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Abstract: The theory of an exciton formed from spatially separated electron and hole (the hole is in the quantum dot 
volume, and the electron is localized at the outer spherical quantum dot–dielectric matrix interface) is developed within the 
modified effective mass method. The effect of significantly increasing the exciton binding energy in quantum dots of zinc 
selenide, synthesized in a borosilicate glass matrix, relative to that in a zinc selenide single crystal is revealed. It was shown 
that the short-wavelength shift of the peak of the low-temperature luminescence spectrum of samples containing zinc-
selenide quantum dots, observed under the experimental conditions, is caused by quantum confinement of the ground-state 
energy of the exciton with a spatially separated electron and hole. A review devoted to the theory of excitonic 
quasimolecules (biexcitons) (formed of spatially separated electrons and holes) in a nanosystem that consists of ZnSe 
quantum dots synthesized in a borosilicate glass matrix is developed within the context of the modified effective mass 
approximation. It is shown that biexciton (exciton quasimolecule) formation is of the threshold character and possible in 
nanosystem, in with the spacing between the quantum dots surfaces is larger than a certain critical spacing. On the basis of 
analogy spectroscopy of electronic states of superatoms (or artificial atoms) and individual alkali metal atoms theoretically 
predicted a new artificial atom, which is similar to the new alkali metal atom. 

Keywords: Excitons, Modified Effective Mass Method, Exciton Binding Energy, Quantum Dots,  
Excitonic Quasimolecules, Biexcitons, Spatially Separated Electrons and Holes, Superatoms 

 

1. Introduction 
At present, quasi-zero-dimensional semiconductor 

nanosystems consisting of spherical semiconductor 
nanocrystals, i.e., quantum dots with radii of a =1–10 nm, 
containing cadmium sulfide and selenide, gallium arsenide, 
germanium, silicon, and zinc selenide in their volume, 
synthesized in a borosilicate glass matrix, attract particular 
attention due to their unique photoluminescence properties, 
i.e., the ability to efficiently emit light in the visible or near 
infrared ranges at room temperature [1–10]. The optical 
and electro-optical properties of such quasi-zero 
dimensional nanosystems are controlled to a large extent by 
the energy spectrum of the spatially confined electron–hole 
pair (exciton) [4–16]. 

In most theoretical models for calculating the energy 
spectra of quasiparticles in quantum dots (QDs), the 
effective mass approximation is used, which was 
considered to be applicable to QDs by analogy with bulk 
single crystals [11–13]. However, the problem of the 
applicability of the effective mass approximation to the 
description of semiconductor QDs is still unsolved [4–18]. 

In [14], a new modified effective mass method was 
proposed to describe the exciton energy spectrum in 
semiconductor QDs with radii of a ≈ aex (aex is the exciton 
Bohr radius in the semiconductor material contained in the 
QD volume). It was shown that, within a model in which 
the QD is represented as an infinitely deep potential well, 
the effective mass approximation can be applied to the 
description of an exciton in QDs with radii a comparable to 
the exciton Bohr radius aex, assuming that the reduced 
effective exciton mass is a function of the radius a, µ = µ(a). 
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In the adiabatic approximation and within the modified 
effective mass method [14], an expression for the binding 
energy of an exciton whose electron and hole move in the 
semiconductor QD volume was derived in [15]. In [15], the 
effect of significantly increasing the exciton-binding 
energy in cadmium selenide and sulfide QDs with radii a, 
comparable to the exciton Bohr radii aex, relative to the 
exciton- binding energy in cadmium selenide and sulfide 
single crystals (by factors of 7.4 and 4.5, respectively) was 
also detected. 

In the experimental study [7], it was found that excess 
electrons produced during interband excitation of the 
cadmium sulfide QD have a finite probability of 
overcoming the potential barrier and penetrating into the 
borosilicate glass matrix into which the QD is immersed. In 
experimental studies [10, 19] (as well as in [7]) of glass 
samples with cadmium-sulfide and zinc-selenide QDs, it 
was found that the electron can be localized in the 
polarization well near the outer QD surface, while the hole 
moves within the QD volume. 

In [10, 19], the optical properties of borosilicate glass 
samples containing QD zinc selenide are experimentally 
studied. The average radii of such QDs are in the range a ≈ 
2.0–4.8 nm. In this case, the values of a are comparable to 
the exciton Bohr radius aex ≈ 3.7 nm in a ZnSe single 
crystal. At low QD concentrations, when the optical 
properties of the samples are mainly controlled by those of 
individual QDs in the borosilicate glass matrix, a shift of 
the peak of the low temperature luminescence spectrum to 
the short wavelength region (with respect to the band gap 
Eg of the zinc selenide - single crystal) was observed. The 
authors of [10] assumed that this shift is caused by 
quantum confinement of the energy spectra of the electron 
and hole localized near the spherical surface of the QD. In 
this case, the following problem remained open: the 
quantum confinement of which electron and hole states (the 
hole moving in the QD volume and the electron localized at 
the outer spherical QD–dielectric matrix interface or the 
electron and hole localized in the QD volume) caused such 
a shift of the luminescence spectrum peak? 

The use of semiconductor nanosystems as the active 
region of nanolasers is prevented by the low binding energy 
of the QD exciton [8, 9, 13]. Therefore, studies directed 
toward the search for nanostructures in which a significant 
increase in the binding energy of QD excitons would be 
observed are of importance. 

Currently, the theory of exciton states in quasi- zero- 
dimensional semiconductor nanosystems has not been 
adequately studied, in particular, no theory exists for an 
exciton with a spatially separated electron and hole in 
quasi- zero- dimensional nanosystems. Therefore, in this 
study, we developed the theory of an exciton formed from 
spatially separated electron and hole (the hole is in the 
semiconductor QD volume, and the electron is localized at 
the outer spherical surface of the QD–dielectric matrix 
interface) [20 – 22]. It was shown that the short wavelength 
shift of the peak of the low temperature luminescence 

spectrum of samples containing zinc-selenide QDs, 
observed under the experimental conditions of [10], is 
caused by quantum confinement of the ground state energy 
of the exciton with a spatially separated electron and hole. 
The effect of significantly increasing the binding energy of 
an exciton (with a spatially separated electron and hole) in 
a nanosystem containing zinc-selenide QDs in comparison 
with the binding energy of an exciton in a zinc-selenide 
single crystal (by a factor of 4.1–72.6) was detected [20 – 
22]. 

In [10,19], a shift of the spectral peak of the low- 
temperature luminescence wasobserved also for samples 
with a QD concentrations from x = 0.003 to 1%. It was 
noted [10, 19] that, at such a QD content in the samples, 
one must take into account the interaction between charge 
carriers localized above the QD surfaces. Therefore, in [23, 
24] we develop the theory of a excitonic quasimolecules 
(biexcitons) (formed from spatially separated electrons and 
holes) in a nanosystem that consists of ZnSe QDs 
synthesized in a borosilicate glass matrix. 

2. Exciton Ground - State Energy in the 
Nanosystem 

Let us consider the simple model of a quasi - zero - 
dimensional system, i.e., a neutral spherical semiconductor 
QD of the radius a, which contains semiconductor material 
with the permittivity ε2 in its volume, surrounded by a 
dielectric matrix with the permittivity ε1. A hole h with the 
effective mass mh moves in the QD volume, while an 
electron e with the effective mass mе

(1) lies in the matrix (re 
and rh are the distances from the QD center to the electron 
and hole). Let us assume that the QD valence band is 
parabolic. Let us also assume that there is an infinitely high 
potential barrier at the spherical QD – dielectric matrix 
interface; therefore, the hole h cannot leave the QD volume 
and the electron e cannot penetrate into the QD volume in 
the model under study [20 – 22]. 

The characteristic dimensions of the problem are the 
quantities  

аh= ε2 ћ
2/ mh е

2,  аех = ε2 ћ
2/ µ е2, ае= ε1 ћ

2/ mе
(1)  е2 ,   (1) 

where ah and aex are the hole and exciton Bohr radii in the 
semiconductor with the permittivity ε2, e is the elementary 
charge, µ= mе

(2) mh /(mе
(2)+ mh ) is the reduced effective 

mass of the exciton, mе
(2)

 is the effective mass of an 
electron in the semiconductor with the permittivity ε2, and 
ae is the electron Bohr radius in the dielectric matrix with 
the permittivity ε1. The fact that all characteristic 
dimensions of the problem are significantly larger than the 
interatomic distances a0,  

a , ea , ha , exa  0a>>                  (1a)  
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allows us to consider the electron and hole motion in the 
quasi - zero - dimensional nanosystem in the effective mass 
approximation [11–13]. 

We analyzed the conditions of carrier localization in the 
vicinity of a spherical dielectric particle of the radius a with 
the permittivity ε2 in [25–27]. There the problem of the 
field induced by the carrier near a dielectric particle 
immersed in a dielectric medium with the permittivity ε1 
was solved in a final analytical form, and analytical 
expressions for the potential energy of the interaction of the 
carrier with the spherical interface of two media are 
presented. 

Solving the Poisson equation with usual electrostatic 
boundary conditions 
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the potential �(��, �|�, �)| at the observation point r' in a 
medium with the permittivity εj, induced by the charge e at 
the point r in a medium with the permittivity εi, can be 
presented as a sum of the potentials induced by the image 
point charge e'(r ij |r) at the point r ij =(a/r)2rδij + r(1 – δij ) 
and the linear distribution with the density ρij(y, r) of the 
image charge along a straight line passing through the 
center of the dielectric particle with the radius a and the 
charge at the point r [25-27]: 
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where 

r)(r 22
11 ra= , erae )()r|r( 11 β−=′ ,        (3а)  

))((θ)()(),( 2)1(2
11 yraaeryary −= −αβαρ ; 

r)(r 22
22 ra= ,  erae )()r|r( 22 β=′ ,         (3b) 

))(()())(1(),( 22
22 rayaeryary −−= θαβρ α ; 

rr =12 , ee β=′ )r|r( 12 ,                  (3с) 

)()())(1(),(12 ryreyrry −−= θαβρ α ; 

rr =21 ,  ( ) erre β−=′ |12 ,               (3d)  

( ) ( )yrreyrry −= − θβαρ α )(),( )1(
21 , 

where θ(x) is the Heaviside unit-step function, 
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Using expressions (3)–(3d), the energy ),r,r( he aU  of the 

polarization interaction of the electron and hole with the 
spherical QD–matrix interface at the relative permittivity ε 
= (ε2/ε1) ≫ 1 can be presented as an algebraic sum of the 

energies of the interaction of the hole and electron with 
self- ( )arV hhh ,′ , Vee'(re, a) and “foreign” Veh'(re, rh, a), Vhe'(re, 

rh, a) images, respectively [15,16,26- 28], 
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In the studied simple model of a quasi zero dimensional 
nanostructure within the above approximations and in the 
effective mass approximation using the triangular 
coordinate system [14-16], re = |re|, rh = |rh|, r = |re – rh|, 
with the origin at the center of the QD, the exciton 
Hamiltonian (with a spatially separated hole moving within 
the QD volume and an electron in the dielectric matrix) 
takes the form [20 – 22, 29 - 32]: 
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where the first three terms are the operators of the electron, 
hole, and exciton kinetic energy, Eg is the band gap in the 
semiconductor with the permittivity ε2, µ0 = 

��(�)�� (��(�) +��� ) is the reduced effective mass of the 
exciton (with a spatially separated hole and electron). In the 
Hamiltonian (10), the polarization interaction energy U(re, 
rh, a, ε) (5) is defined by formulas (6)–(9), and the 
electron–hole Coulomb interaction energy Veh(r) is 
described by the formula 

���(�) = − �
� � �

�� + �
�
� �


�                   (11) 

In the exciton Hamiltonian (10), the potentials 

��(��) = � 0, 		�� ≤ #∞, �� 	> #&,                     (12) 

��(��) = ∞,			�� ≤ # 
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describe the quasiparticle motion using the models of an 
infinitely deep potential well. 

As the QD radius a increases (so that a ≫ #�'(  ), the 
spherical interface of the two media (QD–matrix) passes to 
the plane 〈semiconductor material with the permittivity 
ε2〉–matrix interface. In this case, the exciton with the 
spatially separated electron and hole (the hole moves 
within the semiconductor material and the electron lies in 
the borosilicate glass matrix) becomes two-dimensional [20 
– 22]. 
The main contribution to the potential energy of the 
Hamiltonian (10) describing exciton motion in a 
nanosystem containing a large-radius QD, a ≫ #�'( , is 
made by the electron–hole Coulomb interaction energy 
Veh(r) (11). The energy of the hole and electron interaction 
with self- Vhh'(rh, a, ε) (6), Vee'(rh, a) (7) and “foreign” Veh'(re, 
rh, a) (9), Vhe'(re, rh, a) (8) images make a significantly 
smaller contribution to the potential energy of the 
Hamiltonian (10). In the first approximation, this 
contribution can be disregarded. In this case, only the 
electron–hole Coulomb interaction energy (11) remains in 
the potential energy of the Hamiltonian (10) [20 – 22]. The 
Schrodinger equation with such a Hamiltonian describes a 
two-dimensional exciton with a spatially separated electron 
and hole (the electron moves within the matrix, and the 
hole lies in the semiconductor material with the 
permittivity ε2), whose energy spectrum takes the form [33, 
34]: 

+, = − -./01
(,�� �⁄ )
,                        (13) 

34�'( = (5� + 5�)�45��5�� 78(�(934( 

where n = 0, 1, 2… is the principal quantum number of the 
exciton and Ry0 = 13.606 eV is the Rydberg constant. The 
Bohr radius of such a two- dimensional 
exciton is described by the formula 

#�'( = ����

����


ℏ

;1�
,                        (14) 

and the binding energy of the ground state of such a two-
dimensional exciton, according to (13), is written as 

+�'( = −434�'( 					                           (15)  

The binding energy (15) of the exciton ground state is 
understood as the energy required for bound electron and 
hole state decay (in the state with n = 0). 

To determine the ground-state energy of an exciton (with 
a spatially separated electron and hole) in a nanosystem 
containing QDs of the radius a, we use the variational 
method. When choosing the variational exciton wave 
function, we use an approach similar to that developed in 
[14]. Let us write the variational radial wave function of the 
exciton ground - state (1s electron state and 1s hole state) in 
the nanosystem under study in the form [20 – 22]: 

<((�� , �� , �, #) = =>?@	 A– 8(#)8(
�
#�'( C (#� − ���)#�  

× E�/
�F
G
F


�
F
H�/�(F �I⁄ )
�IH�I

F

H�I�(F �/⁄ )
�/H�/

F
              (16) 

Here the coefficient A is determined from the condition of 
normalization of the exciton wave function (16), 

J ��K��L
F J ��K�� J <(�(�� , �� , �, #)�K� = 1�/��I�

F
( , 

and the effective reduced exciton mass µ(a) is the 
variational parameter. 

As the QD radius a increases (so that a ≫ #�'( ), a two-
dimensional exciton is formed in the nanosystem. This 
factor leads to the fact that the variational exciton wave 
function (16) contains the Wannier–Mott two-dimensional 
exciton wave eigenfunction [33, 34]. Furthermore, the 
polynomials from re and rh enter the exciton variational 
function (16), which make it possible to eliminate 
singularities in the functional E0(a,µ(a)) in the final 
analytical form. 

To determine the exciton ground-state energy E0(a, ε) 
in the nanosystem under study by the variational method, 
we write the average value of the exciton Hamiltonian (10) 
in wave functions (16) in the form 

+(E#, 8(#)G = 〈<((�� , �� , �, #)|N(�� , �� , �, #)|<((�� , ��, �, #)〉
= 								O K��

L
F

O K��O K�	�	�� 	�� 	<((�� , �� , �, #)
�/��I
�

F
(

N(�� , �� , �, #)	<((�� , �� , �, #) 
         (17) 

The dependence of the energy E0(a) of the exciton 
ground state (ne = 1, le = me =0; пh = 1, lh = тh= 0), (пе, lе, 
те and пh, lh, тh are the principal, orbital, and magnetiс 
quantum numbers of the electron and hole, respectively) on 
the QD radius a is calculated by minimizing the functional 
E0(a, µ(a)) (17), 

PQ1EF,;(F)G
P;(F) = R(8(#), #)                            (18) 

Without writing cumbersome expressions for the first 
derivative of the functional ∂E0(a, µ(a))/∂µ(a) =F(µ(a), a), 

we present the numerical solution to the equation F(µ(a), a) 
= 0 (18) in tabulated form. 

It follows from the table that the solution to this equation 
is the function µ(a) which monotonically weakly varies 
within the limits [20 – 22]: 

0.304≤ 8(#)/�( ≤0.359                  (19) 

as the QD radius a varies within the range 

2.0	≤ # ≤	29.8 nm                          (20) 
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(m0 is the electron mass in vacuum). In this case, the 
reduced exciton effective mass µ(a) (19) in the nanosystem 
slightly differs from the effective mass of an exciton (with 
a spatially separated hole and electron) µ = 0.304m0 by the 
value (µ(a) – µ0)/µ0 ≤ 0.18 when the QD radii vary within 
the range (20). 

Substituting the values of the variational parameter µ(a) 
(19) from the table simultaneously with the corresponding 
QD radii from the range (20) into the functional E0(a, µ(a)) 
(17), we obtain the exciton ground-state energy E0(a, ε) (17) 
as a function of the QD radius a. [20 – 22]. 

The results of variational calculation of the energy of the 
ground state of an exciton E0(a, ε) (17) in the nanosystem 
under study containing zinc-selenide QDs of the radius a 
(20) are shown in the figure [20 – 22]. Here, the values of 
function µ(a) (19) and the results of variational calculation 
of the exciton ground-state energy E0(a, ε) (17) are 
obtained for a nanosystem containing zinc-selenide QDs, 
synthesized in a borosilicate glass matrix, studied in the 
experimental works [10, 19]. 

In the experimental work [10], borosilicate glass samples 
doped with zinc selenide with concentrations from x = 
0.003 to 1%, obtained by the sol–gel method were studied. 
According to X-ray diffraction measurements, the average 
radii a of ZnSe QDs formed in the samples are within a ≈ 
2.0–4.8 nm.. In this case, the values of #T are comparable to 
the exciton Bohr radius aex ≈ 3.7 nm in a zinc-selenide 
single crystal. At low QD concentrations (x = 0.003 and 
0.06%), their interaction can be disregarded. The optical 
properties of such nanosystems are mainly controlled by 
the energy spectra of electrons and holes localized near the 
spherical surface of individual QDs synthesized in the 
borosilicate glass matrix. 

In [10, 19], a peak in the low-temperature luminescence 
spectrum at an energy of E1 ≈ 2.66 eV was observed at the 
temperature T = 4.5 K in samples with x = 0.06%; this 
energy is lower than the band gap of a zinc-selenide single 
crystal (Eg = 2.823 eV). The shift of the peak of the low-
temperature luminescence spectrum with respect to the 
band gap of the ZnSe single crystal to the short-wavelength 
region is ∆E1 = (E1 - Eg ) ≈ –165 meV. The authors of [10] 
assumed that the shift ∆E1 is caused by quantum 
confinement of the energy spectra of electrons and holes 
localized near the spherical surface of individual QDs and 
is associated with a decrease in the average radii a of zinc- 
selenide QDs at low concentrations (x = 0.06%). In this 
case, the problem of the quantum confinement of which 
electron and hole states (the hole moving within the QD 
volume and the electron localized at the outer spherical 
QD–dielectric matrix interface or the electron and hole 

localized in the QD volume) caused such a shift of the 
luminescence-spectrum peak remained open. 

Comparing the exciton ground-state energy (E0(a,ε) – Eg ) 
(17) with the energy of the shift in the luminescence-
spectrum peak ∆E1 ≈ –165 meV, we obtain the average zinc-
selenide QD radius a1 ≈ 4.22 nm (see the figure) [20 – 22]. 
The QD radius a1 may be slightly overestimated, since 
variational calculation of the exciton ground-state energy can 
give slightly overestimated energies [33, 34]. The 
determined average QD radius a1 lies within the range of the 
average radii of zinc-selenide QDs  (#	≈ 2.0–4.8 nm), studied 
under the experimental conditions of [10, 19]. 

 

Figure 1. Dependences of the exciton ground state-energy ( E0(a,ε) –Eg  ) 
(17) (solid curve) and the binding energy of the exciton ground state 
( Eex(a, ε) – Eg ) (21) (dashed curve) on the zinc-selenide QD radius a in 
the model of an exciton with a spatially separated electron and hole. The 
dash-dotted curve is the dependence of the exciton ground-state energy 
(E0(a, ε) – Eg ) on the zinc-selenide QD radius a in the exciton model, in 
which the electron and hole move within the zinc-selenide QD volume 
[16]. Eg = 2.823 eV is the band gap in a zinc-selenide single crystal; +�'(  
= 1.5296 eV (15) and  #�'( , = 0.573 nm (14) are, respectively, the binding 
energy of the ground state and the Bohr radius of a two-dimensional 
exciton with a spatially separated electron and hole. 

It should be noted that the average Coulomb interaction 
energy ���UUUU (a, ε) =〈<(��� , ��, �, #	|�����	|<(��� , �� , �, #	〉 , 
between the electron and hole mainly contribute to the 
ground-state energy (17) of the exciton in the nanosystem 
containing zinc-selenide QDs with radii a1 comparable to 
the exciton Bohr radius in a zinc- selenide single crystal (aex 
≈ 3.7 nm). In this case, the average energy of the interaction 
of the electron and hole with self- and “foreign” images, 

 

( ( ) ( ) ( ) ( ) ) =+++ ′′′′ εεεε ,,,, aVaVaVaV ehhehhee  

( ) ( ) ( ) ( ) ( ) ( )〉+++〈= ′′′ arrrarrVarrVarVarVarrr heheehhehehhheeehe ,,,|,,,,,,,,,,|,,, o'o ψεεεεψ

makes a significantly smaller contribution to the exciton 
ground-state energy (17),  0.04 ≤ |[Vee'(a, ε) + Vhh'(a, ε) + 

Veh'(a, ε) + Vhe'(a,ε)]/ (a, ε)| ≤ 0.12 [20 – 22]. 

Thus, the short-wavelength shift ∆E1 of the low 
temperature luminescence spectrum peak is caused by 
renormalization of the electron–hole Coulomb interaction 
energy Veh(r) (11) and also renormalization of the energy 
U(re, rh, r, a, ε) (5) of the polarization interaction of the 
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electron and hole with the spherical QD–dielectric matrix 
interface, which is associated with spatial confinement of 
the quantization region by the QD volume. In this case, the 
hole moves within the QD volume, and the electron is 
localized at the outer spherical QD–dielectric matrix 
interface. 

2.1. Binding Energy of the Exciton Ground State in the 
Nanosystem 

The binding energy of the ground state of an exciton 

(with a spatially separated electron and hole) Eex(a, ε) in a 
nanosystem containing zinc-selenide QDs of the radius a is 
the solution to the radial Schrodinger equation with a 
Hamiltonian containing, in contrast to Hamiltonian (10), 
only the terms Vhe'(re,rh, a, ε) (8) and Veh'(re, rh, a, ε) (9) in 
the polarization interaction energy U(re, rh, a, ε) (5), which 
describe the energies of the hole and electron interaction 
with “foreign” images, respectively [15, 27, 28]. Therefore, 
the exciton ground-state binding energy   Eex(a, ε) is 
defined by the expression [20 – 22]: 

( ) ( ) ( ) ( ) ( ) ( ) ,,,,|),,,,(|,,,,, oo0 〉+〈−= ′′ arrrarVarVarrraEaE heeeehhhheex ψεεψεε                      (21) 

Where  the  term 
( ) ( ) ( ) ( )〉+〈 ′′ arrrarVarVarrr heeeehhhhe ,,,),,,,(,,, oo ψεεψ  

describes the average energy of hole and electron 
interaction with self-images. 

Since the average energies of the interaction of the hole 
with its image and the average energies of the interaction of 
the electron with its image make contri-butions with 
opposite signs to expression (21), they significantly 
compensate each other. Therefore, the binding energies of 
the exciton ground state Eex(a, ε) (21) slightly differ from 
the corresponding total energies of the exciton ground state 
E0(a, ε) (17). This difference  

( ( ) ( ) ) ( )εεε∆ ,/,, 0 aEaEaE exex −= , 

varies within ∆ ≤ 4% as QD radii a vary within the range 
3.84 ≤ a ≤ 8.2 nm (see the figure) [20 – 22]. 

The figure shows the dependences of the total energy 
E0(a, ε) (17) and the binding energy Eex(a, ε) (21) of the 
ground state of the exciton with a spatially separated 
electron and hole on the QD size for a nanosystem 
containing zinc-selenide QDs of the radius a. We can see 
that bound states of electron–hole pairs arise near the 
spherical surface of the QD starting from the QD critical 

radius a ≥	#V��	 ≈ 3.84 nm. In this case, the hole is localized 
near the QD inner surface, and the electron is localized at 
the outer spherical QD–dielectric matrix interface. Starting 

from the QD radius a ≥ #V��	, the electron–hole pair states 
are in the region of negative energies (counted from the top 
of the band gap Eg for a zinc-selenide single crystal), which 
corresponds to the electron–hole bound state [20 -22, 29 – 
23]. In this case, the electron–hole Coulomb interaction 
energy Veh(r) (11) and the energy U(re, rh, r, a, ε) (5) of the 
polarization interaction of the electron and hole with the 
spherical QD–dielectric matrix interface dominate over the 
energy of quantum confinement of the electron and hole in 
the nanosystem under study. 

The total energy |E0(a, ε)| (17) and the binding energy 
|Eex(a, ε)| (21) of the ground state of the exciton with a 
spatially separated electron and hole increase with QD 
radius a. In the range of radii 

4.0	≤ # ≤	29.8 nm                                (22) 

the binding energy |Eex(a, ε)| (21) of the exciton ground 
state significantly (by a factor of 4.1–76.2) exceeds the 

exciton binding energy in a zinc-selenide single crystal, 

+�'(UUUUUUU≈ –21.07 meV Starting from the QD radius a ≥	#V��	 ≈ 
29.8 nm, the total energies (17) and binding energies (21) 
of the exciton ground state asymptotically tend to the value 
+�'(  = –1.5296 eV which characterizes the binding energy 
of the ground state of a two-dimensional exciton with a 
spatially separated electron and hole (see the figure) [20 – 
22, 29 – 32]. 

The obtained values of the total energy E0(a, ε) (17) of 
the exciton ground state in the nanosystem satisfy the 
inequality 

E0(a, ε) - Eg ≪ ∆��#	                                 (23) 

where ∆V(a) is the potential-well depth for the QD electron. 
For a large class of II–VI semiconductors in the region of 
QD sizes a ≥	#�'(  , ∆V(a) = 2.3–2.5 eV [7]. Satisfaction of 
condition (23), probably, makes it possible to disregard the 
effect of the complex structure of the QD valence band on 
the total energy (17) and the binding energy (21) of the 
exciton ground state in the nanosystem under study when 
deriving these quantities. 

The effect of a significant increase in the binding energy 
|Eex(a, ε)| (21) of the exciton ground state in the nanosystem 
under study, according to formulas (5)–(9), (11), (13)–(15), 
(17), (21) is controlled by two factors [20- 22, 29 – 32]: (i) 
a significant increase in the energy of the electron–hole 
Coulomb interaction |Veh(r)| (11) and an increase in the 
energy of the interaction of the electron and hole with 
“foreign” images |Veh'(re, rh, r, a, ε)| (9), |Vhe'(re, rh, r, a, ε)| 
(8) (the “dielectric enhancement” effect [34]); (ii) spatial 
confinement of the quantization region by the QD volume; 
in this case, as the QD radius a increases, starting from a 

≥ #V��	 ≈ 	52	#�'(  ≈ 29.8 nm, the exciton becomes two-
dimensional with a ground- state energy +�'( (15) that 
exceeds the exciton binding energy Eex in the zincselenide 
single crystal by almost two orders of magnitude 
(H+�'( +�'(UUUU⁄ H ≈ 72.6). 

The “dielectric enhancement” effect is caused by the 
following factor. When the matrix permittivity ε1 is 
significantly smaller than the QD permittivity ε2, the most 
important role in the electron–hole interaction in the 
nanosystem under study is played by the field induced by 
these quasiparticles in the matrix. In this case, electron–
hole interaction in the nanosystem appears to be 
significantly stronger than in an infinite semiconductor 
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with the permittivity ε2 [34]. 
In [16], in the nanosystem experimentally studied in [10], 

an exciton model in which the electron and hole move 
within the zinc-selenide QD volume is studied. Using the 
variational method, within the modified effective mass 
method, the dependence of the exciton ground-state energy 
E0(a, ε) on the QD radius a in the range (20) was obtained 
in [16] (see the figure). It was shown that, as the QD radius 
increases, starting from a ≥ ac = 3.90 #�'(UUUU = 1.45 nm, a bulk 
exciton appears in the QD; its binding energy 

+�'(UUUU = − ℏ


�;�F/01UUUUU�

                      (24) 

is 21.07 meV (µ = 0.132m0 and #�'(UUUU  = 3.7 nm are the 
reduced effective mass and Bohr radius of the exciton in 
the zinc selenide forming the QD volume). The bulk 
exciton in the QD is understood as an exciton whose 
structure (reduced mass, Bohr radius, and binding energy) 
in the QD does not differ from the structure of an exciton in 
an infinite semiconductor material. As the QD radius a 
increases (a ≥ ac), the exciton ground-state energy E0(a) 
asymptotically follows the binding energy of the bulk 
exciton (24) (see the figure) [20 – 22, 29 – 32]. 

Thus, using the exciton model in which an electron and 
hole move in the QD volume, it is impossible to interpret 
the mechanism of the appearance of the nanosystem 
luminescence - spectrum peak with the shift ∆E1 ≈ –165 
meV, obtained in [10, 19]. 

A comparison of the dependences of the exciton ground- 
state energy E0(a) in the nanosystem [10], obtained using 
two - exciton models (see the figure) (the electron and hole 
move within the zinc-selenide QD volume [16] (model I); 
the hole moves within the zinc-selenide QD volume, and 
the electron is localized in the boron silicate glass matrix 
near the QD spherical surface (model II) allows the 
following conclusion. In model I, as the QD radius a 
increases, starting from a ≥ ac ≈ 14.5 nm, the exciton 
ground- state energy E0(a) asymptotically follows the 
binding energy of the bulk exciton +�'(UUUU ≈ –21.07 meV (24); 
in model II, as the QD radius increases, starting from a 

≥ 	#V��	  ≈ 29.8 nm, the exciton ground- state energy (17) 
asymptotically follows +�'(  = –1.5296 eV (15) 
(characterizing the binding energy of the ground state of a 
two- dimensional exciton with a spatially sep arated 
electron and hole), which is significantly lower than +�'(UUUU≈ –
21.07 meV [20- 22, 29 – 32]. 

3. Excitonic Quasimolecules Formed 
from Spatially Separated Electrons 
and Holes 

We consider a model nanosystem [23, 24] that consists 
of two spherical semiconductor QDs, A and B , synthesized 
in a borosilicate glass matrix with the permittivity 5�. Let 
the QD radii be a , the spacing between the spherical QD 
surfaces be D. Each QD is formed from a semiconductor 
material with the permittivity 5� . For simplicity, without 

loss of generality, we assume that the holes h (A) and h (B) 
with the effective masses �� are in the QD (A) and QD (B) 
centers and the electrons е(1) and е(2) with the effective 

masses ��
��	  are localized near the spherical QD(A) and 

QD (B) surfaces, respectively. The above assumption is 
reasonable, since the ratio between the effective masses of 
the electron and hole in the nanosystem is much smaller 

that unity:		�E��
��	/��G ≪ 1�. Let us assume that there is 

an infinitely high potential barrier at the spherical QD – 
matrix interface. Therefore, in the nanosystem, holes do not 
leave the QD bulk, whereas electrons do not penetrate into 
the QDs. 

In the context of the adiabatic approximation and 
effective mass approximation, using the variational method, 
we obtain the total energy +(�\], #T	 and the binding energy 
+в�\], #T	 of the biexciton singlet ground state (the spins of 
the electrons е(1) and е(2) are antiparallel) in such system 
as functions of the spacing between the QD surfaces be D 
and the QD radius a [23, 24]: 

+(E\], #TG = 2+�'�#T	 + +вE\], #TG,          (25) 

Here, the binding energy +�'�#T	 (17) of the ground state 
of the exciton (formed from an electron and a hole spatially 
separated from the electron) localized above the QD(A) (or 
QD(B)) surface is determined by in [23, 24] (parameters 
#T = �# #�'(⁄ 	 (#�'( = 	3,7 nm - the exciton Bohr radius in a 
single crystal ZnSe, \] = �\ #�'(⁄ 	 ). For the nanosystem 
under study, the values of the binding energies +�'�#T	 are 
calculated in [23, 24] for the experimental conditions of [10, 
19].  

The results of variational calculation of the binding 
energy +в�\], #T		of the biexciton singlet ground state in the 
nanosystem of ZnSe QDs with average radii of #U� =
3,88	nm  , synthesized in a borosilicate glass matrix are 
shown in [23, 24]. Such a nanosystem was experimentally 
studied in [10, 19]. In [10, 19], the borosilicate glassy 
samples doped with ZnSe to the content x from x = 0.003 to 
1% were produced by the sol-gel technique. At a QD 
content of x = 0.06 %, one must take into account the 
interaction of charge carriers localized above the QD 
surfaces. 

The binding energy +в�\], #T	  of the biexciton singlet 
ground state in the nanosystem of ZnSe QDs with average 

radii of #U� = 3,88	nm  has a minimum of +в��	�\�, #U�	 ≈
−4,2	meV  (at the spacing \� ≅ 3,2	 nm) [23, 24]. 
The	value	of	+в��	  corresponds to the temperature oс ≈
49	K	). In [23, 24], it follows that a biexciton (excitonic 
quasimolecule) is formed in the nanosystem, starting from 

a spacing between the QD surfaces of \ ≥ \V��	 ≅
2,4	s�.	The formation of such a excitonic quasimolecule 
(biexciton) is of the threshold character and possible only 
in a nanosystem with QDs with average radii #U�	such that 
the spacing between the QD surfaces D exceeds a certain 

critical spacing \V��	 . Moreover, the exciton quasimolecule 
(biexciton) can exist only at temperatures below a certain 
critical temperature: oс ≈ 49	K [23, 24]. 

As follows from the results of variational calculation [23, 
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24], the binding energy of an exciton (formed from an 
electron and a hole spatially separated from the electron) 
localized above the surface of the QD(A) (or a QD(B)) 
with an average radius of #U� = 3,88	nm  is +�'�#U�	 ≅
−54	meV	. In this case the energy of the biexciton singlet 
ground state +(�\], #T	  (25) takes the value +(�\], #	u	  = -
112meV.  

From the results of variational calculation [23, 24], of the 
biexciton (exciton quasimolecule) binding energy +в�\], #T	, 
it follows that the major contribution to the binding energy 
(25) is made by the average energy of the exchange 
interaction of the electrons е(1) and е(2) with the holes h (A) 
and h (B). At the same time, the energy of Coulomb 
interaction makes a much smaller contribution of the 
biexciton binding energy +в�\], #T	 (25).  

The major contribution to the exchange – interaction 
energy is made by the energy of the exchange interaction of 
the electron е(1) with the holes h (B), as well as of the 
electron е(2) with the holes h (B), as well as of the electron 
е(2) with the holes h (A). The major contribution to the 
Coulomb – interaction energy is made by the energy of 
Coulomb interaction of the electron е(1) with the holes h 
(B), as well as of the electron е(2) with the holes h (A) [23, 
24].  

As the spacing D between the QD(A) and QD(B) 

surfaces is increased, starting from \ ≥ \V��	 ≅ 16,4	nm , 
the average Coulomb – interaction energy substantially 
desreases. In addition, because of the decrease in the 
overlapping of the electron wavefunction, the average 
exchange interaction energy substantially decreases as well. 
As a consequence, the average Coulomb – interaction 
energy and the average energy of the exchange interaction 
of the electrons е(1) and е(2) with the holes h (A) and h (B) 
sharply desrease in comparison with the exciton binding 
energy +�'�#T	 (17) [23, 24], resulting in decomposition of 
the biexciton in the nanosystem into two excitons (formed 
of spatially separated electrons and holes) localized above 
the QD(A) and QD(B) surfaces.  

4. New Superatom in the Alkali - Metal 
Atoms 

For the development of mesoscopic physics and 
chemistry was essential idea superatoms (or artificial atoms) 
[20-22,29,30]. Superatom are nanosized quasi-atomic 
nanostructure formed from spatially separated electrons 
and holes (the hole in the volume of the QD and the 
electron is localized on the outer spherical quantum dot 
matrix dielectric interface) [20-22,29,30]. This terminology 
may be correct, given the similarity of the spectra of 
discrete electronic states of atoms and superatomic and the 
similarity of their chemical activity [20-22,29,30].  

In [20-22], in the framework of the modified effective 
mass method [14], developed the theory of artificial atoms 
formed from spatially separated electrons and holes (hole 
moving in the volume of a semiconductor (dielectric) QD 
and an electron localized on the outer spherical interface  
between the  QD and a dielectric   matrix) is developed. 

The energy spectrum of superatom  (exciton of spatially 
separated electrons and holes) from QD radius a ≥ ac  
(about 4 nm) is fully discrete [20-22,29,30]. This is called a 
hydrogen- superatom. It is localized on the surface of a 
valence electron QD. The energy spectrum of the 
superatom consists of a quantum-dimension of discrete 
energy levels in the band gap of the dielectric matrix. 
Electrons in superatom localized in the vicinity of the 
nucleus (QD). The electrons moving in well-defined atomic 
orbitals. Serve as the nucleus of QD containing in its 
volume semiconductors and insulators. Ionization energy 
superatoms take large values  (of the order of 2.5 eV ), 
which is almost three orders of magnitude higher than the 
binding energy of the excitons in semiconductors [20-
22,29,30]. 

We briefly discuss the possible physical and chemical 
effects , which are relevant for the results. In our proposed 
[20-22,29,30] model of a hydrogen superatom localized on 
the surface of the QD is a valence electron. In a quasi-
atomic structures of the outer valence electron can 
participate in a variety of physical and chemical processes, 
similar to the atomic valence electrons in atomic structures. 
Artificial atoms have the ability to connect to their electron 
orbitals of electrons N (where N can vary from one to 
several tens). At the same time, the number of electrons N 
can take values of the order of a few tens or even surpass 
the serial numbers of all the known elements of 
Mendeleev's table [20-22,29,30]. This new effect that 
allows to attach to the electronic orbitals of artificial atoms 
N electrons causes a high reactivity, and opens up new 
possibilities superatoms related to their strong oxidizing 
properties, increasing the possibility of substantial intensity 
in photochemical reactions during catalysis and adsorption, 
as well as their ability to form many new compounds with 
unique properties (in particular, the quasi-molecule and 
quasicrystals) [24,29,30]. Therefore, studies aimed at a 
theoretical prediction of the possible existence of artificial 
new atoms (not listed in the table Mendeleev) and, 
apparently, in their study of the experimental conditions are 
very relevant. 

Quantum discrete states of the individual atoms of alkali 
metals are determined by the movement of only one, the 
outermost valence electron around a symmetric atomic core 
(containing the nucleus and the remaining electrons) [35]. 
In the hydrogen superatom formed quantum-energy spectra 
of discrete energy levels of the valence electron [20-
22,29,30]. Thus, the observed similarity of the spectra of 
discrete electronic states and individual superatoms alkali 
metal atoms, and also the similarity of their chemical 
activity [20-22,29,30,35]. 

In Section 4, on the basis of analogy spectroscopy of 
electronic states of artificial atoms and individual alkali 
metal atoms theoretically predicted a new artificial atom, 
which is similar to the new alkali metal atom. 

4.1. The new Model of an Artificial Atom  

In [20-22,29,30] proposed a new model of an superatom, 
which is quasi – zero – dimensional nanosystem consisting 
of a spherical QD (nucleus superatom ) radius a and that 
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includes within its scope semiconductor ( dielectric) with a 
dielectric constant ε2, surrounded by a dielectric matrix 
with a dielectric constant ε1. A hole h with the effective 
mass mh moves in the QD volume, while an electron e with 
the effective mass mе

(1) lies in the dielectric matrix. In such 
nanostructure lowest electronic level is situated in the 
matrix and humble hole level is the volume QD. Large shift 
of the valence band (about 700 meV) is the localization of 
holes in the volume QD. Large shift of the conduction band 
(about 400 meV) is a potential barrier for electrons 
(electrons move in the matrix and do not penetrate into the 
volume QD) . Coulomb interaction energy of an electron 
and a hole, and the energy of the electron polarization 
interaction with the surface section (QD - matrix) (since the 
permittivity ε2 is far superior to QD permittivity ε1 matrix) 
cause localization of the electron in the potential well 
above the surface of QD [20-22,29,30 ]. 

With increasing radius a QD, so that а >> аех
0 (where аех

0 

(14 ) two-dimensional Bohr radius of the electron) 
spherical surface section (QD- matrix) transforms into a 
flat surface section. In this artificial atom electron localized 
on the surface (QD - matrix) becomes two-dimensional. In 
this case, the potential energy in the Hamiltonian 
describing the motion of an electron in superatom, the main 
contribution to the energy of the Coulomb interaction Veh(r) 
(11) between an electron and a hole [20-22]. Polarization 
interaction energy of the electron and hole with a spherical 
surface section (QD - matrix) gives a much smaller 
contribution to the potential energy of the Hamiltonian. 
Thus contribute to a first approximation can be neglected 
[20-22]. In this regard, the two-dimensional electron energy 
spectrum En   in the artificial atom takes the form   (13).  

Dependence of the binding energy  Еех(a,ε) of an 
electron in the ground state superatom (QD containing zinc 
selenide radius a and surrounded by a matrix of borosilicate 
glass [10]),  obtained in [20-22] by the variational method, 
it follows that the bound state of an electron occur near 
spherical interface (QD-matrix), starting with the value of 
the critical radius QD   a ≥ ac

(1) = 3.84 nm.   When this hole 
moves in a volume QD, and the electron is localized on the 
surface of the spherical section (QD - matrix). In this case, 
the Coulomb interaction energy  Veh(r) (11)    between the 
electron and the hole, and the energy of the polarization 
interaction of electrons and holes with a spherical surface 
section (QD-matrix) prevail over the size quantization of 
the energy of electrons and holes in the artificial atom. 
Thus, in [20-22] found that the occurrence of superatom 
has a threshold, and is only possible since the radius of QD  
КТ а ≥ ас

(1)  = 3.84 nm.   
With increasing radius of a QD scan, an increase in the 

binding energy of the electron in the ground state 
superatom. In the range of radii  4.0 ≤ а ≤ 29.8 nm      and 
the binding energy of the electron in the ground state 
superatom significantly exceeds (in (4,1-76,2) times) the 
value of the exciton binding energy  Ẽ0

ex ≈ 21.07 meV   in a 
single crystal of zinc selenide [20-22]. Beginning with a 
radius QD  а ≥ ас

(2)  = 29.8 nm,   the energy of the ground 
state of an electron in superatom asymptotically follow the 
value E0

ex = -1.5296 eV,  which characterizes the energy of 

the ground state of two-dimensional electrons in an 
artificial atom (15) [20-22]. 

Effect of significantly increasing the energy of the 
ground state of an electron in superatom mainly determined 
by two factors [20-22]: 1) a significant increase in the 
Coulomb interaction energy |Veh(r)| (2)  electron-hole (the 
"dielectric enhancement" [34]); 2) the spatial limitation on 
the quantization volume QD, while with increasing radius 
of a QD, since the radius of QD  a ≥ ac

(2) = 52a0
ex = 29.8  

nm   superatomic becomes two-dimensional with a binding 
energy of the ground state  E0

ex (15),   the value of which is 
almost two order exceeds the exciton binding energy in a 
single crystal of zinc selenide. Effect of "dielectric 
enhancement" due to the fact that when the dielectric 
constant  ε1   of the matrix is much less than the dielectric 
constant of QD ε2,   an essential role in the interaction 
between the electron and the hole in the superatom playing 
field produced by these quasi-particles in a matrix. Thus, 
the interaction between the electron and the hole in the 
superatom is significantly larger than in a semiconductor 
permittivity  ε2 [34].  

4.2. New Artificial Atom, Which is Similar to a new Single 
Alkali Metal Atom 

Quantum discrete states of the individual atoms of alkali 
metals are determined by the movement of only one, the 
outermost valence electron around a symmetric atomic core 
(containing the nucleus and the remaining electrons) [35]. 
At large distances r electron from the nucleus (so that r >> 
a0, where a0 = 0.053 nm - the Bohr radius of the electron in 
a hydrogen atom), the field of the atomic core is described 
by the Coulomb field [35]: 

V��	 = −	�w >� �⁄ 	,	                             (26) 

determining the interaction of the valence electron with the 
atomic core (Z - serial number of the atom in the periodic 
table Mendeleev). The energy spectrum of a single atom of 
an alkali metal hydrogen-described spectrum [35]: 

+,∗ = − -.∗
�,∗	
 ,			34 ∗ = w�	34(,               (27) 

where n * = (n + y) - effective quantum number (n = 1, 2, 
3, .... - the principal quantum number), the amendment y 
depends on the orbital quantum number l. Amendment y in 
due to the fact that the valence electron moves in the 
Coulomb field of the atomic core, where the nuclear charge 
is screened by core electrons. Amendment y correction is 
determined by comparing the spectrum of (6) with its 
experimental values. The value of y < 0, and numerically in 
the more closer to the atomic core suitable valence electron 
orbit. The number of possible orbits of the valence electron 
in a single alkali metal atom such as a hydrogen atom, and 
[35]. 

The similarity of the individual series of neutral alkali 
metal atoms with hydrogen Balmer series suggests that the 
energy spectra of neutral alkali metal atoms are called 
valence electron radiation in transitions from higher levels 
to the level of principal quantum number n = 2 [35]. 

In a single atom of an alkali metal valence electron 
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moving in the Coulomb field of the atomic core (26) 
having the same functional dependence on r as the 
Coulomb field (11), in which the valence electron in 
hydrogen-like model of artificial atom. This leads to the 
fact that the energy spectra of the valence electron in a 
single atom of an alkali metal (27) and in the artificial atom 
(13) describes the spectrum of hydrogen-type. At the same 
time, the number of possible quantum states of valence 
electron in hydrogen-like artificial atom model is the same 
as the number of quantum states of discrete valence 
electron in a single atom of an alkali metal [20-22,29,30]. 

The Table shows the position of the valence electron 
energy levels in individual atoms of alkali metals (K, Rb, 
Sc) [35] and the new artificial atom X, as well as the level 
shifts of the valence electron (y+-zк , y+|V-z, y+'|V) relative 
to the adjacent level. Assume that the shift of the energy 
level  Ex  artificial atom X (relative to the energy level  Esc 
of the atom Sc) will be the same as the shift of the energy 
level ERb  of the atom Rb (relative energy level Esc  of the 
atom Sc), (i.e  y+'|V 	= y+|V-z). Then the level of the valence 
electron artificial atom will be Ex = - 593 meV. Using the 
dependence of the binding energy Еех(a,ε)   of the ground 
state of an electron in an artificial atom [20-22] (QD 
containing zinc selenide radius a and surrounded by a 
matrix of borosilicate glass [10]),   we find the radius QD 
zinc selenide a1 = 5,4 nm, which corresponds to the Ex = - 
593 meV. It should be noted that the energy levels of a 
valence electron in the individual atoms of alkali metals (K, 
Rb, Sc) [35] and the new artificial atom X are located in the 
infrared spectrum. 

Table. Position of energy levels of the valence electron in some alkali 
metal atoms (K, Rb, Sc) and a new artificial atom X. Level shifts of the 
valence electron (y+-zк , y+|V-z, y+'|V) 		relative adjacent level. 

alkali metal 
atoms selected 

valence electron 
energy levels (meV) 

level shifts of the 
valence electron (meV) 

K - 7 21.1  
Rb - 7 11.2 1 0 
Sc - 652 5 9 
X - 5 93 5 9 

Thus, we proposed a new model of an artificial atom, 
which is a quasi-atomic heterostructure consisting of 
spherical QD (nucleus superatom) radius a and which 
contains in its scope, zinc selenide, surrounded by a matrix 
of borosilicate glass (in volume QD moves h hole effective 
mass  mh, , e and the electron effective mass  mв

(1)   is 
located in the matrix), allowed to find a new artificial atom 
X (absent in the Mendeleev periodic system), which is 
similar to a new single alkali metal atom. This new 
artificial atom of valence electron can participate in various 
physical [20-22,29,30] and chemicals [30,35] processes 
analogous atomic valence electrons in atomic systems (in 
particular, alkali metal atoms selected [35]) . Such 
processes are unique due to the new properties of artificial 
atoms: strong oxidizing properties, increasing the 
possibility of substantial intensity in photochemical 
reactions during catalysis and adsorption, as well as their 
ability to form a plurality of the novel compounds with 
unique properties (in particular, the quasi-molecule and the 

quasicrystals [23,24] ). 
Application of semiconductor nanoheterostructures as 

the active region nanolasers prevents small exciton binding 
energy in QD. Therefore, studies aimed at finding 
nanoheterostructures, which would be observed a 
significant increase in the binding energy of the local 
electronic states in QDs are relevant [20-22]. Effect of 
significantly increasing the energy of the electron in a 
hydrogen superatom [20-22,29,30] allows to detect 
experimentally the existence of such superatoms at room 
temperatures and will stimulate experimental studies 
nanoheterostructures containing superatoms that can be 
used as the active region nanolasers working on optical 
transitions. 

5. Conclusions 
The theory of an exciton with a spatially separated 

electron and hole is developed within the modified 
effective mass method [14] in which the reduced effective 
exciton mass is a function of the semiconductor QD radius 
a. The average zinc- selenide QD radius was determined by 
comparing the dependence of the exciton ground-state 
energy (17) on the QD radius, obtained by the variational 
method within the modified effective mass method [14], 
with the experimental peak of the low-temperature 
luminescence spectrum [10, 19]. It was shown that the 
short-wavelength shift of the peak of the low-temperature 
luminescence spectrum of the samples containing zinc-
selenide QDs, which was observed under the experimental 
conditions of [10, 19], is caused by renormalization of the 
electron–hole Coulomb interaction energy (11) and also the 
energy of the polarization interaction (5) of the electron and 
hole with the spherical QD–dielectric matrix interface, 
related to spatial confinement of the quantization region by 
the QD volume. In this case, the hole moves in the QD 
volume, and the electron is localized at the outer spherical 
QD–dielectric matrix interface [20 -.22, 29 – 32]. 

To apply semiconductor nanosystems containing zinc- 
selenide QDs as the active region of lasers, it is required 
that the exciton binding energy |Eex(a, ε)| (21) in the 
nanosystem be on the order of several kT0 at room 
temperature T0 (k is the Boltzmann constant) [13]. 
Nanosystems consisting of zinc- selenide QDs grown in a 
borosilicate glass matrix can be used as the active region of 
semiconductor QD lasers. In the range of zinc-selenide QD 
radii a (22), the parameter |Eex(a, ε)/kT0| take significant 
values in the range from 3.1 to 56 [20 – 22, 29 – 32]. 

The effect of significantly increasing the binding energy 
(21) of the exciton ground state in a nanosystem containing 
zinc-selenide QDs with radii a (22) was detected; in 
comparison with the exciton binding energy in a zinc-
selenide single crystal, the increase factor is 4.1–72.6. [20 – 
22, 29 – 32]. It was shown that the effect of significantly 
increasing the binding energy (21) of the exciton ground 
state in the nanosystem under study is controlled by two 
factors [20 – 22, 29 – 32]: (i) a substantial increase in the 
electron–hole Coulomb interaction energy (11) and an 
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increase in the energy of the interaction of the electron and 
hole with “foreign” images (8), (9) (the “dielectric 
enhancement” effect [34]); (ii) spatial confinement of the 
quantization region by the QD volume; in this case, as the 

QD radius a increases, starting from a ≥ #V��	≈ 29.8 nm, the 
exciton becomes two-dimensional with a ground-state 
energy (15) that exceeds the exciton binding energy in a 
zinc-selenide single crystal by almost two orders of 
magnitude. 

A review devoted to the theory of excitonic quasimolecule 
(biexciton) (formed of spatially separated electrons and holes) 
in a nanosystem that consists of ZnSe QDs synthesized in a 
borosilicate glass matrix is developed within the context of 
the modified effective mass approximation. Using the 
variational method, we obtain the total energy and the 
binding energy of the biexciton singlet ground state in such 
system as functions of the spacing between the QD surfaces 
and the QD radius. It is established that, in a nanosystem 
composed of ZnSe QDs with the average radii #U�  , the 
formation of a biexciton (exciton quasimolecule) is of the 
threshold character and possible in a nanosystem, in with the 
spacing D between the QD surfaces is defined by the 

condition \V��	 ≤ \ ≤ \V��	 [23, 24]. Moreover, the exciton 
quasimolecule (biexciton) can exist only at temperatures 
below a certain critical temperature: oс ≈ 49	K [23, 24]. It is 
established that the spectral shift of the low- temperature 
luminescence peak [10, 19] in such a nanosystem is due to 
quantum confinement of the energy of the biexciton singlet 
ground state. 

Thus, we proposed a new model of an artificial atom, 
which is a quasi-atomic heterostructure consisting of 
spherical QD (nucleus superatom) radius a and which 
contains in its scope, zinc selenide, surrounded by a matrix 
of borosilicate glass (in volume QD moves h hole effective 
mass mh, , e and the electron effective mass mв

(1) is located 
in the matrix), allowed to find a new artificial atom X 
(absent in the Mendeleev periodic system), which is similar 
to a new single alkali metal atom. This new artificial atom 
of valence electron can participate in various physical [20-
22,29,30] and chemicals [30,35] processes analogous 
atomic valence electrons in atomic systems (in particular, 
alkali metal atoms selected [35]) . Such processes are 
unique due to the new properties of artificial atoms: strong 
oxidizing properties, increasing the possibility of 
substantial intensity in photochemical reactions during 
catalysis and adsorption, as well as their ability to form a 
plurality of the novel compounds with unique properties (in 
particular, the quasi-molecule and the quasicrystals 
[23,24] ). 
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