to treat the motion of the electron and 
hole in the QD in the effective-mass approximation. 

In the context of the above-described model and 
approximations for a quasi-zero-dimensional system, the 

Hamiltonian of the electron-hole pair [9]: 

 (3) 

where the first two terms in the sum define the kinetic 
energy of the electron and hole; Eg is the energy band gap 
in the bulk (unbounded) semiconductor with the 
permittivity ε2; Veh(re, rh) is the energy of the electron-hole 
Coulomb interaction 

,        (4) 

with the angle Θ between the vectors re and rh, and U (re, rh, 
a) is the energy of interaction of the electron and hole with 
the polarization field induced by the electron and hole at 
the spherical interface between the two media. For arbitrary 
values of ε1 and ε2 the interaction energy U (re, rh, a) can be 
represented analytically as [4,7]: 

            (5) 

where Θ(x) is the unit-step function and β = (ε1 −ε2)/(ε1 
+ε2),  = ε1/(ε1 +ε2) are parameters. In the bulk of a QD, 
the electron (hole) energy levels can originate. Their 
energies are defined as [6, 7]: 

                        (6) 

where the subscripts (n, l) refer to the corresponding 
quantum size-confined states. Here, n and l are the 
principal and azimuthal quantum numbers for the electron 
(hole) and φn,l are the roots of the Bessel function, i.e., 
Jl+1/2(φn,l). For the quantum-confined levels to originate, it 
is necessary that, in the Hamiltonian (3), the electron (hole) 
energy En,l(a) (6) be much larger than the energy of the 
interaction of the electron (hole) with the polarization field 
U (a) (5) generated at the spherical QD-dielectric 
(semiconductor) matrix interface [4,7] and the energy of the 
Coulomb electron-hole interaction (4): 

              (7) 

Condition (7) is satisfied for QDs of radii 

                        (8) 

At room temperature T0, the discrete levels of the 
electron (hole) En,l(a) (6) in the QD are slightly broadened 
if the energy separation between the levels is 

                    (9) 

Taking into account (6), we can rewrite inequality (9) as 

               (10) 

Formula (6) describing the spectrum of charge carriers in 
a QD is applicable to the lowest states (n, l) that satisfy the 
inequality 

                      (11) 

where E0(a) is the depth of the potential well for electrons 
in the QD. For example, for the CdS QDs whose sizes 
satisfy inequality (8), the value of V0 is 2.3 − 2.5 eV [10].  

If condition (8) is satisfied, we can use, for the electron 
(hole) wave function in a QD, the wave function of an 
electron (hole) in a spherical quantum well with infinitely 
high walls [9]: 

        (12) 

where r = r e or r = r h is the distance of the electron or hole 
from the QD center, Θ and  are the azimuthal and polar 
angles that define the orientation of the radius vector of the 
electron (hole), Yl,m are the normalized spherical functions 
(m is the magnetic quantum number of the electron or hole), 
and Jv(x) are the Bessel functions. 
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3. Results and Discussion 
3.1. Dipole Approximation  

In the frequency region corresponding to the above-
considered states of charge carriers in QD bulk, (n, l) (6), 
the wavelength of light is much larger than the dimensions 
of these states (≈ ae, ah). Therefore, the behavior of these 
states is adequately described in the dipole approx-imation. 
In this case, the operator of the dipole moment of the 
electron (hole) located in the QD bulk is expressed as [11]: 

           (13) 

To estimate the value of the dipole moment, it is 
suffcient to consider the transition between the lowest 
discrete states (6), e.g., between the ground states 1s (n = 1, 
l = 0, m = 0) and 1p (n = 1, l = 1, m = 0). To calculate the 
matrix element of the dipole moment of the charge-carrier 
transition from the 1s state to the 1p state, D1,0(a), we 
assume that the uniform field of the light wave E(ω, t) is 
directed only along the axis Z (ω is the wave frequency). In 
this case, we take the dipole moment D(r) (13) induced by 
the field E(ω, t) as the perturbation responsible for such 
dipole transition. The expression for the dipole moment of 
the transition D1,0(a) follows from formulas (13) and the 
expression for the dipole moment of the transition in free 
space 

             (14) 
 

On substitution of (12) into formula (14) and integration, 
we obtain the expression for the dipole moment of the 
transition in free space as follows: 

D1
0
,0(a) = 0.433 ea.                               (15) 

Then, according to (15) and (13), the dipole moment of 
the transition in the QD with the permittivity ε2 in the 
surrounding matrix with the permittivity ε1 is 

D1,0(a) = Λ × 0.433 e a,  Λ = 3ε1/(2ε1 + ε2).          (16) 

3.2. Optical Absorption of One-Particle Quantum-
Confined States  

Using the above results for the matrix element of the 
dipole moment of the transition D1,0 (16), we can elucidate 
the behavior of the semiconductor quasi-zero-dimensional 
systems on absorbing the energy of electromagnetic field in 
the frequency region corresponding to the energies of the 
quantum-confined states in the QD En,l(a) (6). The 
absorption cross section of a spherical QD of radius a can 
be expressed in terms of the polarizability of QD, A//(ω, a), 
as [10, 11] 

σabs(ω, a) = 4π(ω/c)A//(ω, a),                       (17) 

where ω is the frequency of the external electromagnetic 
field. 

The polarizability A//(ω, a) can be easily determined if 
the QD is considered as a single giant ion. Let the radius of 
QD be a (8). In such QD, the quantum-confined states of 
charge carriers (n, l) (6) are formed. At room temperature, 
these states are slightly broadened, satisfying inequality 
(10). In this case, the polarizability of the charged QD, 
A//(ω, a), can be expressed in terms of the matrix element 
of the dipole moment of the transition D1,0(a) (16) between 
the lowest 1s and 1p states as [8]: 

           (18) 

where 

              (19) 

is the oscillator strength of the transition of a charge carrier 
with the effective mass  (or ) from the ground 1s 

state to the 1p state; ω1(a) = E1,1(a) and ω0(a) = E1,0(a) 

are, correspondingly, the energies of the discrete 1s and 1p 
levels by formula (6);  is the width of the 1p level 

[6,7]. Taking into account formulas (6) and (16), we can 
express the oscillator strength (19) of the transition as 

         (20) 

We assume that the frequency ω of the wave of light is 
far from the resonance frequency ω1 ,, of the discrete 1 p 
state and, in addition,that the broadening , of the 1p 

level is small, i.e. (Г1/ω1 ≤ 1). Then, for the qualitative 
estimate of the QD polarizability A//(ω, a) (18), we obtain, 
with regard to (6), the following expression: 

,                (21) 

where (  ) is the Bohr radius of an electron in 

free space. 
Now we write the expression for the cross section of 

elastic scattering of the electromagnetic wave with 
frequency ω by the QD of radius a [11] as: 

σsc(ω, a) = 273−3
π

3(ω/c)4[A//(a)]2                (22) 

4. Conclusions 
In conclusion, we briefly discuss possible physical 

situations in which the results obtained above can be used 
for interpreting the experimental data. Similar to work [10] 
we can assume that under the experimental conditions in 
the work [5] the annealing of the arrays of InAs and InSb 
QDs in the GaAs and GaSb matrices at the temperature T = 
293K induces the thermal emission of a light electron, so 
that a hole alone remains in the QD bulk. In this case, the 
electron may be localized at a deep trap in the matrix. If the 
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distance d from this trap to the QD center is large compared 
to the QD radius a (d ≥ a), the Coulomb electron-hole 
interaction Veh(re, rh) (4) in the Hamiltonian (3) can be 
disregarded. As a result, the one-particle quantum-confined 
hole states (n, l), with the energy spectrum En,l(a) described 
by formula (6), appear in the QD bulk. 

Now we roughly estimate the cross sections of optical 
absorption σabs (17) and (21) and scattering σsc (22) at the 
quantum-confined hole state in the QDs for the selected (1s 
→ l p) transition under the experimental conditions of [5]. 
For the rough estimation of the cross sections of optical 
absorption and scattering, we use expressions (17), (21) and 
(22) on the assumptions that the frequency of the light 
wave ω is far from the resonance frequency ω1 of the 
discrete hole state in the QD and that the broadening Г1(а) 
of the energy level E11(a) = ω1(a) (6) is small [6, 7] 
(Г1/ω1 ≤ 1). In this case, the absorption cross section σabs 
and the scattering cross section σsc take the following forms: 

             (23) 

           (24) 

The estimated parameters of the hole states in QDs 
dispersed in the III-V semiconductors are listed in the 
table1. It is worth noting that, at room temperature, the 
quantum-confined hole states are slightly broadened; the 
parameter η(a) (10) does not exceed 18%. 

The quasi-zero-dimensional systems considered here are 
new essential nonlinear media with respect to infrared 
radiation [2, 4, 12]. In fact, the dipole moments of the 
transitions in QDs of radii a ≈ 2.0 − 5.0 nm are gigantic in 
magnitude: D1,0 ≈ 10D0 (see table, where D is the unit of 
measure of the dipole moment in Debye (D0)), being many 
times larger than the values D ≈ 0.1D0 typical for the bulk 
III-V semiconductors [5, 12]. In addition, according to the 
selection rules for QDs in the electromagnetic field, the 
dipole transitions between the nearest levels En,l(a) (6) are 
allowed. Under these transitions, the azimuthal quantum 
number changes by unity [4, 12]. 

From the estimates presented in the table it follows that, 
for QDs of radii a ≈ 2.0 − 5.0 nm, the absorption cross 
section can be as gigantic as σabs ≈ 10− 16 sm2. This value is 
eight orders of magnitude larger than the typical absorption 
cross sections for atoms [12]. Since the scattering cross 
sections σsc (24) under the experimental conditions in the 
work [5] are negligible compared to the corresponding 
absorption cross sections σabs (23) (σsc/σabs ≈ 10−12) the 
estimates for σsc are not included in the table [12]. 

The gigantic optical absorption cross sections in the 
quasi-zero-dimensional systems treated above allow for the 
use of such nanostructures as new efficient absorbers of 
electromagnetic waves in a wide wavelength range variable 
over wide limits in accordance with the nature of the 
materials in contact. 
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