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Abstract: A Fourier-Bessel equivalent of the plane wave technique is employed to theoretically analyze a circular photonic 

crystal structure containing both radial and rotational periodicity. The presence of the 12-fold rotational symmetry in the 

dielectric profile results in a 12-times reduction in the order of the matrix diagonalized when cast using the Fourier-Bessel basis 

functions. In addition, the Fourier-Bessel technique is highly suited for extracting the localized modes as it can be tuned to solve 

for a particular mode order. The possibility of using the circular structure as the defect region of a hexagonal array is also 

examined by studying the localized states obtained in a heterostructure configuration. 
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1. Introduction 

Photonic crystals are generally regarded as 

translationally symmetric high dielectric contrast optical 

structures configured in one, two or three dimensions. Due 

to the translational symmetry, the rotational symmetry of 

the dielectric is limited to a maximum order of 6. Because 

of the low rotational order, wide variations in the band gap 

versus direction are often encountered and one must 

carefully design the dielectric layout, dielectric contrast and 

select the optical polarization in order to achieve large band 

gaps[1]. It has been recognized that higher order rotational 

symmetry photonic crystal structures are available, that the 

higher rotational symmetry provides a more uniform 

transmission spectrum versus propagation angle (for waves 

passing at normal incidence through the center of the 

dielectric pattern) and that localized states are naturally 

present[2]. Structures of this nature have come to be known 

as aperiodic crystals and quasi-crystals. The most common 

photonic quasi-crystal patterns have 8, 10, or 12 fold 

rotational symmetry and are designed with uniform circular 

inclusions.  

Circular photonic crystals have been analyzed in a 

number of configurations demonstrating that structures 

with uniform circular holes (or rods) arranged in rings can 

show form birefringence[3], an array of centrally localized 

states [3, 4], and isotropic gaps in the transmission 

spectrum[5]. Massaroet. al. [6], have shown that these 

structures can be used to enhance the second harmonic 

generation through the use of available whispering gallery 

modes. These structures typically maintain uniform hole 

spacing in both angular and radial directions and the 

rotational symmetry dictated by the number of holes on the 

first ring. Several researchers have considered introducing 

optical waveguides into these structures for excitation and 

recovery of light coupled with a mode type[7]. Lasing 

properties are a common application examined in addition 

to standard resonator designs used in filtering [8, 9]. 

Over the years several reported circular photonic crystal 

structures have contained features that vary in size in 

relation to their distance from the center. Zarbakhashet. al. 

[10], considered a rod pattern with larger rods towards the 

center and a hole pattern with larger holes towards the 

exterior. The overall structure, although curved retained a 

hexagonal arrangement of the features. They showed the 

presence of gaps in the transmission spectrum and how a 

semi-circular segment could be used as a lens to focus an 

incident beam to the diffraction limit. Chaloupkaet. al. [11], 

explored the effects of keeping the number of holes 

constant within the radial rings. However, the increasing 

angular hole width was not related to the radial distance, 

and periodicity in the radial direction was not retained. The 

work showed that masking out the central region provided 

access to a large number of higher order modes in addition 
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to the traditional monopole, dipole and quadrupoles 

associated with the central states. The structure may also 

readily support high order whispering gallery modes and 

find applications in microcavity laser designs[12].  

The structures examined in this work contain periodicity 

in both angular and radial directions where the angular 

symmetry order does not change with increasing radius. As 

a result of the imposed symmetry the angular arc length and 

radial extent of the holes are constant when using the center 

of the structure as the polar coordinate origin. The 

structures are created using simple generating functions 

when compared to other techniques such as matching 

rules[13], projections[14] and substitution[15] for 

generating higher order rotationally symmetric 

quasi-crystal patterns. These structures have been 

encountered in a number of published papers [16, 17, 18, 

19] and the cavity properties examined through 

finite-difference time-domain (FDTD) simulations. In this 

paper we examine the localized state space of a hole 

structure in silicon that has periodicity of 12 in both the 

angular and radial directions. We further proceed to 

demonstrate that the structures are compatible with 

translationally symmetry photonic crystals in 

heterostructure arrangements with the quasi-crystal as the 

defect region of a hexagonal array. The analysis is 

performed using a newly developed Fourier-Bessel polar 

coordinate equivalent of the plane wave technique that was 

motivated by the presence of the rotational symmetry in 

photonic crystals[20]. 

2. Dielectric Profile 

The dielectric profiles of interest in this paper are 

structures that contain periodicity in both the radial and 

angular directions of a polar coordinate system. The 

background dielectric is silicon with a relative dielectric 

constant, ��,�� � 12.1104, and the features, holes, are air 

with ��,� � 1.000 . The structures produced can be 

considered as circular photonic crystals due to the 

rotational symmetry. The structures, when extended radially, 

are aperiodic due to the presence of long range order while 

lacking translational symmetry. There are many 

mathematical expressions which can be used to generate 

dual periodic structures. The expression used in this work is 

given in (1) where the center of the polar coordinate system 

corresponds to the center of the dielectric profile: 

��,�
�, �� � ��,� ����
�������� ���� ����
�

 (1) 

The angular rotation order is determined through the 

integer�  and the radial periodicity is determined from the 

radial spatial frequency �� � !� "#  where !� is an integer 

and "  is the radial extent of the circularly symmetric 

structure. In (1), the product of the cosine functions 

determines the low dielectric regions when the values fall 

within the range limit (A, B). The circular photonic crystal 

pattern that is the focus of this work, Fig. 1 (Left), was 

produced with $!� , � % � 
12, 12� , and 
&, '� �
(0.5, 0.5�; discretization of the structure was done over a 

3.91 µm radius disk. The radius of 3.91 µm was chosen to 

 

Figure 1. (Left) Circular photonic crystal with $!� , � % � 
12, 12� , 
&, '� � 
(0.5, 0.5� defined over a radius of 3.91 µm and discretized on a 

200 points per micron grid. (Center) Dielectric profile with the first ring of 

holes replaced with silicon. (Right) Circularly symmetric dielectric profile 

plotted with r along the abscissa axis and ϕ along the ordinate axis. The 

structures show periodicity along the two orthogonal axes and near 

circular holes produced in a mapped representation. 

scale the strongest monopole, shown later, to a wavelength 

of 1.55 µm. The black and white regions in Fig. 1 

correspond to the air and background silicon respectively. 

In order to remove the fine features located in the center of 

the structure the central region is masked out, a design 

feature commonly encountered in circular photonic crystal 

structures[9]. Fig. 1 (Center) shows the dielectric profile 

when the first ring of holes is removed; all other properties 

of the dielectric structure are retained. Fig. 1 (Right), shows 

the dielectric profile with the radial dependence plotted 

along the abscissa axis and the angular dependence plotted 

along the ordinate axis. In this representation, the air holes 

are nearly circular in shape and the structure maps to a 

square array. This representation increases the viewing 

resolution in the central region. Both presentations of Fig. 1 

are useful in the development and discussion. In the 

analysis leading to this presentation we have considered 

many different combinations of the generating parameters 

in (1) as well as an alternate expression which produces 

“square” holes in a circular array. The results presented 

here are representative of the general findings for these 

structures and the modeling technique. For any one 

particular application, structure parameters $!� , � , &, '% 

would need to be selected as well as the scale factor in 

order to obtain the modal properties at the desired 

wavelength. Since the structures examined here contain 

holes in a high dielectric background and restricted to the 

2-D (x, y) plane the TE polarization with *+ parallel to 

z-axis is chosen. The analysis technique can be easily 

extended for the TM polarization and for structures 

composed of high dielectric rods. 

3. Theoretical Development 

It is well established that when a photonic crystal 

contains translational symmetry the plane-wave expansion 

technique can be applied to Maxwell’s wave equation to 

obtain information on the available states and field 

distributions[21].  
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When the structure contains an intentional defect the 

band structure can provide information on the states 

localized to the defect. These calculations are done using a 

periodically repeated super cell where the defect is 

surrounded by several periods of the unaltered array. The 

super cell required is large enough to ensure negligible 

fields at the cell boundary for the localized states. It has 

recently been shown that for circularly symmetric photonic 

crystals, a Fourier-Bessel (FB) equivalent of the 

plane-wave expansion method will directly provide the 

defect state information in the structure and does not 

require the periodic repetition of the unit super cell[22]. In 

addition the FB technique can be tuned to search for a 

specific mode type (monopole, dipole, quadrupole, …) 

making this technique ideally suited for the modal analysis 

of the structures displayed in Fig. 1. In the case of the TE 

polarization the governing equation for the *+  field 

component is[22]: 

,� � --� .�/ �( -01-� �� ( -- . ,�/ -01- �� � �23 �� *+ (2) 

The inverse of the dielectric profile, 
,4, is expanded in a 

Fourier-Bessel series in which the r dependence is 

expressed using the lowest order Bessel functions, 5� �67 �8�, where 67 is the n
th

 zero crossing of the Bessel 

function and ", the radius of the dielectric profile, serves 

as a scaling factor such that 0 9 .�8 � �′� 9 1 conserves 

the orthogonality of the Bessel functions over the 

integration interval of the dielectric profile. This also 

highlights the fact that the traditional scaling rules for 

photonic crystal analysis using the plane-wave technique 

also apply to the FB technique. The angular coordinate 

dependence is expanded in exponentials of the form :;<=  

where >  is any integer, > � ?0, @1, @2, @3, … C . The 

expression for the inverse dielectric expansion makes use 

of two indices, 
>, D� with expansion coefficients, E=,7/ : 

,/ � ∑ E=,7/ 5� �GH�8 � :;<= =,7          (3) 

The *+  field component is also expanded using the 

Fourier-Bessel basis functions using the 
I, J� indices and 

the expansion coefficients, EK,L0 : 

*+ � ∑ EK,L0 5� �GM�8 � :;<K K,L           (4) 

It should be noted that the field expression (4) does not 

contain a propagating factor with wavevectorNOP introduced 

in a complex exponential. This emphasizes the fact that the 

FB technique applied here is used to determine only the 

steady (standing wave) states of the structure that are not 

propagated in the 2-D polar plane. We refer to this as the 

Gamma point FB calculation. The introduction of the 

expansions, (3) and (4), in the field component expression 

(2) and taking appropriate derivatives gives the following:  

∑ EK,L0 E=,7/=,7,K,L QRSTUMTVT WKTW=KX
�T 5� �GM�8 � 5� �GH�8 � (

GMGH8T 5, �GM�8 � 5, �GH�8 �Y :;<
KW=� �
�23 �� ∑ EK,L0 5� �GM�8 � :;<K K,L              (5) 

The right hand side of (5) contains a summation over the 

field attributes and as such the exponential contains only 

the field’s angular index I. The exponential on the left side 

shows a mixing of the rotational orders of both the field 

and inverse dielectric in the combined index 
I Z >�. In 

addition the expansion coefficients of the inverse dielectric 

and field are multiplied together. These two properties play 

a key role in simplifying the FB analysis technique as the 

next step is to make use of the orthogonality of the basis 

functions and recast equation (5) into the eigenvalue 

expression, (6). The orthogonality integration is performed 

over a disc of radius "  and the eigenvalues, the 

normalized frequencies � 28�[3� , for the steady states are 

obtained[22]: 

∑ EK\;=,74 $67�]L,L\,7 Z >I^L,L\,7 (=,7,K,L676L_L,L\,7%EK,L0 � � 28�[3�� EK\,L\0              (6) 

Where $]L,L\,7 , ^L,L\,7 , _L,L\,7%  are defined by the 

following integrals: 

]L,L\,7 � `[T a �\bc$GM�\%bc�GM\�\�bc$GH�\%d�\ef
.be�GM\��T

^L,L\,7 � `[T a � eS\�bc$GM�\%bc�GM\�\�bc$GH�\%d�\ef
.be�GM\��T

_L,L\,7 � `[T a �\bc$GM�\%be�GM\�\�be$GH�\%d�\ef
.be�GM\��T

   (7) 

The integrals in (7) are independent of the dielectric 

profile and field distribution, allowing them to be evaluated 

and stored for use in the analysis of any circularly 

symmetric photonic crystal structure. The FB technique can 

also be applied directly to translationally symmetric 

photonic crystals in order to determine the steady states 

localized to an intentionally introduced defect. Within the 

translational domain a circular super cell with the defect 

region at the center is chosen. The super cell is large 

enough to ensure negligible fields of the steady sates. 

It is also worth noting that the traditional FB 

decomposition in polar space links the order of the Bessel 

function to the order of the exponential with basis functions 

of the form5= �Gg�8 � :;<= . When these particular basis 

functions are used and after introduced into Maxwell’s 

wave equation, the radial derivatives will produce Bessel 

orders of >, > Z 1, > Z 2, … for all values ofm or p. The 

number of integrals forming the (STU) tables would need 

to be increased to accommodate all Bessel orders. An 

alternate approach to drastically increasing the (STU) space 
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is to apply the Bessel recursion relationships and reduce all 

Bessel orders to either 0 or 1. Directly using the basis 

functions and expansions in (2) and (3) simplifies the 

mathematical process. 
The inverse dielectric for the structure in Fig. 1 (Center) 

was expanded using 250 zero crossing orders of the Bessel 

and 361 angular components, 
D, >� m 
1 n 250, (180 n 180�. Tests (not presented) 

indicate sufficient converge of the computations using the 

orders indicated for the structures examined. This generates 

90,250 expansion coefficients. Information on the nature 

 

Figure 2. Summed magnitude of the Fourier-Bessel decomposition 

coefficients for the dielectric under study plotted versus rotational order > 

(positive side only). The circular dielectric is 12-fold and thus the only 

non-zero expansion coefficients occur when > is an integer multiple of 

±12. 

of the expansion coefficients can be obtained by examining 

them based on the rotational order they are associated 

with.Due to the large number of expansion coefficients 

involved, Fig. 2 is plotted with the rotational order index > along the abscissa axis for positive values of > and the 

summed magnitude of the expansion coefficients,p E=,7/ p 
for each rotational order along the ordinate axis. Due to the 

rotational symmetry of the dielectric, the negative > 

expansion coefficients are the complex conjugate of the 

coefficients with the positive >  indices. The dielectric 

profile has a 12-fold rotational symmetry, � � 12 and as 

a result the only possible non-zero expansion coefficients 

are those for > � 
0, @12, @24, @36, … �. The presence of 

a large number of zero values for the dielectric expansion 

introduces a large number of zero elements in the 

eigenvalue equation since the expansion coefficients of the 

field are multiplied by the expansion coefficients of the 

inverse dielectric, equations (5) and (6). This means that the 

rotation order index of the inverse dielectric coefficient in 

(6),
I′ ( >�, must be equal to a symmetry order of the 

dielectric, here 
0, @12, @24, @36, … �  in order to be 

non-zero. The combined presence of the large number of 

zero elements in the matrix and the restriction on the index 
I′ ( >�  imposed by the circular symmetry of the 

dielectric allows the eigenvalue matrix to be segmented 

into smaller units, where each unit represents a particular 

mode type (monopole, dipole, quadrupole, …). As a result 

of the 12-fold circular dielectric symmetry and the imposed 

circular symmetry of the mode orders, the order of the 

eigenvalue matrix for the monopoles is reduced by a factor 

of 12. Higher order modes have the matrix order reduced 

by a factor of 6. However, the matrix for higher order 

modes can be further segmented into two matrices of half 

the order and solved independently of each other. Therefore, 

the determination of the steady states of the circular 

dielectric structure using the FB technique can be very 

efficient even when large dielectric profiles are examined 

with several thousand expansion terms as the process can 

be tuned for a particular mode type. 

 

Figure 3. Real part of the Fourier-Bessel expansion coefficients for the 

dielectric of Fig. 1 (Center) plotted as a function of the zero crossing order, 

n, for the rotational order > � 0. Due to the half cycle nature of the Bessel 

zero crossing indexing and the radial periodicity of 12 for the dielectric, the 

expansion coefficients reach extremes in the vicinity of 24, 48, 72, ….. 

Missing extremums are also observed and result from the interplay of the 

dielectric symmetry and low dielectric hole shape. 

Fig. 3 shows the real part of the expansion coefficients for 

the inverse dielectric plotted along the ordinate axis versus 

the zero crossing order D of the Bessel function for > � 0. 

The dielectric structure, with the exception of the removal of 

the inner most ring of holes, has a radial periodicity of 12. 

Since the Bessel function orders relate to half cycles for the 

zero crossings, the expansion coefficients reach extremes (+ 

and -) in the regions of D � 24, 48, 72, … which correspond 

to 12, 24, 36, … full cycles. The alternating sign of the real 

part of the expansion coefficients ensures that the higher 

order contributions nearly cancel to restore the center 

dielectric value when used in (3). On occasion there are 

missing orders in the expansion coefficients of D for given 

orders of >  that result from the interplay that exists 

between the radial symmetry of the dielectric structure and 

the shape of the low dielectric regions. For instance the 

Bessel expansions show missing orders in the vicinity of n = 

192 for the rotational order m = 0. 

4. Steady States 

In order to determine the steady states for the dielectric 

under study, the inverse dielectric expansion coefficients are 

introduced along with the unknown expansion coefficients 

of the field into (6). The eigenmatrix is then solved for the 

monopole, dipole and quadrupole mode groups. The huge 
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complex matrices are easily handled on a desk top PC with 8 

Gigs of memory running MATLAB
©
. The number of states 

returned for each mode type is related to the order of the 

matrix that is diagonalized. For monopole computations the 

matrix has order 7781 and thus 7781 eigenvalues are 

obtained. From these 69 correspond to wavelengths inthe 1.0 

µm ≤ λ ≤ 2.5 µm range (normalized frequency range of 3.91 

to 1.564). These particular modes can have field expansion 

coefficients that are non-zero for rotational orders  I �
0, @12, @24, @36, … � . Within these modes, some will 

show a very strong monopole behavior as the expansion 

coefficients with I � 0  will dominate, while other 

monopoles will show strong higher order rotational 

symmetry due to the expansion coefficients other than zero 

being dominant. The eigenvector coefficients for each mode 

of a particular mode type, also determined along with the 

eigenvalues, facilitate the determination of the dominant 

features of modes and the localization with regards to the 

center of the pattern. The 69 available states calculated for 

the monopoles are plotted in Fig. 4 with the dominant 

expansion coefficient’s rotational order along the ordinate 

axis versus wavelength. Modes with the strongest I � 0 

expansion coefficients and relatively smaller higher order 

expansion coefficients will be dominated by a strong field 

confinement in the center of the structure and show little or 

no field variation with rotation angle. Examination of the 

eigenvector coefficient space reveals two strongly confined 

monopoles at wavelengths 1.00 µm and 1.55 µm. The radial 

extent of the dielectric structure was readjusted in order to 

provide a strong monopole at 1.55 µm thus the choice for a 

dielectric radius of " � 3.91 t>. Since each mode in turn 

contains 7781 expansion coefficients, the mode’s rotational 

symmetry properties are plotted versus rotational order, I, 

positive side only and by plotting the sum of the absolute 

value of the expansion coefficients in each rotational order. 

Fig. 5 shows the modal profile,*+  field distribution, and 

rotational properties for the two dominant monopoles. Both 

field profiles show a strong monopole located at the center 

of the dielectric which corresponds to the strong I � 0 

expansion coefficients. The addition of the higher rotational 

symmetry orders introduces additional symmetries to the 

mode profile located in the ring region of the dielectric. Fig. 

6 shows two other monopole type expansions, and the field 

distributions in which the central regions of the higher order 

rotational symmetries are equivalent to the lowest order 

monopole yet the field profiles contain strong 12-fold 

rotational orders. 

In order to confirm the presence of the dominant modes 

determined using the Fourier-Bessel technique, the localized 

state spectrum and field profiles were also determined using 

the finite-difference time-domain technique (FDTD)[23, 24]. 

The dielectric structure was discretized to a 200 point per 

micron rectangular grid and bordered by a 400 grid point 

PML. A TE polarized point source was located at the center 

of the structure, contained wavelengths from 0.5 to 5.0 µm 

in 0.01 µm increments and run for the first 500 time iteration 

steps. The nature of the point source and its location excites 

only monopole states. The Fourier transform shown in Fig. 7 

was obtained using the field values at the  

 

Figure 4. State space returned for the dielectric structure shown in Fig. 1 

(Center). Of the 7781 monopole solutions returned, 69 lie in the 1.0 to 2.5 

µm wavelength range. Amongst these are those that display strong 

monopole properties as their expansion coefficients are dominated by the I � 0 rotational order. Monopoles displaying higher rotational symmetry 

are indicated by I �  12, 24, … 

center for 150,000 computation time iteration steps and 

plotted for the 0.9 to 2.5 µm range. The trace confirms the 

presence of the two dominant monopole modes determined 

through the FB technique. In addition, the field profiles also 

shown in Fig. 7, computed using the FDTD technique, agree 

with the FB modes shown in Fig. 5. The field profiles shown 

in the insert were produced using the surface Fourier 

transform technique computed over 10,000 time iteration 

steps. The Fourier transform spectrum also indicates the 

presence of other modes of lesser amplitude of which two of 

these were identified as the FB modes in Fig. 6. In the FB 

results that follow, the states and spectrums were also 

confirmed using the FDTD technique. For the sake of 

keeping the presentation compact, the FDTD confirmations 

are not shown. 

 

Figure 5. Rotational order spectrum for selected modes showing strong I � 0 rotational order, (Right) λ = 1.00 µm and (Left) λ = 1.55 µm. Insert 

is reconstructed modes from eigenvector coefficients and field expression 

(4). Magnitude of the field profiles plotted using a grey scale with white 

showing maximums and black showing minimum regions. 
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Figure 6. Rotational order spectrum for selected modes showing strong I � 0 rotational order and significant higher order expansion coefficients, 

(Right) λ = 1.17 µm and (Left) λ = 1.64 µm. Insert is reconstructed mode 

from eigenvector coefficients and field expression (4). Magnitude of the 

field profiles plotted using a grey scale. 

When equation (6) is cast to solve for dipoles, the 

rotational order of the field expansion coefficients must be 

one of the following 
@1, @11, @13, @23, @25, … � which 

is obtained by setting I′ � @1 and > a symmetry order of 

the dielectric. As indicated above, the eigenmatrix for 

dipoles separates in two blocks, with one matrix returning 

the field expansion coefficient for the rotational orders 
Z1, (11, Z13, (23, Z25, … � and the other for the orders 
(1, Z11, (13, Z23, (25, … �. The full eigenvector for a 

particular eigenvalue is obtained by combining both sets of 

expansion coefficients. Fig. 8 shows the dipole state space 

returned for wavelengths in the 1.0 to 2.5 µm range. The 

dominant dipoles are determined by scanning through the 

eigenvector space and locating the strong coefficients 

at I �  1. Two of the dipole modes are shown in Fig. 9 for 

the wavelengths 1.27 and 1.99 µm. Two additional modes in 

the dipole grouping are shown in Fig. 10 where the higher 

order rotational symmetries dominate the modal profile. 

 

Figure 7. Fourier spectrum space computed for the central transform point 

over the range of 0.9 to 2.5 µm. Dominant long lived modes correspond to 

the localized modes determined through examination of the eigenvector 

spectrum returned through FB analysis. 

 

Figure 8. Dipole state space determined through FB analysis for the 1.0 to 

2.5 µm wavelength range. Dipoles are sorted based on dominant rotational 

order present in the eigenvector expansion coefficients. Dipole rotational 

space is split by ±1 compared to the rotational space of monopoles shown in 

Fig. 4. 

For the quadrupole states the eigenmatrix returns field 

expansion coefficients with rotationalorders 
@2, @10, @14, @22, @26, … � . As with the dipoles, the 

eigenmatrix can be divided into two blocks that are 

individually solved. The eigenvectors of the states are 

produced by collecting all expansion coefficients for the 

same eigenvalue. Fig. 11 shows the state space for the 

quadrupoles obtained using the FB technique in the 1.0 to 

2.5 µm range while Fig. 12 shows the rotational order space 

for two of the dominant modes present. 

 

Figure 9. Two of the dominant dipoles of the circular dielectric profile. The 

expansion coefficient space is dominated by the rotational order at I � @1. 

The presence of the higher order symmetries produce field values in the 

rings where the higher order symmetries are present. 

5. Heterostructure 

The analysis above indicates that the circular photonic 

crystal structure contains an array of available modes and  
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Figure 10. Two representative dipole class modes which are dominated by 

expansion coefficients of order I �  @11 or higher. These modes extend 

strongly in the dielectric ring region demonstrating the strong interplay 

between dielectric and mode structure. 

those with strong monopole, dipole and quadrupole nature 

can be identified by examining the dominant expansion 

coefficients of the eigenvector. To further explore the state 

space properties, the 5 inner most rings of the circular 

dielectric are used to form the defect region for a 

translationally symmetric hexagonal array photonic crystal, 

Fig. 13. The hexagonal array is chosen to have circular air 

holes with radius � � 0.271 µm and lattice constant u � 0.630 µm in a silicon background, �/u � 0.430. The 

TE polarization band structure of the hexagonal array was 

calculated and a large band gap was identified between 

normalized frequencies of 0.273 and 0.461 corresponding to 

a wavelength range of 2.31 to 1.37 µm. 

 

Figure 11. State space for the quadrupole modes determined through the 

FB technique.Quadrupole rotational space is split by ±2 compared to the 

rotational space of monopoles shown in Fig. 4. 

The determination of the steady state space using the 

Fourier-Bessel technique analysis was performed on the 

heterostructure which has an overall 6-fold rotational 

symmetry that is imposed by the hexagonal lattice. The 

range " was set to 5 µm and was sufficient to contain the 

circular structure and a large portion of the hexagonal array. 

Fig. 14 shows the array of states determined when monopole 

type modal solutions are determined for the 1.0 to 2.5 µm 

wavelength range. These modes will have non-zero 

expansion coefficients of the associated eigenvector for 

rotational symmetries of I � 
0, @6, @12, @18, @24, … � , 

imposed by the presence of the hexagonal array and are 

separated depending on the rotational order of the dominant 

expansion coefficient. On the lower wavelength side of the 

figure, below 1.37 µm, a large number of states are present 

and correspond to states that significantly extend into the 

hexagonal array and are not confined by the band gap. 

Above the upper band gap wavelength of 2.31 µm the low 

number of states returned is typical of the FB computation 

process as they correspond to long wavelength states that 

average the dielectric. Within the band gap several states that 

display the strongest lowest order I � 0  expansion 

coefficients are present. Three of the states are shown; the 

highly localized monopole at 1.55 µm, an interface state at 

1.60 µm and a super state at 2.25 µm. Modes dominated by 

orders 6 and 12, not shown, display the same general 

features as those of order 0 but in general are less localized 

and can display features similar to whispering gallery 

modes. 

 

Figure 12. Two representative quadrupole class modes. The left mode is 

dominated by the I �  @2 order and resembles a strongly localized state 

to the central disk of the dielectric profile. The right mode has strong 

rotational orders at I �  2, 10, 12 and shows that this mode extends into 

the ring region of the dielectric profile. 

Fig. 15 shows the expansion coefficients collected per 

angular order I for the three states indicated above. Since 

the monopole at 1.55 µm is primarily located within the 

circular dielectric region the expansion coefficient rotational 

order space is dominated by the 12-fold rotational symmetry 

and displays strong coefficients at multiples of ±12. 

Interlaced within the strong rotational orders and at 

multiples of 6 are the expansion coefficients due to the 

extension of the mode into the hexagonal array. The 

interface state mode at 1.60 µm displays a rotational order 

expansion space with strong dependence on the 6-fold 

hexagonal and 12-fold circular dielectric profiles. The 

slightly stronger coefficients in multiples of ±12 indicate 

that the mode is more highly present on the central circular 

structure. The super state mode at 2.25 µm has expansion 
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coefficients that extend, in deceasing amplitude, over the 

entire 6-fold space which includes the 12-fold rotational 

order. The presence of the inner circular structure is still 

observed as the height of rotational order 36 (multiple of 12) 

is higher than that of 30 (multiple of 6). The examination of 

the state space for the various modes returned by applying 

the FB technique to a heterostructure can return information 

on the type of mode the state represents.  

 

Figure 13. Photonic crystal heterostructure composed of a translationally 

symmetric hexagonal array (�/u � 0.430) in which the central region had 

been replaced by the first 5 rings of the circular structure. White is silicon 

and black is air. 

 

Figure 14. State space for the monopole type solutions of the 

heterostructure shown in Fig. 13 (Left). The field profiles for three states, 

highly localized (1.55), interface (1.60) and super state (2.25) are shown 

which are present in the band gap region of the hexagonal array. The 

expansion coefficients of these states are shown in Fig. 15. 

Given that there are states confined to the inner circular 

dielectric and with wavelengths inside the band gap range of 

the hexagonal array, these modes are available as localized 

states and may be excited by coupling light from an adjacent 

waveguide. Two such waveguide configurations are shown 

in Fig. 16. The Fourier-Bessel technique can also be applied 

to explore the excitation of the modes by recognizing that 

the dielectric structures in Fig. 16 only have a rotational 

symmetry of 1. A total of 18100 expansion coefficients were 

used to compute the states of the structure 
D � 200, > �90� . Of the states available 2 for each waveguide 

configuration are shown in Fig. 17. The top left mode has a 

wavelength of 1.55 µm. Close examination shows that the 

mode also extends into the waveguide region and represents 

the field profile of the waveguide mode that will excite the 

strong monopole. The top right mode corresponds to the 

state at 1.60 µm. This mode has field extremes at the 

interface between the two dielectric structures corresponds 

to an interface state. The lower two states have the 

waveguide pushed one row of holes further away. In this 

way the presence of the waveguide, acting as a perturbation 

to the original heterostructure has less effect on central states 

that extend into the hexagonal region. The mode in lower 

left shows coupling to a strong dipole at 1.46 µm that 

extends over the entire inner region. The mode on the lower 

right is shown coupling to a mode at 1.54 µm showing 

strong 3-fold rotational symmetry. The field profiles in the 

waveguide region are the waveguide mode profiles at the 

corresponding wavelengths required to excite the mode. 

 

Figure 15. Expansion coefficients collected by rotational order I for the 

highly localized monopole at 1.55 µm the interface state at 1.60 µm and the 

super state at 2.25 µm. The coefficient space for the first two states is 

dominated by the 12-fold symmetry of the inner circular dielectric. Midway 

between the dominant orders are the contributions from the symmetry of 6 

imposed by the hexagonal array. The last state being a super state extends 

over the entire dielectric and as such shows strong 6 fold symmetry with a 

trace of the 12 fold remaining as order 36 is slightly higher than order 30.  

6. Conclusion 

We have shown that a dielectric structure that contains 

both radial and angular periodicity supports a number of 

different centrally located states. The monopole, dipole and 

quadrupole states are determined by making use of a 

Fourier-Bessel equivalent of the plane-wave technique 

applied to the conventional Gamma point. The eigenmatrix 

can be tuned for a particular mode order and by examining 

the eigenvector coefficient space, the dominant states can be 

determined. We also show that the Fourier-Bessel technique 

can be used to analyze the states present in a heterostructure 

configuration and for configurations which make use of 

waveguides for exciting the localized states. 
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Figure 16. Heterostructure waveguide configurations. The central circular 

dielectric has a radius of 1.96 µm and is composed of the 5 inner rings and 

central high dielectric region. (Left) waveguide located directly adjacent to 

the inner circular dielectric region. (Right) waveguide offset by one row of 

holes of the hexagonal array. 

 

Figure 17. The top mode profiles have waveguide adjacent to the inner 

circular dielectric region. (Top left) – mode at 1.55 µm, (Top right) – mode 

at 1.60 µm. Lower mode profiles have waveguide pushed one row of holes 

further away. (Bottom left) – mode at 1.46 µm, (Bottom right) – mode at 

1.54 µm. In all cases the field profile in the waveguide region represents the 

waveguide field profile required to excite the particular mode. 
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