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Abstract: Transport through porous medium occurs in numerous processes of environmental, chemical, petroleum and 

civil engineering. A lot of investigations have been done in order to understand the mechanisms of the transport of particulate 

suspension flow through porous medium. Transport of particulate suspensions and colloids in porous media is accompanied 

by particle capture and consequent permeability decline. In general, deep bed filtration studies have been conducted to 

analyse the mechanism involved in the processes of capturing and retaining particles occurs throughout the entire depth of the 

filter and not just on the filter surface. In this work, the steady-state transport equation is presented and the solution to the 

complete advective-dispersion equation for particulate suspension flow has been derived for the case of a constant filter 

coefficient. This model includes transport parameters which are particle advective velocity and particle longitudinal 

dispersion coefficient. This theoretical investigation of the transport of particles flowing in porous media is limited to flows 

with low Reynolds number (linear and laminar flow) and high Peclet number. 
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1. Introduction 

Transport through porous medium occurs in numerous 

processes of environmental, chemical, petroleum and civil 

engineering. Transport of particulate suspensions and 

colloids in porous media is accompanied by particle capture 

and consequent permeability decline.  

It occurs in oil reservoirs during sea or produced water 

injection, drilling fluid invasion causing formation damage, 

filtration of completion fluid, fines migration during 

production of heavy oils in low consolidated reservoirs 

resulting in productivity.  

Prediction of particle propagation and retention by 

mathematical modeling is an essential stage during planning 

and design of above-mentioned industrial processes. It helps 

in design of injected water treatment, in particle sizing of 

drilling and completion fluids, in sizing the gravel pack and 

designing the sand screens. 

In general, deep bed filtration studies have been 

conducted to analyse the mechanism involved in the 

processes of capturing and retaining particles occurs 

throughout the entire depth of the filter and not just on the 

filter surface [1].  

In this work, the steady-state transport equation is 

presented and the solution to the complete 

advective-dispersion equation for particulate suspension 

flow has been derived for the case of a constant filter 

coefficient. This model includes transport parameters which 

are particle advective velocity, particle longitudinal 

dispersion coefficient and filter coefficient. The numerical 

model needs to be developed for general case of a transition 

filter coefficient. The individual parameters are analysed 

according to dimensional analysis argument. 

Here, a particle mass transport equation is developed 

which includes the transport parameters, advective velocity 

and longitudinal dispersion coefficient. A solution to the 

complete advective-dispersion equation for particle 

transport was derived for the case of constant filter 

coefficient. The individual parameters are analysed 

according to dimensional analysis argument. 

In order to develop the theories understanding of the 

basics of flow in porous media is needed advective fluid 

velocity and longitudinal dispersion coefficient.  

This theoretical investigation of the transport parameters 

of particles flowing in porous media is limited to flows with 

low Reynolds number (linear and laminar flow) and high 

Peclet number (advection dominates diffusion). 

The theoretical development used dimensionless numbers 

to define the transport parameters and incorporated them 

into an advective-dispersion equation describing particle 
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transport.  

2. Advective Velocity 

The averaged particle velocity in the porous media, has 

been found to be either the same or slightly higher than that 

of the carrier fluid [2]. This deviation is caused by the 

particle`s size. The expected difference can be determined 

by analyzing the velocity profiles of both the fluid and the 

particles in a pore [3]. The model has been formulated for a 

capillary tube which has a constant rate with the following 

assumption: No interactions between the particles and the 

wall, suspension is well-mixed with a constant concentration 

across the cross section .There is no transverse flow.  

��=�� �1 � � ��	
��            (1)  

(0 � � � �� 
 

�� � �� �1 � � ��	�� � � ����	 ��� (0 < � � �� � ��)     (4) 

As the particle travels through a tube, Brownian motion 

and shear action will cause the particle to travel across the 

entire cross-section of the tube except that the center-line of 

the particle will be excluded from the immediate region of 

the wall due to its radial dimension.  

After the particle has traveled far enough longitudinally 

through the tube, the particle will have spent equal amounts 

of time in all radial position across the capillary tube [4]. 

Integration of the velocity profile over the range of 

possible radii shown in Eq. (1) for both the particle and fluid 

yields the higher average velocity for the particle than that 

for the carrier fluid. 

The average fluid velocity, ��, in a capillary tube is: 

�� � ���                                  (2) 

The average velocity of a particle, �� , in a capillary tube 

is: 

�� � �� �1 �  � �1 � ���	 �� � � ����	 ��!          (3) 

By inspecting Eq. (2) and (3), the particles are expected to 

have a larger average velocity than the carrier fluid velocity. 

This enhanced velocity of the particle can be expressed as a 

fractional difference between the two average velocities: 

∆� � #$%#&#& � 2 ���	 � () *���	 +�
               (4) 

This equation shows that as the radius of the particle 

increase, the difference between the average particle 

velocity and the average fluid interstitial velocity also 

increase. This increase is not unbounded but reaches a 

maximum ∆� value for 
���	 � )( ;  as 

���	 - )(   the velocity 

difference decrease.  

In physical sense, the pore radius can be estimated to 

approximately equal to one-fifth of media grain diameter 

(�� �  . /0); therefore the largest possible particle to be able 

to fit through the porous bed has a radius to this pore radius 

(�� � ��
.  

For a particle with �� � ��, the particles have been shown 

to collect on the bed surface in a cake [4].  

These references show that the onset of deep bed filtration 

occurs for a particle radius �� less than one-twentieth of the 

media grain diameter (�� �  �2 /0). Particles with the radii 

larger than this will not transport into the bed, but will 

collect on the surface. By letting /0 � 5�� , the largest 

particle which will transport has a radius equal to one-fourth 

of the pore radius (�� 4  5 ��). 

3. Longitudinal Dispersion Coefficient 

An important element of any dispersion model is the 

representation of the geometry of the porous medium. 

Houseworth [5] has thoroughly reviewed such longitudinal 

dispersion model for solute tracers.  

Instead of modeling the internal structure of a porous 

medium, dimensional analysis is used to analyze the 

problem. In this study, the effect of mechanisms is expected 

to scale with the pertinent transport variables. 

The pertinent variables for solute dispersion are: 

67 � 89:;<=>/<:�8 /<?@A�?<9: B9ACC<B<A:=  ; 6� C�AA C8></ D98AB>8�� /<CC>?<9: B9ACC<B<A:= 9C ?98>=A 

�� � C8></ <:=A�?=<=<�8 EA89B<=F ;  
�:/ /0 � DA/<� ;��<: /<�DA=A� �G
. 

From the Buckingham pi theorem, the following pairs of 

groups are formed: 

67��. /0 � H I��. /06 J , 9� �8=A�:�=<EA8F, 
2. KLK � H M#&.NOK P                 (5) 

QRA�A: TA � TAB8A= :>DUA� � ��. /06  

Experimental data for solute longitudinal dispersion in 

uniform media show good correlation with these 

dimensionless groups [5], [6].  

When the Peclet number is grater than 1, the two groups 

can be reduced to one: 

KL#&.NO V W9:?=�:=              (6) 

Where: PAK � /F:�D<B TAB8A= :>DUA� � #&.NOKL . 

An order to magnitude approximation for the longitudinal 

dispersion coefficient for solutes can be made with: 
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67 � ��./0                   (7) 

Particle longitudinal dispersion is expected to be similar 

to that of solutes.  

Currently, no particle breakthroughs have been performed 

by others form which particle longitudinal dispersion 

coefficient be determined. 

4. Transport of Fluid through Porous 

Medium 

In this part, the steady-state transport equation is 

presented and the solution to the complete 

advective-dispersion equation for particulate suspension 

flow has been derived for the case of a constant filter 

coefficient. This model includes transport parameters which 

are particle advestive velocity and particle longitudinal 

dispersion coefficient [7].   

These parameters have been defined by dimensional 

analysis using the pertinent variables of the porous media 

system. 

4.1. Particle Advective Velocity 

The result of the size exclusion for particles flowing in 

capillary tube can be written as equation (3) where � � �) . 
By using the equations (2) and (4) we will have:  

�X � 1 Y ∆�                  (8) 

QRA�A: �X � Z[Z\                 (9) 

As the particle size increase, the difference between 

particle velocity and fluid velocity increase. 

4.2. Particle Longitudinal Dispersion Coefficient 

The previous stated method uses a single velocity and 

length scale and does not model the internal structure of 

porous medium. In modeling particle dispersion, the 

following variable substitutions are used: 

6 ] 6�  

� ] �� 

67 ] 67� 

QRA�A: 67� � @��=<B8A /<?@A�?<9: B9ACC<B<A:= ; 6� � @��=<B8A D98AB>8�� /<CC>?<9: B9ACC<B<A:= ; �� � @��=<B8A EA89B<=F ; /0 � DA/<� ;��<: /<�DA=A� �G
; �:/ /� � @��=<B8A /<�DA=A� �G
. 

Particle size variable can be removed by using the particle 

properties as shown, provided 
N�NO �� 1. also the effect 

of particle size is included in the enhanced advective 

velocity for the particles. 

This analysis shows that particle and solute longitudinal 

dispersion are similar. When the particle Peclet number 

(TA� =  #$NOK$ 
 is grater than 10, the two groups can be 

reduced to one : 

67���/0 � B9:?=�:=                           �10
 

QRA�A: TA� � ��/06�� @��=<B8A /F:�D<B TAB8A= :>DUA�. 
An order of magnitude approximation for the longitudinal 

dispersion coefficient for particles can be made with: 

67� � ��/0                               �11
 

As mentioned before, the dimensional argument for 

defining the longitudinal dispersion coefficient is only valid 

when Pe` a 1 . For uniform media, this restriction is seen 

to be Pe` - 10 [5].  

Flow conditions are simultaneously limited to the linear, 

laminar regime for which the Reynolds number must be less 

than 10.  

4.3. Steady-State Transport in Porous Medium Equation 

and Solution 

Particle removal or filtration occurs as a particle 

suspension flows through a porous medium due to the 

interaction of the advecting particles and grains of the 

medium. Iwasaki [8] is credited with being the first to 

express filtration a first-order decay of particle concentration 

with distance: 

bWbc � �dW                               �12
 

1. W�c � 0
 �  W2                     �13
 

And a solution in dimensional terms: 

W � W2Ac@f�dcg                    �14
 

Or, in dimensionless terms: 

WX � Ac@f�dXcXg                            �15
 

QRA�A: WX � WW2 ; 
W2 � W�c � 0
; 
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dX � d/0; 
xX � xdk ; 

A complete equation of steady-state filtration can be 

formulated by using the general steady-state 

advection-dispersion equation of transport for particle 

concentration with a sink term to describe particle removal 

due to filtration: 

0 � 67� b�Wbc� � �� bWbc � ��dW              �16
 

The following semi-infinite medium boundary conditions 

are: 

W�c � 0
 � W2;  
 limp]q W�c
 � 0.                �17
 

The solution which is shown in dimensional terms is 

derived in appendix: 

W�c
 � W2Ac@fscg                     �18
 

QRA�A: s � 12 ��67� u1 � v1 Y 4d 67��� w 

In dimensionless terms the transport equation becomes: 

0 � b�WXbcX� � TAK� bWXbcX � TAK�dXWX       �19
 

With the same boundary conditions: 

WX�cX � 0
 � 1(30)2. limpX]q WX�cX
 � 0                 �20
 

And a solution in dimensionless terms: 

WX � Ac@fsXcXg                       �21
 

sX � s/0 � 12 TAK� u1 � v1 Y 4dXTAK�w              �22
 

5. Conclusion 

In this work, a mass balance particle transport equation 

which includes filtration has been developed. This model 

includes transport parameters which are particle advective 

velocity, particle longitudinal dispersion coefficient and 

filter coefficient. The steady-state transport equation is 

presented and the solution to the complete 

advective-dispersion equation for particulate suspension 

flow has been derived for the case of a constant filter 

coefficient.  

This work recommends to be investigated by particle 

longitudinal dispersion calculation from experimental data. 

Besides, the numerical model needs to be developed for 

general case of a transition filter coefficient.  

Appendix 

A.1 Solution Derivation 

Consider the one-dimensional steady-state particle 

advective-dispersion equation which includes the removal 

term to account for filtration effects: 

0 � 67� b�Wbc� � �� bWbc � d��W           �y. 1
 

QRA�A: W � B9:BA:=��=<9: ; c � 89:;<=>/<:�8 /<?=�:BA �G
; 67� � 89:;<=>/<:�8 /<?@A�?<9: B9ACC<B<A:= C9� @��=<B8A?; �� � �EA��;A @��=<B8A <:=A�?=<=<�8 EA89B<=F ; �:/ d � C<8=A� B9ACC<B<A:= �G% 
. 
With the following boundary conditions: 1. W�c � 0
 �  W2; �:/ 

2. limp]q W�c
 � 0.            �y. 1.1
 

For convenience, the x-variable is allowed to range from 

negative to positive infinity ��∞ � c � ∞
, although the 

equations are only applied for x- 0. this avoids difficulty at 

x=0, because small dispersion is allowed. In dimensionless 

form, the transport equation becomes: 

0 � 67� b�WXbcX� � TAK� bWXbcX � dXTAK�WX          �y. 2
 

QRA�A: WX � WW2 ; 
W2 � W�{ � 0
; 

/0 � DA/<� ;��<: /<�DA=A�; 

cX � c/0 ; 
TAK� � #�NOKL$ ; �:/ dX=d/0. 

With the same boundary conditions: 

1. WX�cX � 0
 � 1; �:/ 

2. limpX]q WX�cX
 � 0.           �y. 2.1
 

In order to derive a solution, try the following as a 

solution: 

WX(cX
 � Ac@fsXcXg                 �y. 3
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Check the equation (A.3) by substituting into Eq. (A.2), 

this results in second-degree polynomial in term of sX, and 

two roots of this polynomial are: 

s X � 12 TAK� u1 � v1 Y 4dXTAK�w ; s X

� 12 TAK� u1 Y v1 Y 4dXTAK�w 

Using these two roots, Eq. (A.3) becomes: 

WX(cX
 � yAc@fs XcXg+ |Ac@fs�XcXg                 �y. 4
 

The constants of this equation can be determined by 

applying the boundary conditions: 

1. WX�cX � 0
 � 1 � y � |; �:/ 2. WX�cX ] ∞
 � 0 � �y
�0
 Y �|
�Y∞
 } y � 1 �:/ | � 0. 
By substituting these constants into equation (A.4), the 

solution to equation (A.2) becomes: 

WX�cX
 � Ac@ ~12 TAK� u1 � v1 Y 4dXTAK�w cX�              �y. 5
 

A.2. Solution Approximation 

Consider an approximation for Eq. (A.5) by simplifying sX � 
s X � 12 TAK� u1 � v1 Y 4dXTAK�w              �y. 6
 

Perform a Taylor series expansion of the radical portion of sX of Eq. (A.6) by considering a function f(x): C�c
 � √1 Y c 

QRA�A: c � 4dXTAK� . 
The Taylor series approximation is: 

√1 Y c � 1 Y 12 c � 18 c� Y 116 c) � 5128 c5 … 

Since this series is an alternating series, the truncation 

error must be less than the first truncated term (absolute 

values). Substituting the first two terms of the series into Eq. 

(A.6) for the radical portion of cX yields: 

cX � 12 TAK� �1 � �1 Y 2dXTAK��! � �dX       �y. 7
 

Substituting the approximation for sX, Eq. (A.7), into the 

exact steady-state equation: 

WX � Ac@f�dXcXg                     �y. 8
 

Using Eq. (A.8), dX  can be directly calculated from 

concentration and position measurements. Also, Eq. (A.8) is 

the same result that would have been derived by ignoring the 

dispersion term originally. 

A.3 Approximate Versus Exact Solution 

The error using the approximate solution can be 

determined from the relative error of the two solutions, Eq. 

(A.3) and (A.8): 

∆WX � W�X � W�XW�X � Ac@f�dXcXg � Ac@fsXcXgAc@fsXcXg                 �y. 9
 

QRA�A: W�X � �@@�9c<D�=A ?98>=<9:; �:/  W�X �Ac�B= ?98>=<9:. 
Eq. (A.9) can be simplified as follows:  

ΔWX � Ac@f�cX�dX Y sX
g � 1        �y. 10
 

The Taylor series expansion for Eq. (A.10) is: 

Ac@f�cX�dX Y sX
g � 1 � cX�dX Y sX
 Y �        �y. 11
 

So, the approximate value for sX  can be determined 

using the Taylor series for sX found in section A.2: 

s X � 12 TAK��1 � √1 Y c� � � 12 TAK� �12 c � 18 c� … !
4 � 14 TAK�c Y 116 TAK�c� 

Substitute for x: 

sX 4 �dX Y dX�TAK�          �y. 12
 

Add dX to Eq. (A.12) in order to determine the argument 

of the exponential term of Eq. (A.10) so that Eq. (A.11) can 

be evaluated: 

sX Y dX 4 dX�TAK�            �y. 13
 

Substitute this approximation into the series expansion 

expression, Eq. (A.11), of the exponential term in Eq. 

(A.10): 

|ΔWX| 4 |1 � cX�dX Y sX
 � 1| 4 dX�cXTAK�            �y. 14
 

The absolute value of the error is the absolute value of 

∆WX of Eq. (A.14): 

} |���9�| � |ΔWX| 4 dX�cXTAK�            �y. 15
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Nomenclature  

dg= media grain diameter (L)  

dp= particle diameter (L)  

c = suspended particle concentration in carrier fluid  

σ= particle retained concentration  

kdet= detachment rate coefficient  

U = flow velocity  

US = fluid velocity  

UP = particle velocity  

UO = fluid centerline velocity  

r = radial distance  

ro = capillary radius  

ap = particle radius  

p = dynamic pressure  

x = longitudinal distance  

DL = longitudinal dispersion coefficient (L·T–1)  

D = free fluid molecular dispersion coefficient of solute 

(L2·T–1)  

VS = fluid interstitial velocity (L·T–1)  

Pe = Peclet number = SgV.dDL  

PeD = dynamic Pec let number = SgV.dDL  

C = particle concentration (M·L–3)  

X = longitudinal position (L)  

λ = filter coefficient (L–1)  

WS = particle settling velocity  

VS = fluid interstitial velocity  

Ρpf = densities of particle and fluid, respectively  

g = gravitational acceleration  

H = Hamakar constant (ergs)  

NG = gravitional group = ηG  

DLP = particle longitudinal dispersion coefficient 

(L2·T–1)  

DP = particle molecular diffusion coefficient in a free 

fluid (L2·T–1)  

VP = particle velocity (L2·T–1) 
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