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Abstract: The present work is aimed to investigate theoretically the electronic properties of superlattices based              

on Cd1-xZnxS quantum dots embedded in an insulating material. This system, considered as a series of flattened cylindrical 

quantum dots with a finite barrier at the boundary, is studied using the tight binding approximation. The ground miniband 

width and the longitudinal effective mass have been computed, for the electrons, versus the Zn composition and the inter-

quantum dot separation as well. An analysis of the results shows that the Zn compositions x = 0.4 and x = 0.6                   

are appropriate to give rise a superlattice behavior for conduction electrons in a range of inter –sheet separations studied. 
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1. Introduction 

The high potentialities of quantum dots (QDs) based on 

the Cd1-xZnxS ternary alloy, have been demonstrated in 

many device applications [1-3]. In epitaxy, there has also 

been a development in the growth of Cd1-xZnxS QDs [4-7]. 

Experimentally, some investigations have been dedicated to 

Cd1-xZnxS QDs using different characterization techniques 

[8-10]. 

To study the Cd1-xZnxS QDs, most approaches have 

considered that electrons and holes are confined in a 

spherical QD of radius R and used an infinite potential 

barrier model [4, 11-14]. For our part, we have, also, 

adopted, in a first time, the spherical geometry. But to 

describe the potential energy, we have proposed a potential 

with a finite barrier at the boundary [15, 16]. The latter 

potential has the advantage to consider the coupling 

between QDs. Nevertheless, it presents a big difficulty 

concerning the determination of the band edges for coupled 

QDs. In order to around this difficulty, we have suggested 

the flattened cylindrical geometry with a finite potential 

barrier at the boundary to describe the QDs [17-21]. Thus, 

in a first time, we have calculated the energy level structure 

for a single and double quantum dot [17]. In a second time, 

we have studied superlattices based on Cd1-xZnxS quantum 

dots embedded in an insulating material using several 

models. All these studies have been carried out as a 

function of inter-quantum dot separation for different zinc 

compositions. More precisely, we have used, in a first work, 

the Kronig-Penney method to illustrate the confinement 

potential. Within this model, we have calculated the ground 

and the first excited minibands as well as the longitudinal 

effective mass for both electrons and holes [18]. We have 

proposed, in a second work, the sinusoidal potential to 

study the ground and the first excited minibands for 

electrons [19]. In a third work, using the triangular 

potential model, we have calculated, for electrons, heavy 

holes and light holes, the −1Γ miniband and the 

longitudinal effective mass as well [20]. 

The aim of the present work is to investigate the coupling 

in superlattices made by Cd1-xZnxS QDs having a flattened 

cylindrical geometry with a finite potential barrier at the 

boundary. Calculations have been made, for the electrons, as 

a function of Zn composition going from CdS to ZnS using 

the Tight Binding approximation (TBA). Our interest is 

focused on the −1Γ  miniband width and the longitudinal 

effective mass as well. After an introduction, we report an 

outline on the theoretical formulation. Discussion of results 

and conclusions are presented in the following. 

2. Theoretical Formulation 

Fig. 1- a depicts the geometry used to describe a chain of 

Cd1-xZnxS QDs. The common confined direction is denoted 

by z. The inter-quantum dot separation is labelled d which 

corresponds to the period of the structure. Along a common 

direction of spherical Cd1-xZnxS QDs, electrons and holes 
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see a succession of flattened cylinders of radius R and 

effective height L. According to that given in Ref [4], the 

diameter D = 2R varies from 9 nm to 4 nm going from CdS 

to ZnS. Thus, if we consider L = 1 nm which corresponds 

to the value reported in Ref [17], one can remark that L is 

lower than D and consequently the quantum confinement 

along transversal direction can be disregarded. Therefore, 

the Cd1-xZnxS multi – quantum dot system being studied 

can be considered as a QDs superlattice along the 

longitudinal confined direction. Thus, the system to 

investigate is a Cd1-xZnxS QD superlattice where the Cd1-

xZnxS flattened cylinders QDs behave as wells while the 

host dielectric lattice forms a barrier of height U0. For the 

sake of simplicity, the electron and hole states are assumed 

to be uncorrelated. The problem to solve is, then, reduced 

to those of one particle in a one dimensional potential. In 

this work, we consider the potential depicted in Fig. 1- b. 

Such a potential can be expressed as: 

( ) ( )∑=
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e,he,h z - ndU  zV                    (1) 
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The subscripts e and h refer to electrons and holes 

respectively and n is the nth period. For this potential, the 

electron and hole states can be calculated using the 

effective Hamiltonian: 
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where ℏ  is the Plank’s constant and 
*

m is the effective 

mass of carriers. In deriving the Hamiltonian He,h, we have 

adopted the effective mass theory (EMT) and the band 

parabolicity approximation (BPA). The difference of the 

effective mass between the well and the barrier has been 

neglected.  

We have resolved the Schrodinger equation using the 

Tight Binding Approximation. Our interest is focused on 

the longitudinal dispersion relation which shows the k-

dependence of minibands along the [001] direction. Our 

calculation shows that, in the case of the ground miniband 

( −1Γ miniband), this relation is given by: 
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where E1e corresponds to the ground state energy of 

electrons associated with an isolated flattened cylindrical 

quantum dot of Cd1-xZnxS.  E1e is calculated in such a way 

that the zero energy is taken at the bottom of the QD well 

[17, 21]. 

 

Figure 1. (a) A schematic diagram of Cd1-xZnxS QD superlattices 

according to the flattened cylindrical geometry – (b) The barrier potential 

in the framework of the Tight Binding Approximation. 

re, βe and γe are respectively, the wave function overlap, 

the exchange and the correlation integrals. These 

parameters are, respectively, given by: 
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If we neglect the wave function overlap, the longitudinal 

dispersion relation becomes: 

( ) ( ) ( )dkUEkE zhehehehezhe cos22 ,,,0,1, βγ ++−=    (4) 
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3. Results and Discussion 

We have computed, for electrons, the longitudinal 

dispersion relation of −1Γ miniband, given by Eq. (4), as a 

function of the ZnS molar fraction, for superlattice periods 

going from d = 1.5 nm to d= 2.5 nm. Values of parameters 

used in this computation are summarized in Table 1. All 

these parameters are taken from Refs [17, 21]. Values of the 

electron effective mass for Cd1-xZnxS with different Zn 

compositions have been deduced using the Vegard’s law. 

Fig. 2 illustrates the kz – dependent energy for the CdS and 

ZnS QD systems in the case of d = 1.5 nm. 

Table 1. Parameters used to calculate the eΓ1 - miniband for Cd1-xZnxS 

QD superlattices. 

x 
0m

m*
e  U0e(eV) L(nm) ( )eV1eE  

0.0 0.16 0.10 1.0 0.090 

0.2  0.25 1.0 0.187 
0.4  0.45 1.0 0.292 

0.6  0.75 1.0 0.384 

0.8  1.50 1.0 0.531 
1.0 0.28 2.00 1.0 0.560 

 

 

Figure 2. The kz – dependent energy of the  Γ1 - miniband for CdS and 

ZnS QD systems. 

It is worth to notice that, from the longitudinal dispersion 

relation curve, one can easily deduce the 1Γ - miniband 

width eE1∆ . Thus, we have carried out this parameter for all 

the compositions and superlattice periods studied. Typical 

results are depicted in Table 2. 

This study led to the following observations: (i) eE1∆  

exhibits a decreasing tendency when d increases 

independently of the Zn composition. As a consequence, 

the coupling, between nanoparticles decreases as the inter – 

quantum dot separation increases. This behaviour shows 

that this coupling is governed by the tunnelling effect for 

shorter SL periods (ii) for x = 0, eE1∆ , being low, is 

practically independent of the inter – QD separation. In this 

case, Cd1-xZnxS nanocrystallites are nearly isolated (iii) for 

x = 0.2, eE1∆ presents a small variation as a function of 

superlattice period. The coupling between QDs is not high 

(iv) for large ZnS molar fractions (x= 0.8 – 1.0), the 

coupling shows a significant decline as the inter – quantum 

dot separation increases. In this composition range, the 

QDs can be considered as isolated at high SL periods (v) 

for intermediate zinc compositions (x = 0.4 – 0.6), the order 

of magnitude of eE1∆ is important independently of the 

inter-quantum dot separations. This result reflects the 

strong degree of coupling between the QDs in this 

composition range. Since the well width L being the same 

and the bulk effective mass 
*

e
m  remains practically 

unchanged for all Zn compositions, these results are, most 

probably, related to the barrier potential height eU0  and the 

energy E1e values. 

Table 2. The  1Γ - miniband width, as calculated for electrons versus the 

ZnS molar fraction for different inter-QD separations. 

d (nm) 1.5 1.7 1.9 2.1 2.3 2.5 

x       

0.0 0.056 0.054 0.052 0.050 0.048 0.046 

0.2 0.211 0.189 0.169 0.151 0.135 0.121 

0.4 0.352 0.294 0.242 0.201 0.167 0.139 

0.6 0.406 0.302 0.224 0.166 0.123 0.091 

0.8 0.344 0.208 0.125 0.076 0.045 0.027 

1.0 0.241 0.126 0.065 0.034 0.017 0.009 

Let us now discuss the longitudinal electron effective 

mass *

e,Γ
m

1

as calculated for the Cd1-xZnxS QDs studied.   

At the vicinity of the minima, Eq. (4) can be rewritten as: 

( ) ( ) )
2

1(22
22

,,,0,1,

dk
UEkE z

hehehehezhe −++−= βγ      (5) 

On the other hand, at the vicinity of the minima, we can 

adopt a parabolic line to the miniband dispersion. Thus,   

we can write: 
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From Eqs (5) and (6), we can deduce: 
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*
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1 2

2

2 deβ
ℏ=  ( 0<eβ )                   (7) 

We have calculated *

e,Γ
m

1

versus composition x for the 

different inter – QD separations studied. All these effective 

masses are expressed in units of the free electron mass m0. 

Results are reported in Table 3. Besides, these results were 

fitted by polynomial laws as a function of x, for the 

different SL periods studied, and summarized in Table 4. 

Table 3. The longitudinal electron effective mass calculated as a function 

of the inter-sheet separation for Cd1-xZnxS QD superlattices 

d (nm) 1.5 1.7 1.9 2.1 2.3 2.5 

x       

0.0 1.194 0.974 0.806 0.692 0.599 0.522 

0.2 0.308 0.269 0.250 0.227 0.218 0.207 

0.4 0.189 0.176 0.175 0.173 0.171 0.169 

0.6 0.164 0.175 0.185 0.226 0.243 0.253 

0.8 0.204 0.250 0.317 0.456 0.547 0.768 

1.0 0.279 0.405 0.603 0.797 1.573 2.767 

Table 4. The fit of the calculated electron effective (in units of m0) versus x 

for different inter-QD separations 

Superlattice Polynomial law 

period (nm)  

1.5 1.168-5.507x+8.924x2-  4.336x3 

1.7 0.953-4.351x+6.921x2-3.134x3 

1.9 0.788-3.330x+4.894x2-1.763x3 

2.1 0.681-2.943x+4.545x2-1.763x3 

2.3 0.574-1.474x-0.189x2+2.637x3 

2.5 0.479+0.119x-5.934x2+8.057x3 

An analysis of the obtained results leads to the following 

remarks: (i) for all the inter – quantum dot separations 

studied, *

e,Γ
m

1

 is shown to decrease with Zn composition 

up to x = 0.4 or x = 0.6 and it increases, practically, in the 

same way as x increases from 0.4 or 0.6 to 1.0 (ii) for         

x = 0.0 and 0.2, *

e,Γ
m

1

 values are ensured by the inter – 

quantum dot separation rather than the exchange integral 

(iii) for high zinc compositions, *

e,Γ
m

1

 values are mainly 

governed by the exchange integral. Moreover, these values 

are rather high especially for high SL periods (iv) For    

Cd1-xZnxS QDs with intermediate zinc contents, it is of 

particular interest that the SL period does not significantly 

affect the longitudinal electron effective mass. In addition, 

the latter electron band parameter is, in this composition 

range, practically the same as the one in bulk Cd1-xZnxS. 

4. Conclusion 

We investigated the coupling in superlattices made by 

Cd1-xZnxS QDs for compositions ranging from CdS to ZnS. 

To describe the QDs, we have suggested the flattened 

cylindrical geometry with a finite potential barrier at the 

boundary. Using the Tight Binding Approximation, we 

have calculated, for electrons, the 1Γ - miniband and the 

longitudinal electron effective mass. Calculations have 

been made as a function of Zn composition for different 

inter – quantum dot separations. 

An analysis of the obtained results has evidenced that the 

Zn compositions x = 0.4 and x = 0.6 are appropriate to give 

rise a superlattice behavior for conduction electrons in a 

range of inter –sheet separations studied. As for the 

longitudinal electron effective mass, it is found to be the 

lower for x = 0.4 and x = 0.6. 

In the applied physics, this study could be useful for 

designing a new category of nanocrystal devices based on 

well controlled Cd1-xZnxS QDs especially the non – volatile 

memories. 
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