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Abstract: Mathematical modeling and simulation of the effective parameters in targeted, virus-producing, and infected cells 

were carried out. The research involved mathematical models that represent the targeted cell population, the virus-producing 

cell population, and the infected cell population, respectively. The numerical simulation was carried out using Wolfram 

Mathematica, version 12, where the pertinent parameters in the various models were varied within a specified range to study 

their effect on the dynamic system. The simulated results revealed that the production of the target infected cells, the 

elimination rate of infected cells, the elimination rate of virus cells, the elimination rate of tissue cells, the infected cell rate 

constant, and the constant rate of infection affect the various cell populations. The novelty of this research is the fact that the 

interaction between macrophage and other cells was modeled and direct numerical simulation was carried out to ascertain the 

effect of pertinent parameters on the system using Wolfram Mathematica. The results revealed that the production rate of tissue 

and infected cells affects the targeted tissue cells growth, the elimination rate affects the rate of infected cells, and the infected 

cell rate constant also affects the dynamic system. In addition, the virus’s increase per infected cell affects the system, and 

finally, the elimination rate of tissue cell affects the system. 
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1. Introduction 

The process of creating a mathematical representation of a 

real-world scenario to predict or gain insight is known as 

mathematical modeling. There are many different kinds of 

mathematical models, such as game-theoretic models, 

statistical models, dynamical systems, and differential 

equations. The most important type of representation is 

mathematical models of reality. Basically, anything in the 

physical or natural world, whether regular or including 

innovation and human mediation, is dependent upon 

examination by numerical models in the event that it very 

well may be portrayed concerning numerical articulations. 

Thus, industrial processes, traffic patterns, sediment transport 

in streams, and other scenarios can all be modeled using 

optimization and control theory; Modeling things like 

message transmission and linguistic characteristics can be 

done with information theory; The growth and development 

of landforms, patterns of atmospheric circulation, stress 

distribution in engineering structures, and a wide range of 

other processes in science and engineering can all be 

modeled using dimensional analysis and computer simulation. 

Simulating the flow of real-world processes and systems 

over time is called simulation. A model is required for 

simulation. A simulation represents the evolution of a model 

over time, and the model represents key characteristics or 

behaviors of a selected system or process. Simulations are 

often performed with the aid of computers [1]. 

Viruses are still smaller than bacteria, but they are a type 

of very small micro-organism. They are very different from 
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bacteria and come in all shapes and sizes. Viruses act as 

parasites. Specifically, it requires tissue or living cells to 

grow. Viruses invade human cells and use part of the cells to 

multiply. Some viruses even destroy host cells during their 

life cycle. There are mathematicians and modelers who have 

studied the spread of disease through studies involving the 

creation of mathematical models. Their names are: 

Boianelliet al. [2] reviewed pandemics and influenza A 

virus (IAV) outbreaks. Streptococcal pneumonia is a 

bacterium that causes infection. This study shows that despite 

advances in knowledge, the interaction between IAVs and 

the host immune response (IR) still remains largely 

fragmented. The IAV dynamics were quantified and 

described using a mathematical model. Development of a 

mathematical modeling framework to account for secondary 

bacterial infection, immunosenescence, host genetic factors, 

response to vaccination, and secondary bacterial infection 

will improve our understanding of IAV infection and 

optimize its treatment. Important to make Burg et al. [3] 

studied primary HIV infection characterized by an initial 

exponential increase in peripheral blood viral load followed 

by a rapid decline to viral setpoint. This investigation showed 

that some of the viral dynamics could be explained by a 

model restricted to target cells. Furthermore, target cell-

restricted models fail to predict long-term viral dynamics 

unless a delayed immune response is assumed by Stafford et 

al. [4]. 

This result suggests that the immune response may have a 

significant impact on viral control during primary infection 

and may support experimental observations that anti-HIV 

immune responses are already operational during peak 

viremia. Cancer research by Mukhopadhyay and 

Bhattacharyya [5] suggested that viruses that specifically 

infect and destroy tumor cells could be used as therapeutics 

to inhibit tumors. This study demonstrates that the dynamics 

of interactions between tumor hosts, invading viruses and 

immune system responses are highly non-linear and complex, 

thus the need to incorporate mathematical models to properly 

understand these dynamics as showed. Additionally, this 

study incorporates a mathematical model of the dynamics of 

the oncoviral immune system. A basic deterministic model 

was analyzed to determine the importance of various host, 

viral and immune system parameters in controlling system 

dynamics. In this study, the random noise inherent in 

physiological processes was also taken into account by 

extending the deterministic model to a stochastic one. The 

resulting probabilistic model is analyzed using the mean-

square stability approach, and the stochastic stability criterion 

is derived using the key system parameters. Numerical 

simulations are performed to confirm the accuracy of the 

analysis results. Bunonyo et al. [6] studied tumor growth and 

cell proliferation. This work involved developing a 

mathematical model to study tumor cell proliferation and 

using therapeutics to control and reduce cell proliferation. 

His investigation was divided into two parts: 

First, the model describes tumor spread by cell 

proliferation driven by carcinogens (pathogens), resulting in 

exponential tumor growth. Second, the model as formulated 

was solved analytically. The Wolfram Mathematica software 

was used to generate graphical and tabular results from the 

simulation. This study found that cell proliferation increased 

with increasing rates of exposure to carcinogens, indicating 

rapid tumor spread, and chemoimmunization to control and 

reduce carcinogens and cell proliferation. We concluded that 

the use of therapeutic agents can cause tumor spread. 

Bunonyo and Ebiwareme [7] proposed a model representing 

tumor growth driven by carcinogens from the first diagnosed 

level and a fixed dose of chemotherapy; immunotherapy and 

they proposed several therapeutic models of radiotherapy. 

The proposed model was solved analytically to obtain tumor 

cell function with or without therapeutic effect. Numerical 

simulations have been performed that show that continuous 

radiation exposure can cause pain and normal cell death, 

thereby promoting tumor cell proliferation. However, 

chemotherapeutic and immunotherapeutic drugs have helped 

shrink tumors and reduce cell proliferation. 

Leyden and co. [8] described biological processes such as 

modeling cell growth and decay, binding of receptors to 

ligands, regulation of enzymes and genes, or any of the many 

other areas where mathematical modeling is used. The 

common denominator was big discoveries and sharp guesses 

that prompted important researchers to analyze existing ideal 

models. Numerical measures were used to understand the 

prevalence patterns of some intractable viral infections that 

have a significant impact on quality of life, longevity, health 

care costs, work and daily life. Using these principles, the life 

cycle of chronic HIV, hepatitis C virus (HCV) and hepatitis 

B virus (HBV) infections, which currently affect the health of 

more than one billion patients worldwide, have been 

specifically studied. Zhao et al. (In China, an area where 

HBV infection is endemic, universal vaccination of infants 

against the virus (HBV) was discussed in 2000. Studies show 

that approximately 10% of the population is chronically 

infected with HBV. (60% of the population is chronically 

infected with HBV). This study presents a mathematical 

model developed to predict the dynamics of HBV 

transmission and assess the long-term efficacy of vaccination 

programs. is explained. Based on the features of HBV 

infection, we used a compartmental model. It is represented 

by a set of partial differential equations. Parameters were 

estimated using survey data expressed in the model as 

nonlinear functions of age and time post-vaccination. Both 

pre- and post-vaccination studies are compatible with the 

model. This result suggests that HBV infection in China can 

be contained in one generation and eventually eradicated. 

Bunonyo and co. [9] discussed how temperature affects drug 

distribution in the human stomach and bloodstream. This 

study shows that drug-taking behavior is related to high and 

low ambient temperatures in the examined compartments 

(stomach and circulatory system). Scientific answers to drug 

fixation in the gastric and circulatory systems were obtained 

using factor distributions and boundary strategies for 

processing tributes, and mathematical systems and graphical 

results were obtained using Wolfram Mathematica. As a 
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result, we found that drugs introduced into the system 

diffused faster between compartments when the temperature 

increased, and slowed down when the temperature decreased. 

Wodarz and Nowak [10] introduced a basic model of viral 

infection and demonstrated how it has been used to study 

HIV dynamics and measure key parameters leading to new 

understandings of disease processes, reviews mathematical 

models of HIV dynamics, illness and treatment. They 

considered breed boundary models to explain the general law 

that the evolution of infection can drive disease spread and 

eradication of resistance frameworks. This study 

demonstrates how mathematical models can be used to 

understand the relationships behind long-term immune 

regulation of HIV and to design treatment regimens that can 

lead patients with advanced disease to long-term non-

progression. A separate numerical model is created for the 

elements in between immobilization of proliferating cells, 

normal cells, resistant cells, chemotherapeutic agents and 

drugs toxicity of Gafari and Nacerifal [11]. Treatment plans 

were developed using the Lyapunov stability theorem. 

2. Materials and Methods 

This research is based on mathematical modeling of the 

interaction between cells and numerical simulation of the 

sensitive parameters on the system using Mathematica, 

version 12. Before formulating the mathematical models to 

investigate the interactions between the cells, let’s consider 

the following assumptions: 

2.1. Assumptions 

Following the diagram below, it pictorially showing the 

interaction between the cells: 

 

Figure 1. Diagram showing the relationship between different cells. 

Based on the figure 1 above, we consider the following 

assumptions: 

1. The targeted tissue cells decays naturally over time. 

2. The interaction between virus producing cells and 

infected cells lead to the reduction of infected cells. 

3. The interaction between virus cells with T cells lead to 

per capita growth of infected cells. 

4. The rate of production of tissue and infected cells lead 

to the growth of T cells. 

5. The per capita growth of the virus cells is as a result of 

the production of virus cells from the producing cells. 

6. The growth of the infected cells is as result of the per 

capita growth of virus producing cells. 

2.2. Models Formulation 

Following the assumptions in section 2.1, we shall 

formulate the models as: 

                               (1) 

                                 (2) 

                                   (3) 

                                  (4) 

Equations (1)-(4) are subject to the following initial 

conditions: 

                                    (5) 

2.3. Definition of the Parameters 

: Targeted Tissue cell 

: Infected cell 

: Virus producing cell 

: Viruses at time 

: Producing Rate of Tissue and Infected cells 

: Elimination Rate of Infected cells 

: Elimination Rate of Tissue cell 

: Elimination Rate of Virus cells 

: Infected Rate constant 

: Rate of virus increase per infected cells 

3. Simulated Results 

The numerical simulation was done using Mathematica, 

version 12, where the effective parameters were varied in the 

system to investigate the roles they play in the system. The 

initial conditions were considered at 

 and the 

investigation run from zero to 10 months. The results are 
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presented as follows: 

 

Figure 2. Effect of Production Rate on Targeted and Infected Cells. 

 

Figure 3. Effect of the Constant Rate of Infection on Targeted and Infected Cells. 

 

Figure 4. Effect of Elimination Rate of Infected Cells on Targeted and Infected Cells. and Infected Cells. 
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Figure 5. Effect of Elimination Rate of Tissue Cell on Targeted and Infected Cells. 

 

Figure 6. Effect of the Production Rate on Targeted and Virus Cells. 

 

Figure 7. Effect of the Rate of Infection on Targeted and Virus Cells. 
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Figure 8. Effect of the Tissue Production Rate on Targeted and Virus Cells. 

 

Figure 9. Effect of Elimination Rate on Targeted and Virus Cells Producing Cells. 

4. Discussions 

Figure 2 shows the effect of product rate on tissue and 

infection cells. The figure showed that the tissue cell 

growth started at 0.4 and increased to 22.4691 at a 

production rate of 20 units before decreasing from 14.2709 

to 0.623841. In addition, for a change in growth rate from 

20 to 22, and then to 40 units, we noticed a relative growth 

of the tissue cells. Furthermore, we noticed a growth in 

infectious cell rate with an increase in production rate from 

20 to 25 units. Figure 3 depicts the effect of the constant 

rate of infection on the tissue cells and infected cells. It is 

seen that the number of tissue cells increases from a 

reference point of 0.4 and begins to increase to 17.6016 and 

gets to a peak of 29.4716 before decreasing to 0.628693 as 

the constant infection rate increases from 0.2 to 0.6 units. In 

a similar vein, the number of infected cells increases with a 

constant rate of infection. Figure 4 illustrates the effect of 

the elimination rate of infected cells on tissue cells and 

infected cells. The figure showed that for the elimination 

rate of infected cells to be 0.2, 0.4, and 0.6, the tissue cells 

increase from 0.4 to 28.7079 before decreasing to 0.386974, 

and in a similar vein, the infection cells decrease from 

2.35959 to 2.2239, and the infection cells increase to 

138.059 and 137.928. 

The effect of the elimination rate of tissue cells on tissue 

cells and infected cells is shown in Figure 5. The result 

depicts that the tissue cells start to grow from 0.4 to 28.7079 

before decreasing to 0.386974 at a rate of 0.2, but then 

decrease to 17.2391 as they continue to decrease to 0.395078. 

Furthermore, the infection cells also increased from 0.2 to 
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138.059 for the tissue elimination of 0.2, then 0.26 and 0.3, 

respectively. Figure 6 illustrates the effect of tissue and virus-

cell production on the tissue and infection cells, respectively. 

The figure reveals that the tissue cells start at 0.4 and grow to 

22.4691 before decreasing to 0.623841 for the production 

rate of 20 units, and they increase from 0.4 to 27 before 

decreasing to 0.6226414 and 0.621008. The result also 

reveals that the virus grows from 0.5 to 42.6355 for a 

production rate of 20 units, 53.2911, and 85.2107 for a 

production rate of 25 and 40, respectively. Figure 7 depicts 

the effect of a constant rate of infection on the tissue cells 

and virus cells. The result showed that the tissue cells 

increased for the infection rate of 0.2, then reduced over time 

to 0.628693, then to 0.625507 and 0.624241 for the rates of 

0.4 and 0.6, respectively. We noticed that the virus cell grows 

from 0.5 to 150.748, 74.9283, and 49.7964 at different rates 

of 0.4 and 0.6, respectively. 

Figure 8 illustrates the effect of the elimination rate on 

virus cells on tissue cells. The figure shows that for the 

elimination rate of virus cells to be 0.2, 0.4, and 0.6, the 

tissue cells increase from 0.4 to 28.7079 before decreasing to 

0.386974, and in a similar vein, the virus cells increase from 

2.35959 to 138.059, and the virus cells increase to 138.059, 

138.004, and 137.928. The effect of the elimination rate of 

tissue cells on targeted and virus cells is shown in Figure 9. 

The result illustrates that the targeted cells start to grow from 

0.4 to 28.7079 before decreasing to 0.386974 at a rate of 0.2, 

but decrease from 0.4 as they continue to decrease to 

0.395078. The virus cell grows from 0.5 to 266.551, then to 

262.551 and 258.689, respectively. 

5. Conclusion 

We have been able to formulate mathematical models that 

represent effective parameters in targeted, virus-producing, 

and infected cells, perform numerical simulations of the 

formulated models using Mathematica, and present and 

discuss the results. Based on the results obtained, we can 

conclude as follows: 

1. The production rate of tissue and infected cells affects 

the targeted tissue cell's growth. 

2. The elimination rate affects the rate of infected cells. 

3. The infected cell rate constant affects the system. 

4. The virus's increase per infected cell affects the system. 

5. The elimination rate of tissue cells affects the system. 
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