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Abstract: The objective of this paper is to determine and minimizes the total operation cost and the risk of load shedding in a 

microgrid (µG) composed of two areas: a generation center and a load center. The system operation is formulated as an 

optimization problem, where the objective function minimizes the costs of the system operation and the risk of load shedding. 

The constraints secure the balance between generation and load. Also generation and transmission may not exceed the available 

capacity. Monte Carlo simulation (MCS) is used for the solution of the optimization problem giving two main outputs: loss of 

load occasion (LOLO) and total operation cost (TOC). A variance reduction technique is used to reduce the variance of MCS. One 

other objective of the paper is to study how much the simulation efficiency can be improved by introducing variance reduction 

techniques. Simulation results shows that, (i) the formulated optimization problem, objective function, and constraints is capable 

to achieve the study target, and (ii), with even a quite straightforward and simple model the proposed MCS methods show 

considerable variance reductions compared to Simple sampling in this model of the µG. 

Keywords: Micro Grid, Monte Carlo Simulation, Variance Reduction Techniques, Optimization, Operation Costs,  

Load Shedding, Distribution System Planning, Dispersed Generation, Power System Management 

 

1. Introduction 

Recent years, increasing trends on electrical supply demand, 

urge search for the new alternative in supplying the electrical 

power. µGs are new challenging power systems under 

development. A study in µG system with embedded 

Distribution Generations (DGs) to the system is rapidly 

increasing. Also the µG energy systems are considered to be 

the most cost effective power solutions to meet the load 

requirements of the people that live in the rural areas. Due to 

the intensive cost of extending the transmission and 

distribution lines to the remote communities, the power 

demands in such areas can be met by using a µG power system 

that consists of the diesel generator, PV, WTG and ESS. 

Moreover, the integration of µGs in distribution systems will 

offer a decentralized control of local resources for satisfying 

the network reliability and the power quality required by local 

loads. µG system basically is designed to operate either in 

islanding mode or interconnect with the main grid system. In 

any condition, the system must have reliable power supply and 

operating at low transmission power loss. During the 

emergency state such as outages of power due to electrical or 

mechanical faults in the system, it is important for the system 

to shed some loads in order to maintain the system stability 

and security. In order determine the total operation cost and 

the risk of load shedding in the µG, it is very important to 

design the µG optimally [1-9].  

The transition of µG from grid-connected mode to islanded 

mode is usually associated with excessive load (or generation), 

which should be shed. Ref. [1] proposes a robust load 

shedding strategy for µG islanding transition, which takes into 

account the uncertainties of renewable generation in the µG 

and guarantees the balance between load and generation after 

islanding. A robust optimization model is formulated to 

minimize the total operation cost, including fuel cost and 

penalty for load shedding. The proposed robust load shedding 

strategy works as a backup plan and updates at a prescribed 

interval. It assures a feasible operating point after islanding 

given the uncertainty of renewable generation. The proposed 

algorithm is demonstrated on a simulated µG consisting of a 

wind turbine, a PV panel, a battery, two distributed generators 
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(DGs), a critical load and an interruptible load. Numerical 

simulation results validate the proposed algorithm. 

A multi-objective optimization model is proposed in [2] to 

calculate best possible size of energy storage system (ESS) 

utilizing weighted sum method. Positive effects of demand 

response program (DRP) are considered in the proposed paper. 

The best possible solution is selected by fuzzy satisfying 

approach. The proposed multi-objective model includes two 

conflicting objective functions: 1) the first objective function 

is minimization of µG investment cost as well as the operation 

cost; 2) the second objective function is minimization of loss 

of load expectation. The local units inside the µG may have 

some unknown outages and the renewable units produce 

variable and unstable output, so utilization of ESS is essential 

to improve stability of µG. The impact of DRP 

implementation is evaluated on µG related costs and the 

results are compared to validate the proposed technique. A 

mixed-integer program is utilized to simulate and model the 

proposed stochastic ESS optimal sizing problem in a µG.  

The objective [3] is to minimize the total system planning 

cost comprising investment and operation costs of local µGs, 

the co-optimized planning of large generating units and 

transmission lines, and the expected cost of unserved energy. 

The cost of unserved energy reflects the cost of load shedding 

which is added to the objective function for reliability 

considerations. The µG-based co-optimization planning 

problem is decomposed into a planning problem and annual 

reliability sub-problem. The optimal integer planning 

decisions calculated in the planning problem will be examined 

against the system reliability limits in the sub-problem and the 

planning decisions will be revised using proper feasibility cuts 

if the annual reliability limits are violated. Numerical 

simulations demonstrate the effectiveness of the proposed 

µG-based co-optimization planning in power systems and 

explore the economic and reliability merits of µG planning as 

compared to grid-based generation and transmission upgrades. 

Ref. [4], aims to minimize total operation cost of µG in 

presence of Battery Energy Storage BES of optimal size. The 

2m point estimate method has been applied to model the 

uncertainties in load demand, market prices and available 

power from Renewable Energy Sources RES in the µG, as it is 

computationally efficient and reliable probabilistic method. 

Moreover, Gram-Charlier expansion is used to provide more 

accurate probability distribution of µG operation cost. Swine 

Influenza Model Based Optimization with Quarantine and 

Whale Optimization Algorithm have been applied to minimize 

operation cost of µG. Simulation results prove the 

effectiveness of the algorithms. The incorporation of BES of 

optimum size reduces operation cost of µG effectively.  

In [5], a risk-constrained stochastic framework is presented 

to maximize the expected profit of a µG operator under 

uncertainties of renewable resources, demand load and 

electricity price. In the proposed model, the trade-off between 

maximizing the operator’s expected profit and the risk of 

getting low profits in undesired scenarios is modeled by using 

conditional value at risk (CVaR) method. The influence of 

consumers’ participation in DR programs and their emergency 

load shedding for different values of lost load (VOLL) are then 

investigated on the expected profit of operator, CVaR, 

expected energy not served (EENS) and scheduled reserves of 

µG. Moreover, the impacts of different VOLL and risk 

aversion parameter are illustrated on the system reliability. 

Extensive simulation results are also presented to illustrate the 

impact of risk aversion on system security issues with and 

without DR. Numerical results demonstrate the advantages of 

customers’ participation in DR program on the expected profit 

of the µG operator and the reliability indices.  

The µG controller in [6] seeks to operate the local energy 

storage unit to minimize the risk of load shedding, and 

renewable energy curtailment over a finite time horizon. The 

problem is formulated for optimizing the operation of the 

storage unit as a finite stage dynamic programming problem. 

The multi-stage objective function of the energy storage is 

proved strictly convex in the state of charge of the battery at 

each stage. The uniqueness of the optimal decision is proven 

under some additional assumptions. The optimal strategy is 

then obtained. The effectiveness of the energy storage in 

decreasing load shedding and renewable energy curtailment is 

illustrated in simulations.  

In [7], a load shedding algorithm is proposed for an 

optimization problem to maximize the satisfaction of system 

components. The proposed algorithm preferentially assigns 

the power to the sub demand with a high preference to 

maximize the satisfaction of power consumers. In addition, 

the algorithm assigns the power to maximize the power sale 

and minimize the power surplus for satisfaction of power 

suppliers. A multi-agent system is implemented on top of a 

conventional development framework and assessed the 

algorithm’s adaptability, satisfaction metric, and running time. 

Following the penetration of µGs in distribution systems, 

frequency deviations in contingency conditions are becoming 

increasingly important. The article [8] develops a new load 

shedding method for µGs considering wind speed changes. 

The proposed method uses a combination of frequency and 

voltage data for determining load-shedding amounts in each 

contingency condition. For this purpose, the total required 

load shedding is determined first by using transient stability 

analysis in different contingency scenarios in µGs. This will 

establish a database for an adaptive neuro-fuzzy inference 

system network to determine the total required load shedding. 

Then a fuzzy system is used to determine the load shedding in 

each step dynamically based on the severity of contingencies. 

The proposed method capability is compared with the 

conventional load-shedding method, showing the 

effectiveness of the proposed method for µG control in 

contingency conditions. 

Ref [9] proposes an adaptive optimization-based approach 

for under frequency load shedding in µGs following an 

unintentional islanding. In the first step, the total amount of 

load curtailments is determined based on the system frequency 

response model. Then, the proposed mixed-integer linear 

programming model is executed to find the best location of 

load drops. The novel approach specifies the least cost load 

shedding scenario while satisfying network operational 
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limitations. A look-up table is arranged according to the 

specified load shedding scenario to be implemented in the 

network if the islanding event occurs in the µG. To be adapted 

with system real-time conditions, the look-up table is updated 

periodically. The efficiency of the proposed framework is 

thoroughly evaluated in a test µG with a set of illustrative case 

studies. 

2. The Method 

In this paper the priorities of the µG operation compose an 

optimization problem. Monte Carlo Simulation (MCS) [10] is 

used for the solution this optimization problem giving the two 

main outputs: loss of load occasion (LOLO) and total 

operation cost (TOC). Variance reduction techniques are used 

to reduce the variance of the MCS. The variance reduction 

techniques tested on the optimization problem are [11, 12]: 

Two alternatives of Complementary Random number 

Sampling, Importance Sampling, Stratified Sampling and the 

Control Variates method. These methods are arguably the 

most commonly used techniques for increasing the 

probability of obtaining good estimates from MCS. 

2.1. The Study µGs Power System 

The study µG is a power system divided in two areas: a 

generation center and a load center. The generation center is 

dominated by large renewable power plants, but there is also a 

small local load, whereas the load center has most of the load 

in the system, but there is also some thermal power plants. The 

renewable power plants (hydro) in the generation center are 

assumed to have negligible variable operation costs and the 

risk of outages is also negligible. Moreover, the capacity of the 

renewable power plants is larger than the maximal local load; 

hence, the generation center always has excess power to 

export to the load center. However, the interconnection 

between the areas has a limited capacity and there is a risk of 

outages. There are also electrical losses on the interconnection; 

these losses are proportional to the square of the power 

injected into the interconnection. The variable costs of the 

thermal power plants in the load center is assumed to be 

directly proportional to the power output (neglecting, start-up 

costs and ramp rates [2]) and there is a risk of outages in these 

units. Finally, the load in the two areas is varying randomly. It 

can be assumed that the load is described by one probability 

distribution for the total load of the system, and another 

probability distribution for the share of the load that is located 

in the main load center.  

The system is operated in such a manner that the first 

priority is to avoid load shedding when there is not sufficient 

generation capacity available in the system and the second 

priority is to minimize the total operation cost. Voltage and 

frequency control may be neglected. 

2.2. Problem Formulation 

The objective of simulating this µG is to determine the total 

operation cost and the risk of load shedding. The random 

outages in thermal power plants and the interconnection 

between the areas, as well as random loads in the two areas 

composes the random inputs variables of the model. These 

variables reflect: share of the total load that is located in the 

main load center, total load in the system, available generation 

capacity in thermal plants, and available transmission capacity 

on the interconnection between the two areas. This paper is 

actually only interested in two outputs: the total operation cost 

and whether load shedding occurs or not. However, to 

compute these two values, some other partial results are 

needed. Since the partial results also depend on the values of 

the random inputs, they will in practice also be random 

outputs (i.e., random variables with unknown probability 

distributions depending on the probability distributions of the 

inputs). In this case, the model will be generating the 

following outputs: load in the main load center, load in the 

generation center, generation in the renewable power plants, 

transmission from the generation center to the load center, loss 

of load occasion (binary variable equal to 1 if load shedding is 

necessary and 0 otherwise), transmission from the generation 

center to the load center, total operation cost, and unserved 

load.  

Mathematical Model 

Some additional values are needed to formulate the µG 

mathematical model: variable operation cost of thermal power 

plant, penalty cost for unserved load, loss coefficient for the 

interconnection between the areas, and available generation 

capacity in the renewable (hydro) power plants. To compute 

the values of the outputs for a scenario, first, it is necessary to 

compute the local load in each area: 

�� = �����                     (1) 

�� = �1 − ������                 (2) 

The next step is to determine how the system will be 

operated. This can be formulated as an optimization problem, 

where the objective function (3) minimizes the costs of the 

system and the risk of load shedding in the µG. 

�
�
�
��	 ∑ ���� �� + ���          (3) 

The constraints (4), (5) conserve the balance between 

generation, load and import in the load center and between 

generations, load export in the generation center. 

�������	� 	 ∑ �� + ! − "!� = �� − ��      (4) 

# = �� + !                 (5) 

The limits (6) ~ (8) confine generation and transmission 

within the available capacity. 

0 ≤ �� ≤ ��&'( , ∀+              (6) 

0 ≤ # ≤ #,-. 	              (7) 

0 ≤ ! ≤ !,-. 	               (8) 

The loss of load occasion as per (9). 
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0 ≤ �	                  (9) 

Finally, once it has been determined how the power system 

is operated, the two main outputs, (10) and (11) can be 

computed from the solution to the optimization problem: 

/0/0 = 10	
2	� = 0,1	
2	� = 1,	              (10) 

304 = ∑ ���� �� + ���.	            (11) 

The µG is not connected to the grid, but has a local system 

of its own. The local grid is supplied by a 350kW hydro power 

plant in the Generation center. The variable costs of the hydro 

power plant are negligible and it can be considered to be 100% 

reliable. There is an 11kV transmission line between the 

Generation center and Load center. This line has a maximal 

capacity of 300 kW, a 99% reliability and losses equal to 1067!� , where P is the power injected on the Generation 

center side. In Load center proper, there are two diesel 

generator sets. The first unit has 200 kW capacity, the variable 

costs are 10 ¤/kWh and the availability is 90%. The second 

unit has 150 kW capacity, the variable costs are 12 ¤/kWh and 

the availability is 80%. The total load of the system is varying 

between 200 and 600 kW according to the probabilities listed 

in Table 1. It is 50% probability that 85% of the total load is in 

Load center and 50% probability that 90% of the total load is 

in Load center. 

Table 1. Probabilities of different load levels in the µG. 

Total load [kW] Probability [%] 

200 20 

300 40 

400 25 

500 10 

600 5 

The following model constants (the inputs that do not 

change value between scenarios) are identified: ��8 = variable operation cost of thermal power plant g, 10 

¤/kWh ��9 = variable operation cost of thermal power plant g, 12 

¤/kWh ": = loss coefficient for the interconnection between the 

areas, 1067 

The capacity of diesel generator sets and the transmission 

line are also not changing between scenarios. However, due to 

the risk of outages, the available capacity (which is what 

needs to be considered in the simulation) is a random variable; 

hence, the maximal capacity will appear in the probability 

distribution of the inputs. 

Also, the following frequency functions stating the 

probability of a certain outcome are identified in (12) ~ (15): 

2�8&'(= available generation capacity ; in the large diesel generator set =< 0.1	; = 0,0.9	; = 200,0	?@@	 �ℎ�B	;,               (12)

CDEFGH= available generation capacity ; in the small diesel generator set =< 0.1	; = 0,0.8	; = 150,0	?@@	 �ℎ�B	;,               (13) 

 

Figure 1. Frequency & Scaled Probability Distribution functions of total demand. 

2K&'(= available generation capacity ; in the tie line between Generation center and Load center=< 0.01	; = 0,0.99	; = 300,0	?@@	 �ℎ�B	;,      (14) 

2MNON= total demand ; given by Table 1 and depicted in Figure 1 

2P= the share ; of the total demand located in Load center =<0.5	; = 0.85,0.5	; = 0.9,0	?@@	 �ℎ�B	;,                (15) 
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2.3. Variance Reduction in MCS for Minimization of 

Operation Cost and Load Shedding Risk in µG 

MCS is used for the solution to the optimization problem 

giving the two main outputs: loss of load occasion (LOLO) 

and total operation cost (TOC). Variance reduction technique 

is used to reduce the variance of a MCS. In this paper five of 

the most commonly used variance reduction techniques are 

tested to estimate the avoidance of load shedding and 

minimization of the total operation cost in the µG. The 

variance reduction techniques [10] tested on the optimization 

problem are: Two alternatives of Complementary Random 

number Sampling, Importance Sampling, Stratified Sampling 

and the Control Variates method. These methods are arguably 

the most commonly used techniques for increasing the 

probability of obtaining good estimates from MCSs. 

2.4. Simulation Algorithms with Different Variance 

Reduction Techniques 

Below follows explanation of the algorithms used for 

Matlab coding for MCS with different Variance Reduction 

Techniques for the µG. 

Scenario: This is the core of the simulation of the detailed 

mathematical model of the µG. It takes a scenario: (��,-. and ��,-. are the available capacities in the diesel generator sets, !,-.  is the available transmission capacity, ���� , �� and �� 

are the total load, load in the generation center and load in the 

load center respectively) as inputs and computes the total 

operation cost as well as the binary loss of load occasion 

variables. 

Simple Sampling: This algorithm executes one simulation 

using simple sampling. The principle is straightforward: 

generate a scenario by applying the inverse transform method 

[11] on each input, analyze the scenario using the 

mathematical model and store the results. 

2.4.1. Complementary Random Number 2 Sampling 

This algorithm executes one simulation using 

complementary random numbers. In this variant each original 

scenario, (Gtot, D), generates one complementary scenario, 

(Gtot
1
, D

1
). The principle is the same as for simple sampling, 

except for the additional code that switches between 

generating original and complementary random numbers. 

However, as we can see in table 2, this tiny extra code 

increases the average simulation time by approximately 35%. 

Simulation of the µG uses in this algorithm complementary 

random numbers for total load and total generation capacity (1 

complementary scenario). 

2.4.2. Complementary Random Number 4 Sampling 

This script executes one simulation using complementary 

random numbers. In this variant each original scenario, (Gtot, 

D), generates three complementary scenarios, (Gtot
1
, D

1
), 

                                                             
1
This script applies probabilistic production cost simulation to the µG. The 

equivalent load duration curves (��, ��	?�Q	����) are stored as row vectors, where 

the first element represents the value of the duration curve for 0 ≤ x < 50, the second 

element is for 50 ≤ x < 100, etc. 

(Gtot
1
, D

1
) and (Gtot

1
, D

1
) respectively. The principle is the 

same as for simple sampling, except for the additional code 

that switches between generating original and complementary 

random numbers. This variant require only 75% less 

pseudorandom numbers to generate the values of the 

generation capacity and the total load, which compensates for 

the extra time to switch between generating original and 

complementary random numbers; therefore the average 

simulation time is more or less the same as for simple 

sampling. Simulation of the µG uses complementary random 

numbers for total load and total generation capacity (3 

complementary scenario). 

2.4.3. Control Variates Sampling 

This When using the control variates method our 

knowledge of the system is used to get a better estimate 

[12, 13]. This script executes one simulation using control 

variates. First, a probabilistic production cost simulation is 

carried out using some script*. Then, simple sampling is 

applied to the difference between the output of the detailed 

model of the µG and the simplified model. Finally, the 

expectation values of the control variates are added to the 

estimated differences.  

2.4.4. Importance Sampling 

In this code the probability measure of the random 

variables is changed to reduce the variance of the MCS. To 

get an unbiased estimate the resulting randomized cases must 

then be weighted before taking the mean [12, 13]. This script 

executes one simulation using importance sampling. The 

principle is mostly the same as for simple sampling, except 

that scenarios are randomized according to the importance 

sampling functions and that each observation is multiplied by 

a weight factor. The weight factors for each input are assigned 

at the same time as the random numbers are computed.  

2.4.5. Stratified Sampling 

If there is a natural way to partition the sample space 

into m subsets, then the variance will be reduced if we 

divide the sampling procedure into m different MCSs in 

which we constrain the r.v. to live on the m subsets 

respectively [12, 13]. This script executes one simulation 

using importance sampling. First, the stratum weights are 

computed and analytical results are assigned to those strata 

where it is possible. The next step is to run a pilot study; the 

number of samples are the same for all strata for which 

there is no analytical result. The randomization of the input 

values is modified to take into account the probability 

distribution of the inputs for the corresponding strata. After 

the pilot study, estimates of the variance for all sampled 

strata are calculated and the sample allocation for the next 

batch of scenarios is computed. Scenarios are then 

generated in the same way as in the pilot study. The results 

for each stratum are stored and a new batch is generated 

according to an updated sample allocation. At the end of the 

simulation, the results are weighted together according to 

the stratum weights. 
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2.5. Comparing Variance Reduction Techniques 

To compare different variance reduction techniques to one 

another [10] used the measure "time taken by the simulation –

by- variance of the resulting estimate". This measure is 

reasonable since variance decays as 1/n and t α n, where n is 

amount of samples and t is the time taken by the simulation. 

However, in this paper all the methods tested take 

approximately the same time when using the same n. 

Therefore, we use the inverse of the above measure to select 

the variance reduction technique securing minimum product 

of the simulation time and resulting variance. While 

Importance Sampling, Stratified Sampling and are methods 

that affect our way of generating random variables, the 

Control Variates method uses the same way of randomizing 

the state variables as Simple Sampling. All in all five set of 

methods were tested, as depicted in Table 2 below. 

Table 2. Compilation of simulation results for the µG. 

Simulation method 

Average 

Simulation 

time [ms] 

Total operation cost Loss of load occasion 

Mean Var. Eff. Mean Var.  Eff.  

Simple sampling 309.675 573.5745 327.7999 101.010 0.0475 0.0468 0.0145 

Complementary random 

numbers2: (G, D), (G*, D*) 
419.562 447.1123 191.6767 80.6452 0.0384 0.0346 0.0145 

Complementary random 

numbers4: (G, D), (G, D*), 

(G, D*), (G*, D*) 

875.653 898.5258 972.3420 833.333 0.0649 0.0310 0.0271 

Control Variates 328.008 442.0618 392.7000 128.205 0.0346 0.0210 0.0069 

Importance sampling 369.412 440.7199 141.3033 52.0833 0.0347 0.0097 0.0036 

Stratified sampling 213.588 443.6519 6656.0 1428.6 0.0331 1.6122e-05 3.4434e-06 

 

3. Simulation Results 

This script is used to test and compare the results of 

different simulation method. The same number of samples is 

collected in each MCS simulation, and number of simulations 

are the same for all methods. Moreover, each simulation run 

uses the same seed for the random number generator for all 

methods. This means that two methods that generate scenarios 

in exactly the same way (such as simple sampling and control 

variates) will use the same scenarios in each simulation run. 

Time of each simulation run is measured using the built-in 

Matlab timer (tic and toc). Notice that the execution time will 

vary slightly every time this script is run, depending on which 

other tasks are running on the same computer, how much 

memory that is available, etc. All in all five set of methods 

were tested, beside the Simple sampling method as depicted in 

Table 2. 

The proposed MCS methods show, in Table 2 considerable 

variance reductions. Due to space limitation some examples of 

simulation convergence (Simple sampling, Complementary 

random numbers2 sampling, Complementary random 

numbers4 sampling, Control Variates sampling, Importance 

sampling) are depicted in the following figures. 

Figure 2 Compares LOLP determined by MCS with 

different Variance Reduction methods. Figure 3 Compares 

TOC determined by MCS with different Variance Reduction 

methods, Figure 3 shows that Simple sampling, 

Complementary random numbers2 sampling, and 

Complementary random numbers4 have same convergence 

trends and values. Figure 4 shows that Simple sampling, 

Complementary random numbers2 sampling, Control Variates 

sampling, and Importance sampling have same convergence 

trends and values. 

 

Figure 2. Comparison of LOLP from different Variance Reduction MCS 

methods. 

 

Figure 3. Comparison of TOC from different Variance Reduction MCS 

methods. 

4. Discussion 

The µG operation is formulated as an optimization 

problem, where the objective function minimizes the costs 

of the system operation and the risk of load shedding. The 

constraints secure the balance between generation and load. 

Also, generation and transmission may not exceed the 

available capacity. 
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MCS is used for the solution of the optimization problem 

giving two main outputs: loss of load occasion (LOLO) and 

total operation cost (TOC). Variance reduction techniques 

are used to reduce the variance of MCS. One other 

objective of the paper is to study how much the simulation 

efficiency can be improved by introducing variance 

reduction techniques. 

5. Conclusion 

The µG operation is formulated as an optimization problem, 

where the objective function minimizes the costs of the system 

operation and the risk of load shedding. The constraints secure 

the balance between generation and load. Also, generation and 

transmission may not exceed the available capacity. 

MCS is used for the solution of the optimization problem 

giving two main outputs: loss of load occasion (LOLO) and 

total operation cost (TOC). Variance reduction techniques 

are used to reduce the variance of MCS. One other 

objective of the paper is to study how much the simulation 

efficiency can be improved by introducing variance 

reduction techniques. 

Simulation results shows that, (i) the formulated 

optimization problem, objective function, and constraints is 

capable to achieve the study target, and (ii), with even a quite 

straightforward and simple model the proposed MCS methods 

show considerable variance reductions in this model of the µG 

compared to Simple sampling in this model of the µG. 

Also, it is clear that a good choice of variance reduction 

technique can dramatically increase the efficiency of the 

simulation. A poor choice might, however, not give that 

much of an improvement. Some techniques, like Simple 

Sampling, give a result that seems very good but actually 

miss some very important scenarios, yielding a cardinal 

error. For our case study, using Control Variates sampling 

gave the best results for our problem. These techniques can, 

of course, be used on many different problems in power 

system analysis.  

6. Recommendations 

MCS is preferable in solving the minimization of the costs 

of the system operation and the risk of load shedding. Chose a 

good variance reduction technique to increase the efficiency 

of the simulation. For cases like our case study, using Control 

Variates sampling gave the best results for our problem. These 

techniques can, of course, be used on many different problems 

in power system analysis.  
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of optimal operation cost and the risk of load shedding in a 

microgrid (µG) using Multi-objective Optimization both 

Pareto-optimal weighted sum Solutions. 

Symbols 

c 
Share of the total load that is located in the main 

load center, 

Dtot Total load in the system, 

��, ��&'(  
Generation and available capacity in thermal 

plants g, 

H, #,-.  
Generation and available generation capacity in 

the renewable (hydro) power plants 

Ƥ, !,-. 
Transmission on and available capacity of the 

interconnection between the two areas (centers), 

D1 Load in the main load center, 

D2 Load in the generation center, ���  Variable operation cost of thermal power plant g, �� Penalty cost for unserved load, 

": 
Loss coefficient for the interconnection between 

the areas, 

LOLO 
Loss of load occasion (binary variable equal to 1 

if load shedding is necessary and 0 otherwise), 

TOC total operation cost, 

U unserved load, 

Acronyms 

MCS Monte Carlo Simulation, 

µG Microgrid, 

r.v. Random variable 

¤ Currency sign 

Table 3. Captions of Figures. 

No. Caption 

Figure 1 
Frequency & Scaled Probability Distribution functions of 

total demand 

Figure 2 
Comparison of LOLP from different Variance Reduction 

MCS methods 

Figure 3 
Comparison of TOC from different Variance Reduction MCS 

methods 
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