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Abstract: In this study, a mathematical model is developed to explore the population dynamics of two host species. Both the 

hosts depend on the same resources and the availability of such resources is limited in nature. If the host populations increase 

abnormally the limited natural resources will be used up. Hence, the concept of parasite is brought in to the picture to regulate 

the host populations. The parasite is a mechanism that reduces the host populations. However, on one hand if the parasite 

attacks more the hosts may extinct and on the other hand if the parasite do not attack then the host populations may increase 

and resource may be used up. Hence, the parasite is expected to maintain a balance so that neither the host populations nor the 

resources extinct. Here, both the hosts are classified in to susceptible and infected and hence the model comprises of four 

populations: Susceptible Host–1, Infected Host–1, Susceptible Host–2 and Infected Host–2. Thus, the mathematical model 

comprises of a system of four first order non-linear ordinary differential equations. Mathematical analysis of the model is 

conducted. Positivity and boundedness of the solution have been verified and thus shown that the model is physically 

meaningful and biologically acceptable. Equilibrium points of the model are identified and stability analysis is conducted. 

Simulation study is conducted in order to support the mathematical analysis using software packages Mat lab and DeDiscover. 
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1. Introduction 

Parasites can theoretically encourage indirect interactions 

among ecological communities those live in the same 

trophic level. These interactions lead to some kind of 

effects on the competing species. Such interactions are also 

called as parasite–mediated competition [1-2, 4, 13-15, 19]. 

However, parasites induce competition–like indirect 

interactions among species that would not otherwise happen 

at all [5, 8]. These ideas reflect indirect effects of parasites 

on community composition leading to coexistence or 

promoting exclusion. 

1.1. Parasite–mediated Competition 

Parasites may affect competitive dynamics between native 

and introduced animals and plants through density and trait 

effects [3, 6, 13-15]. 

Models of parasite-mediated competition have provided 

insight into the role of shared parasites in shaping 

communities of competing species. Parasites can regulate the 

population density of their hosts and, as a result, affect the 

dynamics of the community, and can cause the extinction of 

local populations and of whole species [2, 3, 13-15]. 

In this present study, parasites are predicted to enhance the 

range of conditions leading to coexistence if, for example, 

one of the host are more heavily impacted by the parasite. 

However, some arguments argued that the predominant 

pressure exerted by parasites on communities might not be 

the result of catastrophic outbreaks, but rather of less virulent 

and persistent where the parasites moderate or enhance the 

competitive capabilities of their hosts [3, 13]. 

When viewed as part of an ecosystem, the parasitized host 

is subject to numerous other interactions that convey benefits, 

no apparent benefits, or harm or not benefits to it [11, 12, 5, 

20]. Argued that the direct outlay to the host that reduce its 

fitness can be either aggravated by indirect consequences (i.e. 

where parasitism renders predation more likely), or improved 

by indirect consequences. 
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1.2. Apparent Competition 

In the context of parasitism, apparent competition is 

predicted to occur when two species that do not otherwise 

interact both host with the same parasite species [16-18, 22]. 

As both host species are a resource for the parasite, 

population density increases in either host lead to reductions 

in the other, via the, density mediated, negative effects of the 

parasite. Apparent competition can theoretically lead to the 

elimination of one host, indirectly coupling the dynamics of 

host species with different habitat or resource requirements. 

In view of these, this study targeted to present these 

synthesized empirical and theoretical work using 

mathematical modeling and analysis qualitatively how 

parasites influences competitive and predatory interactions 

between species [1, 7, 10, 13, 21, 23]. We highlight the 

sensitive parameters to assess the impact of parasites on 

communities by incorporating the theoretical and empirical 

studies so as to examine how the effects of parasitism. 

Moreover, parasitism scales up the community-level 

processes. 

In this paper, comparison of the model system would be 

carried out through the investigation of the interaction made 

between the populations directly and indirectly to each other 

and with parasite. 

2. Assumption and Model Formulation 

Accordingly, Mathematical epidemiology to study the 

dynamics of diseases spread has become an interesting topic 

of research study and received much attention from scientists 

after the pioneering work of [2, 3, 13-15, 20]. 

In this recent study, by applying a deterministic framework 

of an ecological model of the infection of parasite, the 

analysis of the population dynamics of eco-epidemiology 

would be investigated. 

To start with, the mathematical model of a single type of 

host and its parasite would be defined by considering the 

following descriptions. These are the changes in the numbers 

of hosts � and free-living parasite. These changes are due to 

three minimum processes: host birth, mortality due to 

parasite infection and natural death of a host. Hence, the 

classical model of the combination of host and parasite 

population growth with carrying capacity of host which 

follows the general deterministic trajectories defined as 

��
�� � �� �1 	 �


� 	 ��
                             (1) 

��
�� � ���
 	 �
;                                      (2) 

This model is shown with simple diagram in figure 1. This 

system is similar to a predator-prey system but differing by 

the quantity � and called in host-parasite system burst size 

where as in predator-prey system ecological efficiency. 

Regardless of the potentially widespread effects of parasites 

on the community, most studies of host-parasite dynamics 

focus on the effects of a single parasite on a single host, 

neglecting the host’s interactions with each other and with 

other species. 

The present model considers interaction of two hosts. 

These hosts do not directly interact with each other but they 

are mediated by a common enemy or parasite. 

In this paper, the recovery of the hosts would not be 

considered. Moreover, in this study the interactions involving 

parasites that feed on a host individual usually living on or in 

it and often causing harm but not immediate death and the 

carrying capacity is only allowed for the uninfected hosts. i.e., 

for infected hosts limited resources are available. Further, 

responses of the hosts are linear rather than saturated. In this 

assumption, the model for free living parasite is not explicitly 

modeled. 

 
Figure 1. Simple schematic diagram of system (1) and (2). 

The interaction between the states of the present model is 

illustrated in Figure 2 below; 

 
Figure 2. Schematic diagrams of the population dynamics. 

The present mathematical model is formulated based on 

the above schematic model, and is given by the following 

system of differential equation: 

���
�� � ��� �1 	 �����


 � 	 ����� 	 ���          (3) 

���
�� � ����� 	 ���; � �  � � �                    (4) 

���
�� � � � �1 	 �����


! � 	 � � � 	 " �          (5) 

���
�� � � � � 	 # �; # �  $ � "                   (6) 

Here, %&'( � ��&'( � ��&'(  and )&'( �  �&'( �  �&'( 

denote total population sizes of the first and second hosts 

respectively. However, the total size of both the hosts in the 

system is given by *&'( �  %&'( � )&'(. 

Descriptions of notations, parametric values of the system 
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are given in the following tables. 

Table 1. Notations and descriptions of the model variables. 

Variables Descriptions 

��&'( Density of first susceptible host population 

��&'( Density of first infectious host population 

 �&'( Density of second susceptible host population 

 �&'( Density of second infectious host population 

Table 2. Notations and descriptions of the parameters used in the model. 

Parameters Descriptions 

� Growth rate of host–1 

� Growth rate of host–2 

� Infection transmission rate of host–1 

� Infection transmission rate of host–2 

� Natural death rate of host–1 

" Natural death rate of host–2 

$ Mortality rate due to disease of host–2 

� Total death rate of host–1 

# Total death rate of host–2 

+ Environmental carrying capacity for host–1 

+’ Environmental carrying capacity for host–2 

3. Qualitative Analysis of the Model 

Systems 

3.1. Positivity and Boundedness of the System 

For the model to be meaningful and well posed, it is 

necessary that the solutions of (3)–(6) with positive initial 

data are positive and bounded for all ' > 0. This fact has 

been stated and proved in the following: 

Proposition 1: All solutions of the model equations (3)–(6) 

are non–negative and bounded. 

Proof: 

Positivity of the populations: consider the equation of 

system (3) - (6). 

Up on integrating the model equations (3)–(6) with respect 

to ' the analytical solutions of the model variables are 

obtained as ��&'( = 

�/� 0�1 2 3� 41 − ��&5( + ��&5(+ 6 − ���&5( − �7 �5�
/  

��&'( = �/� 0�1 2 8���&9( − �:�9�
/ Host − 1 

 �&'( = 

 /� 0�1 2 3� ?1 −  �&@( +  �&@(+′ B − � �&@( − "7 �@�
/  Host − 2 

 �&'( =  /� 0�1 2 8� �&D( − #:�D�
/  

Here, it can be observed that each solution is a product of 

an initial condition and an exponential function. However, by 

definition every initial condition and exponential function are 

non–negative quantities, so are their products. 

Therefore, all solutions of the system of equations (3)–(6) 

are non–negatives for all ' ≥ 0. 

Boundedness of the system 

In theoretical eco-epidemiology, a system is bounded 

implies that the system is biologically valid and well behaved. 

Here in the present study, the biological validity of the model 

is achieved by showing that the solutions of (3)–(6) are 

bounded. 

In order to show the system is bounded, let the expression 

for the total population of the system as  *&'( =  ��&'( +��&'( +  � &'( +  �&'(  be considered. Also, let  �* =�&�� + �� +  � +  � ) and &�* �'⁄ ( = &��� �'⁄ ( +&��� �'⁄ ( + &� � �'⁄ ( + &� � �'⁄ (  where � is any positive 

constant. Now, using the fore going expressions in the 

addition of (3)–(6) reduces the result as: �*�' + �* = ��� 41 − �� + ��+ 6 

+� � 41 −  � +  �+′ 6 − &��� + ��� + " � + # �( + �* 

�G�� + �* ≤ ��� �1 − �����
 � + � � �1 − �����
! � +  ��� +� �, For � �I� # > � 

= &� + �(�� − � ���+ − � ����+ + &� + �( � − �  ��+′ − �  � �+′  

≤ &� + �(�� −  �&��� +⁄ ( + &� + �( � −  �& �� +′⁄ ( 

= +4� &� + �(� − �+ ?�� − +2� &� + �(B� + +!4� &� + �(� 

− �+′ K � − +′2� &� + �(L�
 

≤ &+ 4�⁄ (&� + �(� + &+′ 4�⁄ (&� + �(� 

Now, introducing notation  M = &+ 4�⁄ (&� + �(� +&+′ 4�⁄ (&� + �(�  the differential inequality reduces to the 

form &�* �'⁄ ( + m* ≤ M.  It is a first order ordinary 

differential equation with constant coefficients and its 

analytical solution is given by  *&'( ≤  &M �⁄ (&1 −0PQ�(  + */0PQ� . However, in the limit as  ' → ∞ , the 

solution takes the form as *&'( ≤ &M �⁄ (showing that the 

total population size is bounded. Hence, each population size 

is also bounded. Thus, the statement holds true. 

3.2. Existence of Steady States of the Model 

The model equations (3)–(6) possess equilibrium points 

which are biologically feasible. These are obtained by setting &��� �'⁄ ( = &��� �'⁄ ( = &� � �'⁄ ( = &� � �'⁄ ( = 0  and 

solving the resultant expressions. Thus, the nine equilibrium 

points of the model and the corresponding existence 

conditions are listed as follows: 

(1) Trivial equilibrium E/ = &0, 0, 0, 0( alwaysexists. 

At this all the populations are absent. 

(2) Axial equilibrium E� = &x�∗, 0, 0, 0(  exists 

if a > α. Here, only susceptible host–1 is present. 

(3) Axial equilibrium E� = &0, 0, y�∗, 0(  exists 
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if b > θ. Here, only susceptible host–2 is present. 

(4) Disease free equilibrium E[ = &x�∗ , 0, y�∗, 0(exists. 

At this equilibrium both susceptible host–1 and host–2 

are present. 

(5) Equilibrium E\ = &x�∗∗, x�∗∗, 0, 0(  exists if a]1 −&A µk⁄ (` > α and µk > �.  Here both susceptible and 

infected populations of host–1 are present. 

(6) Equilibrium Ea =  &0, 0, y�∗∗, y�∗∗( exists if b]1 −&B rk′⁄ (` > θ and  rk′ > # . Here both susceptible and 

infected populations of host–2 only exist. 

(7) Equilibrium Ed = &x�∗ , 0, y�∗∗, y�∗∗( exists. This is a 

disease–free equilibrium of host–1. 

(8) Equilibrium Ee = &x�∗∗, x�∗∗, y�∗, 0( exists. This is a 

disease–free equilibrium of host–2. 

(9) Equilibrium Ef = &x�∗∗, x�∗∗, y�∗∗, y�∗∗(  exists. This 

is a co–existence equilibrium i.e., all types of hosts 

present here. 

Here in the equilibrium points some notations are used in 

the coordinates those represent the following expressions: x�∗ =  ]k&a − α( a⁄ `,  x�∗∗ = &A μ⁄ (, x�∗∗=  ]k &μk + a(⁄ `]a − α − &aA μk⁄ (`, 
y�∗ = ]k′&b − θ( b⁄ `,  y�∗∗ =  B r⁄ , y�∗∗ = ]k′ &b + rk′(⁄ `]b −θ − &bB rk′⁄ (`. 

3.3. Variational Matrix of the Model Equations 

Set the model equations (3)–(6) as ��� �'⁄ = j&��, ��,  �,  �(, 

��� �'⁄ = k&��, ��,  �,  �(, � � �'⁄ = ℎ&��, ��,  �,  �(, � � �'⁄ = +&��, ��,  � ,  �( 

The variational matrix is defined as 

m =
n
oo
ooo
p qjq��qkq��

qjq��qkq��

qjq �qkq �

qjq �qkq �qℎq��
qℎq��

qℎq �
qℎq �q+q��

q+q��
q+q �

q+q �r
ss
sss
t

 

Now, the elements of the matrix m are computed as: qj q��⁄ = �81 − ]&2�� + ��( +⁄ `: − ��� − �, qj q��⁄ =−]&��� +⁄ ( + ���`, qj q �⁄ = qj q �⁄ = 0,qk q��⁄ = ���, qk q��⁄ = ��� − �, qk q �⁄ = qk q �⁄ = 0, qℎ q��⁄ = qℎ q��⁄ = 0, qℎ q �⁄= �81 − ]&2 � +  �( +!⁄ `: − � � − " qℎ q �⁄ = −]&� � +′⁄ ( + � �`, q+ q��⁄ = q+ q��⁄ =0, q+ q �⁄ = � �, q+ q �⁄ = � � − #. 

Thus, the variational matrix takes the form as 

m =
uvv
vvv
w� 41 − 2�� + ��+ 6 − ��� − ����

− ���+ − ������ − � 00 00
0 0 � 41 − 2 � +  �+! 6 − � � − " − � �+′ − � �0 0 � � � � − # xyy

yyy
z
 

3.4. Stability Analysis of Model System 

3.4.1. Local Stability of the System 

Recall that, 

(i) An equilibrium point is said to stable if the variational 

matrix at that equilibrium has all negative eigenvalues, 

(ii) An equilibrium point is said to unstable if the 

variational matrix at that equilibrium has at least one 

positive eigenvalues, 

This fact is used in verifying whether a given equilibrium 

is stable or unstable. Here, Local stability analysis of the 

system at the equilibrium points is conducted and the results 

are presented in form of theorems and proofs in what follows: 

Theorem 1The trivial equilibrium point E/ = &0, 0, 0, 0( is unstable. 

Proof: 

The variational matrix  m at the equilibrium point E/ is 

denoted bym/and is given by 

m/ = {� − � 0 0 00 −� 0 00 0 � − " 00 0 0 −#| 

Its characteristic equation defined by  �0'&m/ − }~( = 0 

takes the form as &� − � − }(&−� − }(&� − " − }(&−# −}( = 0. On solving which eigenvalues of m/  are obtained 

as}� = � − �, }� = −� , }[ = � − ",  }\ = −# . Here, }�and }[are positive eigenvalues since the parameters satisfy the 

relations � > � and  � > " . That is, here at least one 

eigenvalues is positive. Hence, the equilibrium point E/ is 

unstable. 

Theorem 2The disease–free equilibrium point �� =&��∗, 0,  �∗, 0( is stable if the following conditions on 

the parameters hold true: ]&� �+⁄ ( + &� �⁄ (` > 1 and]&# �+′⁄ ( + &" �⁄ (` > 1. 

Proof: 

The variational matrix m  at the disease–free equilibrium 

point E� is denoted by m�and given by: 
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m� �
u
v
v
v
w� 	 � 0 0 0

0 �+&� 	 �(
� 	 � 0 0

0 0 " 	 � 0
0 0 0 	#x

y
y
y
z
 

Its characteristic equation is given by�0'&m� 	 }~( � 0. 

On solving which the eigenvalues of m� are obtained 

as }� � � 	 �, }� � 8]�+&� 	 �( �⁄ ` 	 �:, }[ �
&" 	 �(, }\ � ]�+′&� 	 "( �⁄ ` 	 # . Clearly, }� and }[ are 

negative values. But, }�and }\are negative quantities if the 

conditions ]&� �+⁄ ( � &� �⁄ (` > 1 and ]&# �+′⁄ ( + &" �⁄ (` >1 are satisfied. Hence, the equilibrium point E�is stable under 

the considered assumption. 

Theorem 3The equilibrium point �� = &0, 0,  �∗,  �∗(is stable if �� − 4� > 0. 
Proof: 

The variational matrixm at equilibrium  E� is denoted by m�and given by 

m� = {� − � 0 0 00 −� 0 00 0 &� − " − �# �+!⁄ (&�+! � + �+!⁄ ( − �# �+!⁄ −# �⁄ &b + rk! b⁄ (0 0 &�+′ � + �+′⁄ (&� − " − �# �+′⁄ ( 0 | 

Its characteristic equation is given by �0'&m� − }~( = 0. 

By solving the eigenvalues of m� becomes }� = � − �, }� =−�, }[ = &1 2⁄ (�−� + ��� − 4��, }\ = &1 2⁄ (�−� −��� − 4�� where  � =]� − " − &�# �+!⁄ (`]�+! &� + �+!(⁄ ` − &�# �+!⁄ (, � =&# �⁄ (]" − � + &�# �+′⁄ (` . It can be observed that both 

eigenvalues  }�and }�are negative quantities. Also, the values  }[  and }\  are also negatives if both the conditions �� −4� > 0 and � > 0 hold true simultaneously. 

Thus, equilibrium point E�is stable under the considered 

condition. 

Theorem 4The equilibrium point �[ = &��∗, ��∗, 0, 0( is stable if � < " and  � >1otherwise unstable. 

Proof: 

Consider 

 m[ = { &−� � �+⁄ ( −�&� + +�( �⁄ 0 0&�+ �+ + �⁄ (&� − � − �� �+⁄ ( 0 0 00 0 � − " 00 0 0 −#|, 
But applying the elementary linear algebra on 

interchanging column operation this M3 is equivalent to; 

m[! = {−�&� + +�( �⁄ &−� � �+⁄ ( 0 00 &�+ �+ + �⁄ (&� − � − �� �+⁄ ( 0 00 0 � − " 00 0 0 −#| 
Now, the variational matrix at equilibrium  E[ is 

equivalently denoted by m[′and its characteristic equation is 

given by�0'&m[′ − }~( = 0. This gives the eigenvalues }� = −�&� + +�( �⁄ , }� = �, }[ = � − ",  }\ = −# . 

Where, � = &�+ �+ + �⁄ (&� − � − �� �+⁄ (  Here, 

unconditionally }� < 0 and }\ < 0.  However, }�  and }[ 

would be negative if the condition � < " and � > 1. 

Hence, the equilibrium  E[ is stable under the stated 

condition. 

Theorem 5: The equilibrium point &0, 0,  �∗, 0( is 

stable if ]�+′&� − "( �⁄ ` < #. 

Proof: 

The variational matrixm at this equilibriumis denoted by md and given by 

md =
uvv
vw� − � 0 0 00 −� 0 00 0 " − � – &b + rk!(&b − θ(b0 0 0 � +′&� − "( �⁄ − #xyy

yz
 

The characteristic equation �0'&md − }~( = 0 of the 

variation matrixMd at the equilibrium Ed takes the form as &� − � − }(&−� − }(&" − � − }(�]+′&� − "( �⁄ ` − # −} = 0  giving the eigenvalues }� = � − �, }� = −�,  }[ = " − �,  }\ = �]+′&� − "( �⁄ ` − # . Here, }� < 0 

unconditionally. However, the remaining eigenvalues are 

conditionally negatives with the conditions 

(i) }� < 0 if � < � 

(ii) }[ < 0 if " < � 

(iii) }\ < 0 if �+′&� − "( �⁄ < #. 

Here, under the considered condition the equilibrium point Ed is stable. 

Theorem 6: The equilibrium point �e &��∗, 0, 0, 0( is 

stable if ] �+&� − �( �⁄ ` < �. 

Proof: 

me = {� − � −&� − �(&� + �+( �⁄ 0 00 &�+&� − �( �⁄ ( − � 0 00 0 � − " 00 0 0 −#| 

The characteristic equation �0'&me − }~( = 0 of the 

variation matrixme at the equilibrium Ee  takes the form as &� − � − }(8]�+&� − �( �⁄ ` − � − }:&� − " − }(&−# −}( = 0  giving the 

eigenvalues }� = � − �, }� = ]�+&� − �( �⁄ ` − �, }[ =  � −",  }\ = −# . Here, it can be observed that  }\ is 

unconditionally negative while the other eigenvalues are 

negatives conditionally with the following conditions: 

(i) }� < 0 if � < � 

(ii) }� < 0 if �+&� − �( �⁄ < � 

(iii) }[ < 0 if � < " . Based on the set condition, the 

equilibrium point is stable. 

3.4.2. Global Stability of the System 

To determine the global stability of the system Lyapunov 

function method is followed in this study. 

Theorem 7: The interior equilibrium point 
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&��W, ��W,  �W,  �W(is globally stable. 

Proof: 

Construct the Lyapunov function as 

D &�� ��  �  �( 

� �� 	 ��W 	 ��W�I&�� ��W⁄ ( 

� �]�� 	 ��W 	 ��W�I&�� ��W⁄ (` 
��] � 	  �W 	  �W�I& �  �W⁄ (` 
�5] � 	  �W 	  �W�I& �  �W⁄ (`. 

Where �, �, 5 are chosen constants. 

Now, the differentiation of  D with respect to ' and after 

some algebraic manipulation reduces to the form as follow; 

�D
�' � 4�� 	 ��W

��
6 4d��

dt 6 � � 4�� 	 ��W
��

6 4d��
dt 6 

�� 4 � 	  �W
 �

6 4d �
dt 6 � s 4 � 	  �W

 �
6 4d �

dt 6 

=���P��W
��

� ��� �1 	 �����

 � 	 �&����( 	 ��� 

�� 4�� 	 ��W

��
6 �&����( 	 ��� 

� � 4 � 	  �W
 �

6 � � 41 	  � �  �
+! 6 	 �& � �( 	 " � 

�s 4 � 	  �W
 �

6 r& � �( 	 # � 

� &�� 	 ��W( ?� 41 	 �� � ��
+ 6 	 ��� 	 �B

�  �&�� 	 ��W(]��� 	 �` 

��& � 	  �W( ?b 41 	  � �  �
+A 6 	 � � 	 "B

� s& � 	  �W(r]& �( 	 #` 
=	&� +⁄ (&�� 	 ��W(� 	 �&�� 	 ��W(&�� 	 ��W( �

��&�� 	 ��W(&�� 	 ��W( 

	&�� +A⁄ (& � 	  �W(� 	 ��& � 	  �W(& � 	  �W(
� sr& � 	  �W(& � 	  �W( 

For simplicity, choosing  � � 1 and  � � 5  the foregoing 

time derivative reduces to&�D �'⁄ ( � 	&� +⁄ (&�� 	 ��W(� 	
&�� +A⁄ (& � 	  �W(� . Now, it can be observed that 

&�D �'⁄ ( � 0 

Therefore, the interior equilibrium point is globally stable. 

3.5. Numerical Simulations 

In this section, numerical simulations of the dynamics of 

the model equation around some of the steady state for 

certain range of parametric values are used to support the 

analytical results. 

The parameters and its values used in this study are 

mentioned in the following table as follow; 

Table 3. Parameters and their values for figures 3-9. 

Figures 
Parameters and their values 

� � � � � � � � � �’ 
3 1.1940 0.2550 0.3900 3.3920 2.4150 0.6000 2.1600 1.0980 0.6250 2.3920 

4 3.1260 3.9550 0.1600 6.2000 3.1050 0.4800 15.2200 1.6470 0.5450 6.9200 

5 3.0660 2.6200 6.0300 4.1440 8.0700 0.4800 11.9400 2.1960 2.6350 7.6400 

6 5.5380 0.8700 8.4600 1.1040 1.7250 5.3820 1.0400 6.0210 3.5100 1.6240 

7 5.5380 1.1250 8.4600 5.0960 1.7250 5.2680 4.4000 7.9020 3.5100 6.0160 

8 5.4960 1.4950 0.2300 1.8240 0.5850 0.2520 2.4200 3.9060 1.2500 2.8320 

9 5.4960 2.5400 0.2300 3.1600 0.5850 0.2700 2.4200 8.0730 1.2500 5.0640 

 
Figure 3. All populations vanish together over time. 
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This figure shows that when growth rate of both populations is less than the natural death rate and attacked by disease all the 

populations become completely extinct. 

 

Figure 4. The populations of the second host exist with disease. 

This figure shows that the growth rate of host-2 is greater than its natural death rate and the first host more affected and 

hence declines more. 

 

Figure 5. The population of the second host dominant over the other. 

This figure shows that the infected host declines more due to the infection rate and natural death rate of host-1 is increased 

keeping constant death rate of host-2. 
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Figure 6. The host population around the equilibrium point �[. 

One can observe from this figure that host-2 is more affected by disease and die due to natural death. 

But once the populations of the infected starts to decline, the first host become slightly increasing and regulate each other by 

forcing the second host to extinct without recovery. 

 

Figure 7. Host–1 population dominant over host–2population. 

This figure shows that host-2 is more infected and hence the mortality rate due to disease increases while the first host keeps 

increasing up to certain time. 
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Figure 8. Population dynamics around the equilibrium point ��. 

This figure shows that both host populations would live together without harming each other when the infected hosts are 

decline and extinct without recovery. 

 

Figure 9. Stabilization of both populations. 

This figure shows that when infection transmission rate of 

host-1and mortality rate due to disease of host-2 increased 

keeping the other parameters constant the populations 

become stabilized. 

4. Conclusion 

In the present study the population dynamics of four 

dimensional systems has been taken up for investigation. A 
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mathematical model for this four dimensional system is 

developed by studying carefully and incorporating the futures 

of each system together. The positivity and boundedness of 

the model variables are verified and hence shown that the 

developed four–dimensional system is biologically well 

behaved. 

In this paper, species have strong indirect effects on others, 

and predicting these effects is a central challenge in ecology. 

Host species sharing an enemy can be linked by apparent 

competition, that is interaction between two hosts and 

parasite is carried out for investigation. In the case where 

infection was permitted, parasite coexists in the population, 

but only under particular conditions, namely when rates of 

infection were varies both hosts. 

The results from the model system demonstrate that the 

important role that parasite may play in the establishment of 

community structures within host populations’ dynamics. 

This was indicated from the stability of interior equilibrium 

point in which the populations are coexisting. 

We need to point out here that, although the model 

considered in this study is two host populations via shared 

enemy model. Even though there is no direct interactions 

specifically associated with the hosts populations, the effects 

of each host was investigated by altering parameters involved 

in the system. It has been shown that, this process is strong 

enough to be a community-wide structuring mechanism that 

could be used to predict future states of diversification. To 

show this, numerical study of the model was carried out to 

support the finding. Moreover, the model system would be 

fully screened when there is a competition between the hosts 

that would be mediated by parasite interaction providing 

shared resources. This would be our next further 

investigation. 
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