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Abstract: Using linear least squares method and by data of atomic mass, the present study calculates the coefficients of 

volume, surface, Coulomb, and asymmetry terms in semi-empirical formula. Our findings show that the mass of neutron and 

hydrogen can be estimated via developing this example. The results of the present calculations are also compared with those of 

similar previous studies. 
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1. Introduction 

In the area of nuclear physics model based on experimental 

data such as is common to many fields. These models have 

been confirmed by experimental data and must able to predict 

some other data. One of the basic and important models in 

nuclear physics is liquid drop model (LDM). The essential 

assumptions of this model are 

a. The nucleus consists of incompressible matter so that 

R~A
1/3

. 

b. The nuclear force is identical for every nucleon and in 

particular does not depend on whether it is a neutron or a 

proton. 

c. The nuclear force saturates [1]. 

Semi-empirical mass formula (SEMF), known as 

Weizsäcker's formula or the Bethe–Weizsäcker formula in 

nuclear physic [2-3], is used for estimating the atomic mass as 

a function of mass number and atomic number. As the name 

implies, SEMF includes both empirical and theoretical parts; 

the theoretical part of this formula is obtained from the “liquid 

drop” model as proposed by George Gamow [4] containing 

some terms which were later developed by Niels Bohr and 

John Archibald Wheeler [5]. The SEMF is formulated by a 

German physicist, Carl Friedrich von Weizsäcker, in 1935 [6] 

[7]. So far, the formula is accepted, giving us an appropriate 

estimation for atomic masses and other properties of the nuclei, 

though it does not predict magical numbers. In recent years, 

newer models have been proposed for nuclear mass [8, 9]. 

Among these models is Duflo-Zuker’s model. 

Duflo-Zuker (DZ) shell model mass formulae by fitting to 

the latest experimental mass compilation AME2012 and 

analyze the propagation of the uncertainties in binding energy 

calculations when extrapolated to driplines. 

The “liquid drop” model assumes the nucleus as a liquid 

drop together with its associated properties. According to the 

model, binding energy (BE) of the nucleus includes Volume 

Term (the interaction of nucleons with adjacent nucleons 

regardless of decrease in interaction of surface nucleons), 

Surface Term (the effect of the decrease in interactions of 

surface nucleons), Coulomb Term (the interaction of coulomb 

repulsion among protons), Asymmetry Term (different 

amount of energy in equal and unequal modes of protons and 

neutrons numbers), and Parity Term (more stability and 

resultantly more negative energy of the nucleus for pair-pair 

nuclei). 

Theoretical calculations and data fitness are of the methods 

to determine coefficient of the terms in the “liquid drop” 

model [9, 10]. 

2. About Semi-Empirical Mass Formula 

The semi-experimental mass formula (SEMF) is an 

important formula that roughly gives the relationship 
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between nuclear mass and atomic number as well as neutron 

numbers. This formula also is called Weizsäcker's formula, 

or the Bethe–Weizsäcker formula, or the Bethe–Weizsäcker 

mass formula. According the name of this formula it has two 

aspects. Theoretical one and experimental one. The 

theoretical aspect is come from the liquid drop model 

proposed by George Gamow which it gives the general form 

of the formula. The values of the coefficients for the first 

time are presented (in 1935) by German physicist Carl 

Friedrich von Weizsäcker [2, 3]. The values of the 

coefficients have been changed over during the time but the 

original structure of the formula have been remains without 

changes. 

The SEMF gives a good approximation for atomic masses 

and several other effects, but does not explain the appearance 

of magic numbers of protons and neutrons, and the extra 

binding-energy and measure of stability that are associated 

with these numbers of nucleons. The liquid drop model in 

nuclear physics treats the nucleus as drop of incompressible 

nuclear fluid. It was first proposed by George Gamow and 

then developed by Niels Bohr and John Archibald Wheeler. 

The nucleus is made of nucleons (protons and neutrons), 

which are held together by the nuclear force (a residual effect 

of the strong force). This is very similar to the structure of 

spherical liquid drop made of microscopic molecules. This is a 

crude model that does not explain all the properties of the 

nucleus, but does explain the spherical shape of most nuclei. It 

also helps to predict the nuclear binding energy and to assess 

how much is available for consumption. Mathematical 

analysis of the theory delivers an equation which attempts to 

predict the binding energy of a nucleus in terms of the 

numbers of protons and neutrons it contains. This equation has 

five terms on its right hand side. These correspond to the 

cohesive binding of all the nucleons by the nuclear force, a 

surface energy term, the electrostatic mutual repulsion of the 

protons, an asymmetry term (derivable from the protons and 

neutrons occupying independent quantum momentum states) 

and a pairing term (partly derivable from the protons and 

neutrons occupying independent quantum spin states). If we 

consider the sum of the following five types of energies, then 

the picture of a nucleus as a drop of incompressible liquid 

roughly accounts for the observed variation of binding energy 

of the nucleus: 

 

Source: https://commons.wikimedia.org/w/index.php?title=File:Liquid_drop_model.svg&oldid=74367824. 

Figure 1. Illustration of the terms of the semi-empirical mass formula in the liquid drop model of the atomic nucleus. 

The volume term is to express the interaction between 

nucleons which are closest neighbor. This expression means 

that nuclear energy is proportional to the nucleus volume. 

According volume term each nucleons interacts with the 

closest neighbor. Because of the finite nucleus volume some 

of nucleons are located on surface of nucleus. These nucleons 

in analogy to interior nucleons have less interaction. Therefore 

these nucleons have less interactions which is must reduced 

from the energy of the volume term. This term is called 

surface term. 

As result of Coulomb repulsion between protons inside the 

nucleus, the Coulomb term is appeared in semi-empirical 

mass formula (SEMF). This term is to cause instability of the 

nucleus. 

Asymmetry term which is a result of Pauli exclusion 

principle says when the difference of the numbers of protons 

and neutrons increases the nucleus stability decreases. 

Pairing term is expressed the fact that in the nucleus 

systems pairing the protons and neutrons is caused to 

increasing the stability. 

3. The Least Squares Method (LSM) 

3.1. History 

For the first time least square method is introduced 

according to needs of astronomy and geodesy as scientists and 

mathematicians to overcome the navigating the Earth's oceans 

during the Age of Exploration. 

This method was the pick of several advances of eighteenth 

century [11]. 

The LSM is one of the methods commonly used for data 

fitness [12-14]. 

The method of least squares is a standard approach in 

regression analysis to the approximate solution of over 

determined systems, i.e., sets of equations in which there are 

more equations than unknowns. 

This allows us to use least squares method for determining 

the constants in theoretical formulas which are empirical 

basis. 

"Least squares" means that the overall solution minimizes 

the sum of the squares of the errors made in the results of 
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every single equation. 

Application is in data fitting. Least square method is used in 

two categories: the first one is linear or ordinary least square 

which applicable for linear sets of data. The linear least-squares 

method is used in statistical regression analysis. The second one 

is non-linear least square method. In this category the approach 

of the problem solving is iterative. As is clear from the name 

this category is used for non-linear data [15]. 

Legendre in 1805 was the first scientist who published a 

paper of the application of the least square method [16]. He 

was used this method for data fitting of linear data. In fact 

Legendre was presented a new method for the data fitting of 

the same data as Laplace for the shape of the earth. 

Another research in this method was published by Carl 

Friedrich Gauss in 1809. In this research using least square 

method he was calculated the orbits of celestial bodies [17, 18]. 

He had managed to complete Laplace's program of specifying a 

mathematical form of the probability density for the 

observations, depending on a finite number of unknown 

parameters, and define a method of estimation that minimizes 

the error of estimation. Gauss showed that arithmetic mean is 

indeed the best estimate of the location parameter by changing 

both the probability density and the method of estimation. He 

then turned the problem around by asking what form the density 

should have and what method of estimation should be used to 

get the arithmetic mean as estimate of the location parameter. In 

this attempt, he invented the normal distribution [19, 20]. 

3.2. The Method 

General term for each error in the LSM of linear type is a 

function as: 

err = ∑�d��	 = ∑
y� − f�x���	           (1) 

If it is assumed that fit a polynomial function, then: 

err = ∑ 
y� − ∑ a�x�������� �	�               (2) 

For example, with two columns of data (x, y), the objective 

is to minimize the error in equation (2), thus: 

���
�
���

������� = −2∑ 
y� − ∑ a�x�������� �� = 0������ = −2∑ 
y� − ∑ a�x�������� �x�� = 0������! = −2∑ 
y� − ∑ a�x�������� �x�	� = 0⋮������# = −2∑ 
y� −∑ a�x�������� �x��� = 0
        (3) 

rewriting of equation (3) results in the following: 

$%
%%
%& n ∑ x� ∑x�	∑x� ∑x�	 ∑x�(∑x�	 ∑x�( ∑x�)

⋯ ∑x��⋯ ∑x��+,⋯ ∑x��+	⋮ ⋮ ⋮∑ x�� ∑x��+, ∑x��+	 ⋱ ⋮⋯ ∑x�	� ./
//
/0
$%%
%&a�a,a	⋮a� .//

/0 =
$%%
%%&
∑ y�∑�x�y��∑�x�	y��⋮∑
x��y��.//

//0  (4) 

Where i=1, 2,…, n.ak coefficients are indeterminate of the 

problem in equation (4). Assuming the data in Table 1 to be 

related to a polynomial with degree of 5, the objective would 

be to find the coefficients with the best data fitness for a 

polynomial with degree of 5. 

Table 1. Pair of data related to polynomial with degree of 5. 

xi yi 

-1.4833 39.0336 

-1.0667 12.2011 

-0.6500 3.5372 

-0.2333 1.3652 

0.1833 0.8807 

0.6000 1.1373 

1.0167 2.03245 

1.4333 1.2934 

1.8500 -8.5361 

2.2667 -43.1118 

The related matrix equation was changed into the equation 

(5) after calculation of entries proportionate to equation (4). 

$%%
%%&
10. 3.9	 15.3.9	 15. 17.15. 17. 49.

17. 49. 80.49. 80. 197.80. 197. 377.17. 49. 	80.49. 80. 	197.80. 197. 	377.
197. 377. 878.377. 878. 1823.878. 1823. 4140..//

//0 =
$%%
%%&
a�a,a	a(a)a:.//
//0
$%%
%%&
9.83−182.−144.−693.−1025.−3052..//

//0  (5) 

The results were a5=-2.0001, a4=3.0002, a3=-0.9998, 

a2=1.9994, a1=-1.0001, a0=1.0002. Therefore, the best data 

fitness for polynomial with degree of 5 for data in Table 1 was 

equation (6): f�x� = −2. x: + 3. x) − 0.99x( + 1.99x	 − 1. x + 1   (6) 

The atomic mass of elements in terms of the energy stored 

in the nucleus (BE) written in SEMF as below: 

m
 X?@ � = Zm� H,, � + NmD − ,E! B�Z, A�        (7) 

and 

B�Z, A� = aIA − aJA!K − aE ?�?L,�@ K − a� �@L	?�!@      (8) 

where in (8), A, Z, m(
1
H) and mn are mass number, atomic 

number, mass of hydrogen atom, and neutron mass 

respectively. B(Z,A) is binding energy for a nucleus with 

mass number A and atomic number Z [equation (8) is just 

applied and valid for BE of those nuclei with odd mass 

number in which their numbers of protons or neutrons is 

none of 2, 8, 20, 28, 50, 82, 126, and 184. These numbers are 

called “magical numbers” in nuclear Physics, including 

volume, surface, coulomb, and asymmetry terms 

respectively. Coefficient of volume term (ay), surface term 

(as), coulomb term (ac), and asymmetry term (aa) were 

calculated by LSM (Table 2). 

Generalizing LSM to this problem results in definition of 

function (9): 
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err = ∑ 
y� − B�Z�, A���	� = ∑ M y� − aIA� + aJA�!K +aE ?N�?NL,�@N K + a� �@NL	?N�!@N O
	

�   (9) 

If the above-mentioned function is minimized, then the 

coefficient of volume, surface, coulomb, and asymmetry 

terms are obtained; in other words, partial derivative of 

function err in proportion to coefficient of volume term (ay), 

surface term(as), coulomb term(ac), and asymmetry term (aa) 

should equal zero. 

���
�
���

������P = −2∑ A�
y� − B�Z�, A���� = 0	
������Q = 2∑ A�!K
y� − B�Z�, A���� = 0	������R = 2∑ ?N�?NL,�

@N K 
y� − B�Z�, A���� = 0
������S = 2∑ �@NL	?N�!@N 
y� − B�Z�, A���� = 0

      (10) 

In equation (10), yi is binding energy of i-th special nucleus 

obtained from equation (8) when mass of hydrogen atom and 

neutron be given. 

Data of Table 2 was selected in a way that the share of parity 

term equals zero. 

Table 2. Symbol, atomic number, mass number, and atomic mass of some 

special nucleus [12]. 

atomic mass (m) in 

terms of u 
mass number 

atomic 

number 

Nucleus 

symbol 

13.003355 13 6 C 

20.993843 21 10 Ne 

20.997651 21 11 Na 

26.986704 27 14 Si 

34.969032 35 16 S 

34.975256 35 18 Ar 

40.961825 41 19 K 

44.958124 45 22 Ti 

52.944340 53 23 V 

50.948213 51 25 Mn 

60.933461 61 29 Cu 

80.923270 81 38 Sr 

102.906323 103 44 Ru 

116. 908630 117 52 Te 

142.910930 143 61 Pm 

182.950817 183 75 Re 

182.953290 183 76 Os 

192.966560 193 80 Hg 

206.980456 207 84 Po 

215.000310 215 87 Fr 

235.043924 235 92 U 

251.079580 251 98 Cf 

System of equation (10) results in matrix equation 11: 

T b, b	b: bV b( b)bW bX	bY b,�b,( b,) b,, b,	b,: b,VZ [
aIaJaEa�\ = [c,c	c(c)\        (11) 

where, 

^
___̀

c, = ∑ y�A��c	 = −∑ y�A�!K�c( = −∑ y� ?N�?NL,�@N K�
c) = −∑ y� �@NL	?N�!@N�

                (12) 

and 

^
___
___
___
___
___
_̀

b, = ∑ A�	� 	b	 = b: = −∑ A�aK� 	
b( = bY = −∑ Z��Z� − 1�A�!K�b) = b,( = −∑ �A� − 2Z��	�bV = ∑ A�bK� 	
bW = b,� = ∑ Z��Z� − 1�A� K�bX = b,) = ∑ �@NL	?N�!@N K� 	

b,, = ∑ ?N!�?NL,�!@N!K� 	
b,	 = b,: = ∑ ?N�?NL,��@NL	?N�!@NbK�

b,V = ∑ �@NL	?N�b@N!� 	

          (13) 

The required determinants were c
2
=931.494061 MeV/u, 

mass of hydrogen atom=1.007940u, and neutron 

mass=1.008665u. The results obtained through the LSM for 

volume, surface, coulomb, and asymmetry coefficients were 

av=15.519MeV ،as=17.476MeV ،ac=0.674MeV and 

aa=24.576MeV respectively. 

4. Conclusion and Recommendation 

Comparing the results obtained for volume, surface, coulomb, 

and asymmetry terms with those of other studies showed an 

appropriate compatibility. It is recommended to use more input 

data with higher accuracy obtained from more recent references, 

so as to increase the accuracy of the results. An estimation of 

neutron and hydrogen atom masses can be presented if their 

masses in equation (7) are regarded indeterminate. 
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