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Abstract: After fifty years of documented history of Lassa fever in Nigeria, the country is still recording the highest record 

of outbreaks worldwide with Ebonyi state been the most affected state in the whole of Eastern Nigeria. This has activated 

interventional measures coming from both the government and scholars. The government through the Nigeria Centre for 

Disease Control (NCDC) and other sister agencies has activated an emergency response by establishing management centres 

which operates in association with specialist teaching hospitals in the endemic states, the scholars on the other hand are 

approaching the menace from two broad but complimentary aspects of sciences namely; the medical sciences and the natural 

sciences. The medical researchers focus more on developing reliable laboratory diagnosis, quicker methods of identifying the 

LASV and drug/vaccine formulation, the natural scientist (Bio-mathematicians) on the other hand focuses on modeling the 

dynamic transmission and controls among the various hosts of the LASV. This paper presents a mathematical model that tracks 

the transmission dynamics of Lassa fever in two different but complimentary host; human host and rat host. The model 

incorporates a death infectious human compartment capable of infecting susceptible population. The model analysis, basic 

reproduction number, existence of endemic equilibrium and bifurcation analysis was analyzed. It was established that the 

disease-free equilibrium point is stable when the reproduction number, R0<1 and the disease dies out. Numerical simulation 

was carried out with parametized data for Ebonyi State, Eastern Nigeria. The numerical simulation reveals that sensitization of 

susceptible population, quarantined of exposed humans and isolation of infectious humans, the practice of best international 

safety measures among health care workers, establishment of more Lassa fever diagnostic centres and precautionary burial 

practices remains the best control measures in the dynamic transmission of Lassa fever. 
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1. Introduction 

Lassa fever (LF) is a zoonotic viral hemorrhagic fever 

(VHF) cause by Lassa virus (LASV). The LASV belongs to 

the order Bunyavirales, the family Arenaviridae and genus 

Mammarenavirus. The primary host is the rodent 

multimammate rat (Mastomysnatalensis) which also spread 

the virus [9]. Once the rodent is infected, it shows no 

symptom, but excretes the virus through its feces and urines 

for its life time [26]. Humans contact the virus through direct 

contact with the infected rodent, rodents’ excreta, 

contaminated objects, inhalation of contaminated aerosols, 

swallowing of the virus and contact with body fluids of 

infectious humans. There is currently no study that has 

proven the presence of LASV in breast milk, but excretion of 

LASV in semen has been observed three months post-

infection [24] and high levels of viremia in breast milk 

suggest that transmission may occur via breastfeeding [10]. 

The signs and symptoms of LF are mostly non-specific, often 

mistaken for other common febrile illnesses such as malaria 

and Typhoid [5, 27]. This has no doubt contributed to the 

high person-to-person transmission especially among 

healthcare workers (HCWs). One of the dreaded realities 

about the transmission of this disease is the fact that even the 

corpse of an infected human can transmit the disease [7]. 
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Lassa fever is endemic in Western African countries such 

as Nigeria, Sierra Leone, Guinea and Liberia. It recently 

affected Mali and Ivory Coast [9, 13]. Approximately 100, 

000 to 300, 000 clinical infections and 5, 000 deaths per year 

are estimated to have occurred in the endemic regions [5]. 

Despite the fact that Lassa fever was first discovered in 1969 

from Lassa, a town in Borno state of northern Nigeria, it is 

regrettable that after 50 years of the disease’s documented 

history, Nigeria still struggles with deadly outbreaks all 

through the year. According to [15], Nigeria experienced the 

largest outbreak of Lassa fever ever recorded in any part of 

the world in the year 2018. From January 1
st
 to December 

31
st
, 2018, the country reported 3, 498 suspected cases of 

Lassa fever in 23 states with at least 1 confirm case across 93 

Local Government Areas (LGAs). Among the 633 confirmed 

cases, 80% are all from the southern region of the country as 

follows; Edo (44%), Ondo (25%) and Ebonyi (11%) states. A 

total of 171 deaths with case fatality of 27% has been 

recorded. A total of 45 health HCWs were affected; Ebonyi 

state (16), Edo (15), Ondo (8) Kogi (2), Nasarawa (1), Taraba 

(1) and Abia (2). Of the HCWs affected 10 died; Ebonyi 

State (5), Kogi (1), Abia (1), Ondo (2) and Edo (1) (NCDC, 

2018). Deaths in 2019 may outnumber the previous year if 

the current rate of case detection is sustained. According to 

[16], between January 1
st
 to September 19

th
, 2019 a total of 3, 

728 suspected cases of Lassa fever in 23 states have 

beenrecorded with at least 694 confirm cases across 83 

LGAs. Among the 694 confirmed cases, 19 are HCWs. A 

total of 149 deaths with case fatality of 21.5% were also 

recorded. Out of the 149 deaths, 19 were HCWs with Edo 

(6), Ebonyi (2), Ondo (4) while Enugu, Rivers, Bauchi, 

Benue, Delta, Plateau and Kebbi states recorded (1) each 

(NCDC, 2019). One of the possible reasons for high 

outbreaks in Nigeria (especially Eastern and Southern 

Nigeria), maybe attributed to ignorance and fictitious beliefs 

among the populace on preference of traditional medication 

when sick rather than orthodox medication where they will 

be medically examine first, unprotected burying/handling of 

corpse by morticians or relations, poor medical facilities in 

the hospitals etc. Unfortunately, administration of ribavirin, 

the only antiviral medicine for the treatment of LF is only 

effective when given in the early stage of the disease, 

preferably within the first six days after onset [27]. 

In the wake of the recent outbreaks of the virus in Nigeria 

between 2008 and 2019, it is clear that Lassa fever has 

become a serious threat to public health in Nigeria. with 

Ebonyi State as the most affected state in the Southeast 

geopolitical zone while Edo State and Ogun State in the 

South-south and Southwest geopolitical zones of the country 

respectively (see Figure 10 and Figure 11). This has activated 

interventional measures coming from both the government 

and scholars. The government through the Nigeria Centre for 

Disease Control (NCDC) and other sister agencies has 

activated an emergency response by establishing 

management centres which operates in association with 

specialist teaching hospitals in the endemic states. Also rapid 

response teams were constituted to work with states in 

response co-ordination, contact tracing, case management, 

risk communication, and strengthening infection prevention 

and control practices. Scholars on the other hand are 

approaching the menace from two broad but complimentary 

aspects of sciences namely; the medical sciences and the 

natural sciences. While the medical researchers focus more 

on developing reliable laboratory diagnosis, quicker methods 

of identifying the LASV and drug/vaccine formulation [6, 11, 

12, 14, 23, 22, 28], the natural scientist (Bio-mathematicians) 

on the other hand focuses on modeling the dynamic 

transmission and controls among the various hosts of the 

LASV. 

Various theoretical studies have been carried out on 

mathematical modeling of Lassa fever transmission 

dynamics, focusing on a number of different aspects. In the 

work of [26], they developed a mathematical model for the 

transmission dynamics of the Lassa fever virus infection by 

splitting the infectious human population into symptomatic 

and asymptomatic infectious and assumed that the animal 

reservoirs do not recover once infected. Their model revealed 

that, the disease becomes endemic in the rodents population 

and also do not die out of the human population over time 

without controlling the growth of the rodents population, by 

preventing animal-human transmissions and improvement on 

the human recovery rates. Their model also reveals that the 

disease will be wiped out of the hosts populations over time. 

Also [8] presented a mathematical model that tracks the 

transmission dynamics of Lassa fever in a two-interacting 

human host and rodent vector populations. The model 

incorporates a non-drug compliance rate in the parameters for 

the human population. It revealed that intervention strategies 

need to be focused on treatment and reduction on the contact 

between the rodent vector and human host. Since the non-

drug compliance rate of infectious human hosts causes 

reappearance of symptoms after a symptom free period, there 

is need to increase caution which will reduces the number of 

infectious human hosts who do not comply with drug. He 

also suggests the need for isolation of the infectious human 

hosts in order to reduce the spread of Lassa fever. In the work 

of [17] they formulated a new mathematical model with 

focuses on the human and rodent population using maximum 

principle of theorem to establish the positivity and 

boundedness of the solution. Their study still reveals that 

maintaining hygienic environment and control of the rodent 

activities remain the best way of stamping the control of LF. 

While [26] in their paper presented a deterministic model of 

Lassa fever transmission with quarantine and permanent 

immunity. The existence and uniqueness of the solution were 

also proved. Their model was globally asymptotic, which 

implies that the disease will be wiped out irrespective of the 

initial population size. In the work of [19] proposed in their 

model the need to develop a model that will incorporate the 

effects of vaccination on a subset of the target population. 

However in the absent of vaccine, they proposed in the 

interim the quarantine of infected persons and control of 

rodent activity as the best prevention strategies and also their 

model coupled to a population of rat for the transmission of 
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Lassa fever disease. They calculated the basic reproduction 

number for their model and gave conditions for disease 

outbreak. In [18] they developed a Susceptible-Infected-

Recovery (SIR) model for controlling Lassa fever 

transmission in Northern part of Edo state, Nigeria. They 

advocated for health policies that will keep the basic 

reproduction number, ��  below 1, thereby keeping the 

transmission of the disease under control. Furthermore, [3] 

developed a mathematical model for Lassa fever where they 

divided the human population into susceptible human and the 

infectious human and the reservoir population into infant and 

the adult reservoir and represented the virus in the 

environment by V. They explained that the virus 

compartment is generated from the urine and feces of 

infected human and adult reservoirs. In the work of [21], they 

developed a Lassa fever model using the sex structure 

approach. Their model represented the transmission 

dynamics of the Lassa fever disease using a set of ordinary 

differential equations. Their model had the following 

assumptions: Susceptible individuals, male/female can be 

infected through interaction with the active Reservoir 

(Mastomys Natelensis), and through sexual interaction with 

opposite sex. Two major controls were considered, the use of 

condom to reduce contact through sexual interaction and the 

use of pesticide/rat poison to kill the natural Reservoir. 

Thus, based on the literatures that the authors were able to 

review, no mathematical model for Lassa fever has been 

developed which incorporated infectious death humans as a 

compartment and or parametized for Ebonyi state, being the 

most affected state in South-east geopolitical zone of Nigeria. 

In this research, we will formulate a mathematical model that 

will incorporate the death infectious human compartment and 

other suggestions of the reviewed literatures for the control 

and transmission dynamics of Lassa fever. The model will be 

parameterized for Ebonyi state of Nigeria being the state with 

high seasonal outbreaks in the whole of the Southeast 

geopolitical zone of the country to reflect a LASV endemic 

region in Nigeria. 

2. Model Formulations 

In this section, we present the formulation of a 

deterministic model for Lassa fever. First, we state the model 

assumptions, model description, the schematic diagram, the 

model parameters and state variables and the model 

equations. 

2.1. Model Assumptions 

The model is formulated based on the following 

assumptions; 

1. Deceased infectious humans can still infect susceptible 

humans before and during funerals. This assumption is 

motivated by the case of an infectious corpse of a LF 

individual that infects a mortician/undertaker in 

Germany and also based on the Nigerian burial 

practices (e.g. washing of deceased individuals) during 

burial ceremonies [7]. 

2. There is homogeneous mixing of members of the 

population under consideration. 

3. We assume that there is a vital dynamics because of the 

continuous yearly outbreaks of Lassa fever in the 

various geopolitical zones of the country (Nigeria). 

Thus, during this relatively long period of time, there 

might be new births or inflow of susceptible individuals 

from other/surrounded places as well as natural deaths, 

which allow a demographic process to take place. 

4. Infection is acquired either via direct contact with 

rodent or via interaction with infectious human or 

rodent contaminants in the environment. 

5. In order for an individual to become infectious, he/she 

must pass through the latent stage. 

2.2. Model Description 

In our model, the host population is divided into two; the 

rodent (rat) reservoir and the human population. For the 

rodent reservoir, the total rodent population, ��(�), at time, � , is divided into subpopulations/compartments namely 

Susceptible, ��(�) , Exposed, 	�(�) , and Infectious, 	��(�) , 

i.e. the rodent population at any given time, �, is given by 

��(�) = ��(�) + 	�(�) + ��(�). 
Rodents are recruited into the susceptible class, 	��(�), at a 

constant rate, Λ�, through birth or immigration of the rodent 

and they exit either through natural death at the rate, 	�� , 

human control measures/hunting by other predators rate, 	��, 

or by infection induced by the disease with force of infection, 	��. i.e. 

dS�dt = Λ� − λ�S� − μ�S� − ρ�S� 

Where 

�� = �� ����                  (1) 

and 	�� is the effective contact rate between the infectious 

rodent and susceptible rodent. 

The exposed rodent class, 	�(�), gains population through 

infection induced by the disease with the force of infection, �� ,	and exits either through natural death rate, �� , human 

control measures/hunting by other predators rate, 	��, or by 

progression rate, 	��, into the Infectious rodent class, 	��(�), 
i.e. 

dE�dt = λ�S� − μ�E� − ρ�E� − ��E� 

The infectious rodent class, 	��(�),	gains population from 

the progression from exposed class at rate, 	��, and they exit 

either through natural death rate, ��, or from human control 

measures/hunting by other predators rate, 	�� , since the 

rodentscannot be killed by the disease, i.e. 

dI�dt = ��E� − μ�I� − ρ�I� 
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For the human population, the total human population, 	�"(�) , at time, � , is divided into 

subpopulations/compartments; Susceptible, �"(�), Exposed, 		"(�), Quarantined, 	#"(�), Exposed but not quarantined, 	�"(�), Infectious, 	�"(�), Infectious and Isolated, 	�$"(�), 

and Infectious Human Corpse or Dead infectious human, 	%"(�). In the human population, we incorporates two control 

measures; quarantine, (i.e. treatment of a known latent 

infected person without confinement/restriction of movement 

and interaction with susceptible human), and Isolation (i.e. 

isolation or confinement of an infectious person from 

interacting with susceptible human while receiving intensive 

medical care). The human population at any given time, �, is 

given by 

	N'(�) = S'��� 
 E'��� 
 E('��� 
 E)'��� 
 I'��� 
 I'*��� 

Susceptible humans, �"���, are recruited into compartment 

at a constant rate, Λ" , through birth or immigration of the 

human, and from those that recovered from quarantine and 

isolation at rates, 	�+ and �,,	respectively. Susceptible human 

exit either through natural death rate, 	�" ,	or by infection 

induced by the disease with force of infection, 	�", i.e.
-./
-0

�
Λ' � λ'S' � μ'S' 
 ρ+E(' 
 ρ,I*' 

where 

λ' � �"
��
��



12�34516�45178

�4
	         (2) 

and�" , is the effective contact rate between theinfectious 

rodent or its contaminants and susceptible human, while, 

�9, �: and �+,	 are the effective contact rates between 

theinfectious, isolated, dead infectious humans and 

susceptible human respectively. 

The exposed human class, 	"���, gains population through 

infection induced by the disease with the force of infection, 

	�" , and a proportion, �1 � <�,	exits due to enlightenment 

campaign/sensitization and are quarantined at rate, 	�: , 

(especially among Health Care Workers who might have 

realized that they have come in contact with a confirm 

infectious person or family members of a confirmed 

infectious human) while the remaining proportion, 

<=>0, 1@,	of the Exposed human will progress to the exposed 

but not treated class, 		�"���, at the rate, �9, or some exits 

through natural death rate, 	�", i.e. 

dE'
dt

� λ'S'��1 � φ�ρ:E' � φρ9E' � 	μ'E' 

The Exposed but not treated class, 	�# , gains population 

from the proportion, < , of exposed human that are not 

quarantined at a rate, �9 , and exits either through natural 

death rate, �", or through progression to infectious class at a 

rate, 	�B, i.e.
-CDE
-0

� φρ9E' � ρBE)' � μ'E)' 

The quarantined class, 	#" , gains population from the 

proportion, �1 � <�,	of the exposed human at a rate, �:, and 

exits either through natural death rate, �" , or through 

returning back to susceptible class at a rate, �+ , after 

spending 21 days of the incubation period of Lassa in the 

quarantine class without symptoms or progression to isolated 

human at a rate, �F,	if anyone develop symptoms, i.e. 

-CE/
-0

� �1 � φ�ρ:E' � ρ+E(' � ρFE(' � μ'E('. 

The infectious human compartment, �" , gain population 

from progression from, 	�" ,	 to infectious class at a rate, 

�B,	and exits either through natural death rate, 	�", or through 

the rate, �G, which infectious human areisolated for intensive 

treatment, or diedwith disease induced death rate, H9, i.e. 

-I/
-0

� ρBE)' � ρGI' � d9I' � μ'I'. 

The Isolated compartment, �$" , gains population from 

those quarantined and infectious human that are isolated at 

rates, �F, and �G, respectively and exits either through natural 

death rate of human, �" , or through the rate, �, , at which 

isolate individuals get treated and moves back to susceptible 

class after receiving intense treatment/improved immunity or 

die with disease induced death rate, 	H:, i.e. 

-IJ/
-0

� ρGI' 
 ρFE(' � ρ,I*' � μ'I*' � d:I*'. 

Infectious Human Corpse or Death infectious human 

compartment, 	%", can infects susceptible human (especially 

morticians/undertakers). It gains population from the disease 

induced rates for infectious and isolated humans at rates, H9 

and H: , respectively and exits through proper buried and 

carefulness of infectious human corpse at the rate, K , 

i.e.
-L/
-0

� d:I*' 
 d9I' � γD'. 

The model state variables and model parameters are 

represented and described in Table 1 and Table 2 

respectively. The model flow diagram is given in Figure 1. 

 

Figure 1. Systematic diagram of Lassa fever model. 

Table 1. State Variables of the Model. 

Variables Description 

����� Total number of rodent population at time, �,  
����� Total number of Susceptible rodent population at time, �,  
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Variables Description 	�(�) Total number of Exposed rodent population at time, �,  ��(�) Total number of Infectious rodent population at time, �,  �"(�) Total number of human population at time, �,  �"(�) Total number of Susceptible human population at time, �,  	"(�) Total number of Exposed human population at time, �,  	#"(�) Total number of quarantined human population at time, �,  	�"(�) Total number of Exposed but not treated population at time, �,  �"(�) Total number of infectious human population at time, �,  �$"(�) Total number of Isolated human population at time, �,  %"(�) Total number of Infectious Human Corpse yet to be buried population at time, �,  
2.3. Model Equation 

From the schematic diagram, the following set of non-linear ODE’s are derived 

-./-0 = Λ' − λ'S' − μ'S' + ρ+E(' + ρ,I*'				-C/-0 = λ'S'−(1 − φ)ρ:E' − φρ9E' − 	μ'E'		-CE/-0 = (1 − φ)ρ:E' − ρ+E(' − ρFE(' − μ'E'-CDE-0 = φρ9E' − ρBE)' − μ'E)'													-I/-0 = ρBE)' − ρGI' − d9I' − μ'I'												-IJ/-0 = ρGI' + ρFE(' − ρ,I*' − μ'I*' − d:I*'-L/-0 = d:I*' + d9I' − γD'																			-.O-0 = Λ� − λ�S� − μ�S� − ρ�S�													-CO-0 = λ�S� − μ�E� − ρ�E� − ��E�											-IO-0 = ��E� − μ�I� − ρ�I�																			 PQ
QQ
QQ
QQ
R
QQ
QQ
QQ
QS

                                                        (3) 

subject to the initial conditions, S'(0) > 0, E'(0) ≥0, E('(0) ≥ 0, E)'(0) ≥ 0, I'(0) ≥ 0, I'*(0) ≥ 0, D'(0) ≥0, S�(0) > 0, E�(0) ≥ 0andI�(0) ≥ 0 and the force of 

infections for the rodent and human, λ� and λ', are defined 

in equations (2) and (4) respectively. 

3. Model Analysis 

The model equations (5) is analyzed qualitatively to get 

insights into its dynamical features for better understanding 

of the impact of the various control strategies on the 

transmission dynamics of Lassa fever. 

3.1. Well-Posedness of the Model Equations 

We establish the well-posedness of the model by proving 

the positivity and boundedness of the solutions of the model 

with the non-negative initial solution for all time. 

Lemma 1: The LASV model (5) is well-posed and valid in 

the region. 

X = Y�"(�), 	"(�), 	#"(�), 	�"(�), �"(�), �$"(�), %"(�), ��(�), 	�(�), ��(�) ∈ ℝ59�: �"(�) ≤ ^4_4 , %"(�) ≤ (`25`6)^4_4a , ��(�) ≤ ^�_�b. 
PROOF: 

The proof is provided in two steps. 

Step1 (Proof of the Positivity of the Solutions of the Model) 

Let the set of initial solution be 

c�"(0), 	"(0), 	#"(0), 	�"(0), �"(0), �$"(0), %"(0), ��(0), 	�(0), ��(0)d ∈ Ω. 

We assume that the set of initial solutions,  

f�(0), 	(0), 	#(0), �(0), ��(0), �#(0), �(0)�"(0), 	"(0), 	#"(0), 	�"(0), �"(0), �$"(0), %"(0),��(0), 	�(0), ��(0) g 	≥ 	0. 

Then, the first equation of (5) can be written as 

`.4`h = Λ" − λ"(�)S" − μ"S" + ρ+	#"(�) + ρ,�$"(�). 
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`.4`h ≥ Λ" − βj(�)S".                                                                           (4) 

whereβj(�) = 	 λ"(�) + μ"andλ"(�) = k4��)� + k2�45k6�345k784)4 . 

Equation (4) is a linear first order ordinary differential equation in S"(�) with the solution 

S"(�) = S"(0)lmn op −βj(q)Hqh� r + lmn op −βj(q)Hqh� r × p Λ"lmntp βj(⍵)H⍵v� wHx ≥ 	0h�            (5) 

Hence, S"(�) ≥ 	0	∀	t ≥ 0. 

In a similar way, the remaining state variables are obtained such that 

E"(�) 	≥ 	E"(0)	lmn(−(μ" + zρ9 + (1 − z)ρ:) 	≥ 	0, ∀	t ≥ 0		#"(�) ≥ 		#"(0)	lmn(−(μ" + ρ+ + ρF)) 	≥ 	0, ∀	t ≥ 0									�"(�) ≥ 		�"(0)	lmn(−(μ" + ρB)) 	≥ 	0, ∀	t ≥ 0													I"(�) ≥ 	 I"(0)lmnt−(μ" + ρG + H9)w ≥ 0, ∀	t ≥ 0												�$"(�) 	≥ 	 �$"(0)	lmn(−(μ" + ρ, + H:)) 	≥ 	0, ∀	t ≥ 0								%"(�) ≥ 	%"(0)lmn(	−Υ) ≥ 	0, ∀	t ≥ 0																							 PQQ
R
QQS

                      (6) 

For the rodent again,  

S�(�) = S�(0)lmn op −β|(q)Hqh� r + lmn op −β|(q)Hqh� r × p Λ�lmntp β|(⍵)H⍵v� wHx ≥ 	0h� , ∀	t ≥ 0,  

In a similar way,  

E�(�) 	≥ 	E�(0)	lmn(−(μ� + ρ� + σ�) 	≥ 	0, ∀	t ≥ 0	I�(�) ≥ 	 I�(0)lmnt−(μ� + ρ�)w ≥ 0, ∀	t ≥ 0	 ~                           (7) 

Where 

β|(�) = 	λ�(�) + μ"andλ"(�) = k���)� . 

Hence, the solution set c�"(�), 	"(�), 	#"(�), 	�"(�), �"(�), �$"(�), %"(�), ��(�), 	�(�), ��(�)d  of the LASV model is 

positive for all t ≥ 0 since exponential functions are positive functions based on equations (5) – (7). 

Step 2 (Prove of the Boundedness of the Solution) 

The active human, dead human and the rodent populations satisfy the inequalities 

�"(�) ≤ �4_4 , %"(�) ≤ (`25`6)�4_4� and ��(�) ≤ ��_� 

based on the assumption that the initial conditions for LASV model satisfy 

�"(0) ≤ �4_4 , %"(0) ≤ (`25`6)�4_4�  and ��(0) ≤ ��_�. 

Proof: 

The total active human population at any time, t, can be determined by 

�"(�) = �"(�) + 	"(�) + 	#"(�)+	�"(�) + �"(�) + �$"(�). 
Also, the total rodent population at any time, �, can be determined by 

��(�) = ��(�) + 	�(�)+��(�). 
So, the time derivatives, 

`�4`h and
`��`h , along solutions of thesystem are obtained as 

H�"H� = Λ" − �"�" − H9�" − H:�$" ≤ Λ" − �"�" 

and 

H��H� = Λ� − (�� + ρ�)�" ≤ Λ� − ���� 
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Here, H9, H:andρ�, are negligible. Then, applying the Gronwall’s inequality gives 

�"(�) ≤ �4_4 + o�"(0) − �4_4r l�_4hwhenever�"(0) 	≤ 	�4_4 

and 

��(�) ≤ ��_� + o��(0) − ��_�r l�_�h whenever��(0) 	≤ 	��_�. 

So, taking the limit as � → ∞yields�"(�) ≤ �4_4and��(�) ≤ ��_�. 

It is natural that�" ≤ �"and�$" ≤ �". 

So that,  

`84`h ≤ (H9 + H:)�" − Υ%" = (H9 + H:) �4_4 − Υ%"                               (8) 

where�"(�) ≤ �4_4. 

Again, applying the Gronwall’s inequality to (8) yields 

%"(�) ≤ (`25`6)�4_4� + o%"(0) − (`25`6)�4_4� r l��hwhenever%"(0) 	≤ 	 (`25`6)�4_4� . 

This gives%"(�) ≤ (`25`6)�4_4� as� → ∞. 

This shows that the feasible region for the model exists 

and is bounded by 

�"(�) ≤ �4_4 , %"(�) ≤ (`25`6)�4_4� and��(�) ≤ ��_�. 

It means that all the solutions of the LASV model are 

nonnegative in Ωfor any time, � > 0. 

3.2. Existences of Equilibria 

The disease free-equilibrium, E�,	of the model system (5) 

is denoted as 

E� = tS'� , E('� , E)'� , I'� , I*'� , D'� , S�� , E�� , I��w 

and is obtained in the absence of infection (i.e. �" = 0). 

Setting the right hand side of the system (5) equal to zero 

and solve simultaneously, we get the disease-free equilibrium 

state as 

E� = o�/�/ , 0, 0, 0, 0, 0, 0, �O�O5�O , 0, 0r. 

3.3. The Basic Reproduction Number �� 

The basic reproduction number, ��, is used in determining 

the transmission capability of the disease. It is viewed as the 

quantity of secondary diseases delivered by a primary case of 

an infection in a population that is completely susceptible. It 

can be estimated from the quantity of secondary infections 

when a disease is introduced into an absolutely susceptible 

population. ��  is a threshold quantity that decides if a 

pathogen can hold on in a population or not. If�� < 1, then 

the disease will die out with time in the population, otherwise 

if �� > 1 it will leads to endemic state in the population, and 

it is also important for evaluating control alternatives. 

Using the next generation approach to compute the basic 

reproduction number, ��, it is defined to be largest eigenvalue 

or spectral radius of GU�9  with the associated matrix �  (i.e. 

the rate of appearance of new infection in the susceptible 

compartments) and matrix �  (i.e. the transfer of infections 

from infected compartments to another) as shown below; 

F =

��
��
��
��
��
�β'I�S'

N�


tβ9I' + β:I*' + β+DwS'

N'00000β�I�S�
N�0 ��

��
��
��
��
�

, � =

��
��
��
��
� fE'−(1 − φ)ρ:E' + gE('–φρ9E' + hE)'−ρBE)' + pI'−ρGI' − ρFE(' + qI*'−d:I*' − d9I' + γD'rE�−��E� + sI� ��

��
��
��
�
 

where 
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f = 	 (1 − φ)ρ: + φρ9 + 	μ'			g = 	 ρ+ + ρF + μ'												h = ρB + μ', p = ρG + d9 + μ'q = ρ, + μ' + d:													r = μ� + ρ� + ��													s = μ� + ρ�																		 PQ
R
QS

                                                                      (9) 

� = ��(	�)�� =

��
��
��
��
�0 0 0 �9 �: �+ �"�"���� 0
0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 �� 00 0 0 0 0 0 0 0��

��
��
��
�

 

Here, � = t	" , 	#" , 	�" , �" , �$" , %" , 	� , ��w is the infected compartments and 

� = ��(	�)�� =

��
��
��
��

  0 0 0 0 0 0 0−(1 − φ)ρ: ¡ 0 0 0 0 0 00 –φρ9 ℎ 0 0 0 0 00 0 −ρB n 0 0 0 00 −ρF 0 −ρG £ 0 0 00 0 0 −H9 −H: γ 0 00 0 0 0 0 0 r 00 0 0 0 0 0 −�� q��
��
��
��
 

The basic reproduction number is computed using�� = ρ	(GU�9) where ρ	(. ) is the spectral radius of the matrix, GU�9, i.e. 

the maximum eigenvalue ofGU�9. 

This implies that 

�� = ρ(GU�9) = Max §�6(9�¨)(12�2�©¨ª5«)¬­®¯°ª , 1�±²³(³5�´)µ = Max>��" , ���@                                      (10) 

where ¶ = (β:γ + β+H:)(ρFnℎ + φρ9ρBρG) + β+H9φρ9ρBq. ��" and ��� are the basic reproduction numbers for human and rodent population respectively. 

3.4. Stability Analysis 

Theorem 1. The disease – free equilibrium 	� of the LASV model is locally asymptotically stable if �� < 1 and unstable if �� > 1. 

Proof 

We prove the Theorem 1 using linearization method.  

The Jacobian matrix associated with the LASV model at the DFE, E� = o�/�/ , 0, 0, 0, 0, 0, 0, �O�O5�O , 0, 0r is given as 

·(E�) =

��
��
��
��
��
�−�" 0 �+ 0 −�9 −�: + �, −�+ 0 0 −¸0 −  0 0 �9 �: �+ 0 0 ¸0 (1 − <)�: −¡ 0 0 0 0 0 0 00 <�9 0 −ℎ 0 0 0 0 0 00 0 0 �B −n 0 0 0 0 00 0 �F 0 �G −£ 0 0 0 00 0 0 0 H9 H: −K 0 0 00 0 0 0 0 0 0 −q 0 −��0 0 0 0 0 0 0 0 −¹ ��0 0 0 0 0 0 0 0 �� −q ��

��
��
��
��
�

                      (11) 

The Eigenvalues of the Jacobian matrix, ·(E�) are 

−�j, −q,−q + 12�| + 12»4�|�| + �|:, −q − 12�| − 12»4�|�| + �|: 
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and the roots of 

�, + %�B + 	�F + ��+ + ��: + ½� + � = 0 

where 

% = n + ¾ +   + ¡ + ℎ + £ 

	 =  (£ + ¡ + ℎ + ¾ + �) + ¡(¾ + ℎ + ¿ + £) + ¾(ℎ + n + £) + ℎ(¿ + £) + n£ 

� = (1 + <)�:�:�F +  ¡(¾ + ℎ + � + £) + ( ¾ + ¡¾)(ℎ + n + £) + (¡ℎ + ¾ℎ +  ℎ)(n + £) + 

n£(  + ¡ + ℎ + ¾) 
� = <(1 − <)�9�9�:�B + (1 − <)�:�:�F(¾ + ℎ + n) + (1 − <)�+H:�:�F + ( ¾ℎ + ¡¾ℎ +  ¡ℎ)(n + £)+	( n£ + ¡n£)(¾ + ℎ) +  ¡(n£ + ¾ℎ) 

½ = <(1 − <)<�9�9�:�B(¾ + £) + (1 − <)�:�9�:�B�G + (1 − <)�+H9�9�:�B + (1 − <)�:�:�F 

>¾ℎ + ¾n + ℎn@ + (1 − <)�+�:�FH:(ℎ + n) +  ¡¾ℎ(n + £) +  ¡ℎ£(¾ + ℎ) + ¾ℎn£(  + £) 
� =  ¡ℎn£¾>��" − 1@. 

Using Routh – Hurwitz criteria, 	� is locally asymptotically stable when��" < 1. This proves the theorem. 

3.5. Existence of Endemic Equilibrium 

Let denote the endemic equilibrium state by 

	� = (�"∗ , 	"∗	#"∗ , 	�#∗ , �"∗ , �$"∗ , %"∗ , ��∗ , 	�∗ , ��∗) 
At the equilibrium,  

-./-0 = -C/-0 = -CE/-0 = -CD/-0 = -I/-0 = -IJ/-0 = -L/-0 = -.O-0 = -CO-0 = -IO-0 = 0. 

This gives 

Λ' − λ'S' − μ'S' + ρ+E(' + ρ,I*' = 0	λ'S' − fE' = 0																									(1 − φ)ρ:E' − gE(' = 0																φρ9E' − hE)' = 0																					ρBE)' − pI' = 0																						ρGI' + ρFE(' − qI*' = 0															I*' + d9I' − γD' = 0																	Λ� − λ�S� − sS� = 0																		λ�S� − (s + ��)E� = 0																	��E� − SI� = 0																							 PQ
QQ
QR
QQ
QQ
S

                                                           (12) 

Where f, g, h, p, q, rands are same as defined in (9) 

In solving (12) we let 

λ� = IO)O = IO.O5CO5IO                                                                            (13) 

So that 

E�∗ = ³IOÁ� , 						��∗ = (Á�5Â)Â��kOÁ�ÃO ,									I�∗ = �OÁ�kOÃOÂ(ÂkOÃO5kOÁ�ÃO5³65³Á�                                       (14) 

By substituting (14) in (13), we get 

λ� = kOÁ��Â(Â5Á�)kO(Á�5Â) 	= 0                                                                   (15) 

Which corresponds to the DFE. 
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Recall that��� = kOÁ�Â(Â5Á�)in (10) 

λ� = ÂkO (��� − 1)                                                                             (16) 

Substituting (16) into (14), we have 

I�∗ = Λ���q(q + ��) f1 −
1�Ä�g , 							�∗ =

Λ�(q + ��) f1 −
1�Ä�g , 										��∗ =

Λ�q�Ä� 

which exist if ��� > 1. 

By letting 

λ'∗ = β'I�∗
N�
∗ 


β9I'∗ + β:I*'∗ + β+D'∗
N'
∗  

in solving the first seven equations of (12) in terms of λ'∗ , we get 

S'∗ = Λ'fghpqM , E'∗ = λ'∗ Λ�ghpqM , E('∗ = Å��Λ�hpqλ'∗M , E)'∗ =	φρ9¸ρ:Λ'pqλ'M , I'∗ =	ρBφρ9¸ρ:Λ'qλ'M , I*'∗  

=	¸ρ:Λ'λ'(φρ9ρBρG + hpρG)M  

and 

D'∗ = ¸Λ'ρ:λ'(φqd9ρ9ρB + φd:ρ9ρBρG + hpd:ρF)Mτ  

WhereÇ =  ¡ℎn£�" +  ¡ℎn£λ'∗ − λ'∗ ρ:v(ρ+hpq + φρ9ρBρG + hpρF) and¸ = (1 − <). 
If we substitute S'∗ , E'∗ , E('∗ , E)'∗ , I'∗ , I*'∗ 	and	D'∗  into (14) and set 

ρ(λ'∗ ) = λ'∗ − β'I�∗
N�
∗ �

β9I'∗ + β:I*'∗ + β+D'∗
N'
∗ � 0 

We obtained the following equation 

λ'∗ (Mλ'∗: + Nλ'∗ + P) = 0                                                                          (17) 

where 	M = β�(vhpd:ρ:ρF + qvρ:hpτ + τvhpρ:ρF + φρ9vρ:pqτ + φρ9vρ:pqτ + ρBφρ9vρ:qτ + τvφρ9ρ:ρBρG 

										+vφqd9ρ9ρ:BÊ¯-	
N � β'svφρ:tτρ9ρ:BÊ¯-w											β�shp(τvρ:ρF + vρ:qτ + vd:ρ:ρF + qgτ)(1 − R��) 
¿ = β'sfghpqτ(1 − R��) 

Hence, (17) λ'∗ = 0			corresponds to the DFE already obtained 

Now, the solution of the quadratic equation 

Mλ'∗: + Nλ'∗ + P = 0	                                                                            (18) 

depends on the signs of the coefficients, M,N,	and ¿. 

Using Descarte’s rule of signs to determine the sign of λ'∗  

in (18), a unique positive endemic equilibrium, λ'∗ exists 

if MandP are both negative. This happens when R�� >1ÅÌHR�' > 1which implies R� > 1. 

3.6. Local Stability of the Endemic Equilibrium 

We use the approach of centre manifold theory described by 

Castillo - Chavez and Song [4] to investigate the stability of 

endemic equilibrium near �� = 1. It is used to examine the 

existence of forward bifurcation at �� = 1 . When the 

bifurcation is forward, it implies that disease free equilibrium 

is locally asymptotically stable for �� < 1  and there is no 

disease in the population and also endemic equilibrium is 

locally asymptotically stable for �� > 1 near one. This means 

that disease cannot invade the population when �� < 1. 

Let consider �9ÅÌH�|  as the bifurcation parameters at �� = 1, so that ��� = 1and ��" = 1if and only if 



 Mathematical Modelling and Applications 2020; 5(2): 65-86 75 

 

�| = �|∗ = q(q + �|)�|  

and 

�9 = �9∗ =  ¡ℎn£¾ − �:½�|�B£<¾  

Then, we make the following change of variables �" = m9, 	" = m:, 	#" = m+, 	�" = mF, �" = mB, �$" = m,, %" = mG, �� = mÍ,	 
	� = mÎ, �� = m9� 

Then the LASV model of equations (5) – (14) can be written in the form 

HmÏH� = �(mÏ), Ð = 1, 2, 3, … , 10 

where 

� = ( 9,  :,  +,  F,  B,  ,,  G,  Í,  Î,  9�)#  

and 

� = (m9, m:, m+, mF, mB, m,, mG, mÍ, mÎ, m9�)#. 

This gives 

-Ó2-0 = Λ' − λ'x9 − μ'x9 + ρ+x+ + ρ,x, = f9	-Ó6-0 = λ'S' − fx: = f:																						-Ó7-0 = (1 − φ)ρ:x: − gx+ = f+														-ÓÔ-0 = φρ9x+ − hxF = fF																				-Ó©-0 = ρBxF − pxB = fB																					-ÓÕ-0 = ρGxB + ρFx+ − qx, = f,														-ÓÖ-0 = d:x, + d9xB − γxG = fG														-Ó×-0 = Λ� − λ�xÍ − SxÍ = fÍ															-ÓØ-0 = λ�xÍ − (ρÊ + S)xÎ = fÎ														-IO-0 = ρÊxÎ − Sx9� = f9�																			 PQ
QQ
QQ
QQ
R
QQ
QQ
QQ
QS

                                                    (19) 

With λ' = k/Ó2Ù)O + k2Ó©5k6ÓÕ5k7ÓÖ)/ , 		λ� = kOÓ2Ù)O 	and N� � xÍ 
 xÎ 
 x9�, 	N' � x9 
 x: 
 x+ 
 xF 
 xB 
	xG. 

Using the Jacobian Matrix ·�	��in (11) at�� � 1, the roots of equation (32) will have a zero eigenvalue, Since 

� =  ¡ℎn£¾(��" − 1) = 0 when ��" = 1 

So that 

�(�B + ¶�F + Ú�+ + Û�: + %� + 	) = 0 

� = 0or(�B + ¶�F + Ú�+ + Û�: + %� + 	) = 0. 

We first calculate the right eigenvector of ·(	�) denoted by 

Ü = (Ü9 , Ü:, Ü+, ÜF, ÜB, Ü,, ÜG, ÜÍ, ÜÎ, Ü9�)# 

By multiplying it with the Jacobian matrix and equating to zero. 

We have 

Ü+ = (1 − <)�:¡ Ü:, 		ÜF = <�9ℎ Ü+,				ÜB = �Bn ÜF, 			Ü, = �FÜF + �GÜB£ , 				ÜG = H9ÜB + H:Ü,l ,	 
ÜÍ = − Ü: + �9ÜB + �:Ü, + �+ÜGK = 0		 
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Å�	��" = 1,								ÜÎ = 0, 						Ü9� = 0, 				Ü: = Ü: > 0 

Ü9 = ±7Ý7�Þ12Ý©5(�165±Ù)ÝÕ�17ÝÖ_ß . 

The left eigenvector of the Jacobian ·(	�) associated with the zero eigenvector is given by 

x = (x9, x:, x+, … , x9�)# 

This is computed by transposing·(	�) first and multiply by x. 

We get 

x9 = 0,			x+ =  (1 − <)�: x:, 			xF =
¡x+ − �Fx,<�9 , 			xB = ℎxF�B , 			x, = �:x: + H:xG£ , 			xG = �+¾ x:, 					xÍ = ¸x:q ,	 

xÎ = àÂ(9�Â)x:,					x9� = 1²∗Â xÎ, 			x: = x: > 0. 

Ü:ÅÌHx: are computed to ensure that the eigenvector satisfy the property. 

The coefficients	Å and á as defined in Theorem 4.1 of [4] are given as 

Å = â xãÜÏÜä �: ã(	�)�mÏ�mä
å

ã,ä,Ïæ9
 

á = â xãÜÏ �: ã(	�)�mÏ��Ï
å

ã,ä,Ïæ9
 

We can only consider whenç = q since it will give us nonzero partial derivatives at the DFE, 	� . So, function,  : , is 

considered and is defined in (48). The associated nonzero partial derivatives at the DFE and �|∗ = �9ÅÌH�9∗ = �9are given by 

�: :�mG�m: = − �+�" ,
�: :�mG�m+ = − �+�" ,

�: +�mG�mF = − �+�" ,	 
�: :�mG�m, = − �+�" −

�9�" ,
�: :�mG�mB = − �+�" −

�9�" ,
�: �mG: = −2 �+�" ,	 

è6éèêÕ6 = −2 16�4 , è6éèê©èê7 = è6éèê©èê6 = è6éèê©èêÔ = − 12�4 , è6éèê©6 = −2 12�4 , è6éèê©è12 = 1. 

This implies that 

Å = − v6�4 >ÜBÜ:�9 +ÜBÜ+�9 + 2ÜB:�9 + ÜBÜ,�9 + ÜBÜ,�: + ÜBÜF�9 + ÜBÜG�9 + ÜBÜG�+ + Ü,Ü:�: +Ü,Ü+�: +Ü,ÜF�: + Ü,ÜG�+ + Ü,ÜG�: + 2Ü,:�: +ÜGÜ:�+ + ÜGÜ+�+ + ÜGÜF�+ + 2ÜG:�+@. 
This givesÅ < 0, since Ü:, Ü+, ÜG, ÜB, Ü,, ÜG	ÅÌH	x: > 0 

and 

á = x:ÜB �: :�Ü:��9	 = x:ÜB > 0 

Thus, using theorem 4.1 of Castillo-Chavez and Song 

(2004), the endemic equilibrium 	9 is locally asymptotically 

stable for Rë > 1, but close to unity. 

4. Numerical Simulation and Discussion 

4.1. Numerical Simulations 

Numerical simulation for the model were carried out using 

the parameter values in Table 2. The model parameters were 

sourced from existing literatures where available, while 

others were logically estimated for the purpose of 

illustrations to fit the model analyses. The Lassa fever 

infection data for Ebonyi State, Nigeria used for this 

simulation were sourced from the weekly Situation report of 

the Nigeria Centre for Disease control (NCDC) on Lassa 

fever from January, 2018 to September, 2019 as presented in 

Table 3 and Table 4 with the time series graph of the data 

shown on figure2, figure 3 and figure 4. The program codes 

were written and implemented on MATLAB encoded with 

ODE45 solver to simulate the model system using the 

parameters values. 
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Table 2. Model Parameter Values. 

Variables/P

arameters 
Description Values References 

	Λ" Recruitment rate into susceptible human population either through birth or immigration 2000 [14] 	Λ� Recruitment rate into susceptible Rat population either through birth or immigration 500 [14] �" Natural death rate of humans 0.02 CIA, 2017 �� Rodent Natural death rate in the rodent reservoir 0.02 [14] 

�9 
Effective contact rates between quarantined-infectious human and susceptible humans per contact in the 

compartments �$" ,	 0.2 [14] 

�: 
Effective contact rates between not-quarantined infectious human and susceptible humans per contact in 

the compartments �" 
0.1 Estimated 

�+ 
Effective contact rates between Infectious human corpse and susceptible humans per contact in the 

compartments %" 
0.2 [14] 

�" Effective contact rate between infectious rodent or its contaminants with susceptible human per contact 0.08 [14] �� Effective contact rate between infectious rodent and susceptible rodent per contact 0.02 Estimated 	�� Death rate of rodent from predators hunting/ human induced control measures 0.01 [15] �� Rate at which exposed rodent progress to infectious class   �9 Rate at which exposed humans escaped being quarantine   �: Quarantine rate of humans 0.25 Estimated �+ Recovery rate of quarantined humans 0.05 Estimated �F Isolation rate of quarantined-infectious humans 0.5 [16] �B Infectious rate of not-quarantined humans 0.03 [15] �, Recovery rate of isolated humans 0.6 [16] �G Isolation rate of not-quarantined infectious human 0.2 Estimated H9 Disease induced death rate of infectious not isolated humans 0.2 [14] H: Disease induced death rate of isolated humans 0.15 Estimated < Proportion of exposed human that are not quarantined   K Burial rate of death Infectious corpse   

Table 3. Weekly Lassa Fever Confirm Infections recorded in Ebonyi State, Eastern Nigeria (The year 2018). 

Epidemiological weeks infected Epidemiological weeks infected 

1 0 27 0 

2 4 28 0 

3 4 29 0 

4 0 30 0 

5 0 31 0 

6 2 32 0 

7 7 33 0 

8 18 34 1 

9 9 35 0 

10 1 36 0 

11 0 37 0 

12 2 38 0 

13 0 39 0 

14 1 40 2 

15 1 41 2 

16 0 42 0 

17 0 43 1 

18 1 44 1 

19 1 45 0 

20 0 46 0 

21 0 47 0 

22 0 48 0 

23 0 49 0 

24 0 50 0 

25 0 51 0 

26 0 52 0 
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Table 4. Weekly Lassa Fever Confirm Infections recorded in Ebonyi State, Eastern Nigeria (January, 2019 - September, 2019). 

Epidemiological weeks infected Epidemiological weeks infected 

1 1 23 0 

2 5 24 0 

3 2 25 0 

4 5 26 0 

5 7 27 0 

6 4 28 0 

7 1 29 3 

8 0 30 0 

9 2 31 0 

10 9 32 0 

11 3 33 0 

12 1 34 0 

13 0 35 0 

14 1 36 0 

15 0 37 1 

16 0 38 
 

17 0 39 
 

18 0 40 
 

19 1 41 
 

20 0 42 
 

21 0 43 
 

22 0 44 
 

 

Figure 2. Graph of Weekly Confirm Infections of Lassa Fever in Ebonyi State, Eastern Nigeria (January, 2018–December, 2018). 

 

Figure 3. Graph of Weekly Confirm Infections of Lassa Fever in Ebonyi State, Eastern Nigeria (January, 2019 –September, 2019). 
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Figure4. Graph of Weekly Confirm Infections of Lassa Fever in Ebonyi State, Eastern Nigeria (January, 2018 – September, 2019). 

 

(a) 

 

(b) 

Figure 5. Simulations showing the effect of the proportion of humans not quarantine, <,	on the LASV transmission dynamics. 
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(a) 

 

(b) 

 

(c) 

Figure 6. Simulations showing the effect of not-quarantining exposed humans, �9, on the LASV transmission dynamics. 
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(a) 

 

(b) 

Figure 7. Simulations showing the effect quarantining the exposed humans, �:, on the LASV transmission dynamics. 
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(b) 

 

(c) 

Figure 8. Simulations showing the effect of isolating the quarantined humans for treatment, �F, on the LASV transmission dynamics. 
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(b) 

 

(c) 

Figure 9. Simulations showing the effect of isolating Infectious humans, �G, on the LASV transmission dynamics. 

4.2. Discussion 

Figure 5 revealed an exponential increase in the infected 

population and a sharp decrease in the number of quarantined 

infectious population when the proportion of exposed not-

quarantined humans is increased. For instance, in figure 5a, 

an increase in the proportion of exposed not-quarantined 

humans parameter from 0.0 to 0.6 doubles the number of 
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consequently decreases in the proportion of quarantined 

infectious/isolated humans from about 680 to 400 in less than 

10 days as seen in figure 5b. This high rise in the proportion 

of exposed not-quarantined humans may be attributed to high 

rate of ignorance and fictitious beliefs among the populace 

on preference to traditional medication when sick rather than 

the conventional orthodox medication. Hence the need for 
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government/HCWs/well spirited individuals in both rural and 

urban settlements will prevented such people from escaping 
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unnoticed into the susceptible population where the later 

infects viciously (especially their family members and 

HCWs). 

In Figure 6, as the rate of which people are not quarantined 

increases, the infected population increases and also the 

number of disease induced death (death infectious 

compartment) increases too. From Figure 6a, when the rate 

of not-quarantined people, �9, increases from 0.0 to 0.6, there 

was an exponential increase in the number of infectious 

human from about 50 to 280 people, which seems not to die 

out of the population with time. Again, increase in the 

parameter, �9, from 0.0 to 0.6 led to a geometric increase in 

the number of death infectious humans from about 100 to 2, 

250 within 100 days (see Figure 6c) and also a sharp 

reduction in the number of isolated humans from about 400 

to 250 persons within 10 day.. 

Figure 7 revealed that the number of infected humans 

reduced drastically when the rate of quarantining the exposed 

human increases, this resulted to an increase in the number of 

isolated humans. For instance, an increase in the parameter ′�:′from 0.0 to 0.6 resulted to a geometric decrease in the 

number of infected humans from about 63 to 20 within 20 

days (see in Figure 7a) and also an exponential increase in 

the number of isolated humans from about 50 to 700 within 

10 days in the population (see Figure 7b). The implication is 

that once a person is quarantined, he is immediately isolated 

and will not have the chance to infects susceptible population 

(especially family members or HCWs). This control measure 

will prevent new infections and will cause the population to 

achieve a disease-free state within a short period of time. 

This means that once a 

We observed in Figure 8b that there is an increase in the 

number of isolated humans from 50 to 450 within 15 days 

when the rate of isolating the quarantine infectious humans 

increases from 0.0 to 0.5. The quarantine infectious humans 

are the quarantine humans that develop symptoms within the 

incubation period of Lassa virus (mostly family members of 

infectious humans and HCWs). Since the number of people 

in isolation increases, surely the number of disease induced 

death will increases (see Figure 8c). this is true, because there 

is no vaccine/drugs yet and isolation is just a preventive 

measure from new infections of susceptible population, not 

cure (only a very small proportion of isolated humans 

recovers at this stage at the rate of‘ �, ’due to boost of 

immunity). Hence, HCWs are encouraged to imbibe the use 

of best international safety measures at all times especially 

when treating patient (s) with febrile symptoms, since they 

are the most vulnerable humans. 

Because buck of the infectious humans are scattered 

ignorantly among the susceptible population, hence the 

control parameter of intensive cracked down of isolating 

infectious not-quarantined humans ′�G′  by the 

government/HCWs as reveals in Figure 9a and figure 9b 

yields an exponential increase in the number of isolated 

humans in the population from about 50 to 385 humans 

within 10 days and geometric decrease in the number of 

infectious people. This is true, because those isolated 

infectious not-quarantined humans will not have the chance 

again of infecting new susceptible humans especially their 

family members and HCWs again. For instance, an increase 

in the parameter, 	�G , from 0.0 to 0.6 led to a geometric 

decrease in the number of infectious humans in the 

population from about 76 to 21 humans within 20 days 

(Figure 9a). Also, we observed a sharp decrease in the 

number of death infectious human from about 1, 195 to 998 

within 35 days, which took the population about 500 days 

to reach disease-free state (see Figure 9c). This control 

measure has no doubt yields tremendous results in curbing 

both new infections and disease induced death from the 

population. 

Also, we discovered a disheartening situation in the burial 

practices of the people in the Eastern and southern part of 

Nigeria. The unnecessary delay in burying corpse, the 

handling of corpse by morticians or relations of the deceased 

without wearing protective clothes, unhealthy burial 

procession/laying-in-state of corpse from maternal to paternal 

families were people emotional touches/robs the corpse in 

‘demonstration of love’ etc has a high risk of aiding 

transmission of LASV from death infectious persons to a 

susceptible human (especially morticians/undertakers). 

Hence, the control parameter of early safer burial of corpse 

with minimal protective contact with the corpse ‘K′, yields a 

positive effects in weakening the force of infection on the 

susceptible human. 

4.3. Conclusion 

In this paper a deterministic mathematical model for 

lassa fever which incorporates death infectious 

compartment with control is formulated. The model 

analysis; Well-possedness, Existence of Equilibria, Basic 

reproduction, existence of endemic equilibrium 

andbifurcation analysis was carried and analyzed. It was 

established that the disease-free equilibrium point is stable 

when the reproduction number, R0<1 and the disease will 

dies out with the intervention of the control measures. 

Numerical simulation was carried out with parametized data 

for Ebonyi State, Eastern Nigeria to reflect the eastern 

endemic region. The numerical simulation reveals that 

sensitization of susceptible population, quarantined of 

exposed humans and isolation of infectious humans, the 

practice of best international safety measures among health 

care workers, establishment of more Lassa fever diagnostic 

centres and precautionary burial practices remains the best 

control measures in the dynamic transmission of Lassa 

fever. 
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Figure 10. Showing Distribution of Confirmed Lassa Fever in Nigeria as at from January, 1st - 31st December, 2018. 

 

Figure 11. Showing Distribution of Confirmed Lassa Fever in Nigeria from January 1st -September 15, 2019. 

Acknowledgements 

We want to especially acknowledge the Nigerian Tertiary 

Education Trust Fund (tetfund) for sponsoring this research 

and Akanu Ibiam Federal {Polytechnic, Unwana for given us 

the opportunity to access this research grand. Also we will 

like to appreciate our spouses Mrs. Stacy Dachollom Sambo 

and Dr. Madubueze for proof reading the manuscript and 

their moral support. 

 

References 

[1] Adewale, S. O., Olapade, I. A., Ajao, S. O., Adeniran, G. A. 
&Oyademi, O. T. (2016). Mathematical Analysis of Lassa 
Fever Model with Isolation. Asian Journal of Natural & 
Applied Sciences, 5 (3): 47-57. 

[2] Akinpelu, F. O. and Akinwande, R. (2018). Mathematical 
Model for Lassa Fever and Sensitivity Analysis. Journal of 
Scientific and Engineering Research, 5 (6): 1-9. 

[3] Bawa, M., Abdulraham, S., Jimoh, O. R. (2013). Stability 

Analysis of the Disease-free Equilibrium State ofLassa Fever 
Disease, Int. Journal of Science and Math. Edu. 9 (2): 115-123. 

[4] Castillo-Chavez C. and B. Song B. (2014). “Dynamical 
Models of Tuberculosis and their Applications,” Mathematical 
Biosciences and Engineering, 1 (2): 361–404. 

[5] Dahmane, A., van Griensven, J., Van Herp, M., Van den 
Bergh, R., Nzomukunda, Y., Prior, J., Alders, P., Jambai, A., 
Zachariah, R. (2014). Constraints in the Diagnosis and 
Treatment of Lassa Fever and theEffect on Mortality in 
Hospitalized Children and Women with Obstetric Conditions 
in a RuralDistrict Hospital in Sierra Leone. Trans. R. Soc. 
Trop. Med. Hyg. 108 (3): 126–
132.https://doi.org/10.1093/trstmh/tru009. 

[6] Drosten, C., Kümmerer, B. M., Schmitz, H., Günther, S. 
(2003). Molecular diagnostics of viral hemorrhagicfevers. 
Antiviral Res. 57, 61–87. https://doi.org/10.1016/S0166- 
3542(02)00201-2. 

[7] European Centre for Disease Prevention and Control, Lassa 
fever in Nigeria, Benin, Togo, Germany andUSA– 23, March 
2016, (2016) Stockholm, 
https://www.thelocal.de/20160317/german-man-to-contract-
lassa-virus-outside-africa. 



86 Sambo Dachollom and Chinwendu Emilian Madubueze: Mathematical Model of The Transmission Dynamics of  

Lassa Fever Infection with Controls 

[8] Faniran, T. S. (2017). A Mathematical Modelling of Lassa 
Fever Dynamics with Non-drug Compliance Rate. 
International Journal of Mathematics Trends and Technology, 
47 (5): 305-318. 

[9] Fichet-Calvet E., Rogers, D. J. (2009). Risk Maps of Lassa 
Fever in West Africa. PLoS Negl Trop Dis 3 (3): e388. doi: 
10.1371/journal.pntd.0000388. 

[10] Greenky D., Knust B., Dziuban E. J. (2018). What 
Pediatricians Should Know About Lassa Virus. JAMA Pediatr 
172 (5): 407–8. 

[11] Hallam, H. J., Hallam, S., Rodriguez, S. E., Barrett, A. D. T., 
Beasley, D. W. C., Chua, A., Ksiazek, T. G., Milligan, G. N., 
Sathiyamoorthy, V., Reece, L. M. (2018). Baseline Mapping 
of Lassa Fever Virology, Epidemiology and Vaccine Research 
and Development. Npj Vaccines 
3.https://doi.org/10.1038/s41541-018-0049-5. 

[12] Hamblion, E. L., Raftery, P., Wendland, A., Dweh, E., 
Williams, G. S., George, R. N. C., Soro, L., Katawera, V., 
Clement, P., Gasasira, A. N., Musa, E., Nagbe, T. K.(2018). 
The Challenges of Detecting andResponding to a Lassa fever 
Outbreak in an Ebola-Affected Setting, Int. J. Infect. Dis. 66, 
65–73.https://doi.org/10.1016/j.ijid.2017.11.007. 

[13] Manning, J. T., Forrester, N., Paessler, S. (2015). Lassa Virus 
Isolates from Mali and the Ivory CoastRepresent an Emerging 
Fifth Lineage. Front. Microbiol. 6, 
1037.https://doi.org/10.3389/fmicb.2015.01037. 

[14] Mori, Y., Notomi, T. (2009). Loop-mediated Isothermal 
Amplification (LAMP): A Rapid, Accurate, and Cost-
Effective Diagnostic Method for Infectious Diseases. J. Infect. 
Chemother. 15, 62–69.https://doi.org/10.1007/s10156-009-
0669-9. 

[15] Nigeria Centre for Disease Control (2018). Weekly 
Epidemiological Situation Report: An update of Lassafever 
outbreak in Nigeria. 
URLhttps://ncdc.gov.ng/reports/207/2019-agust-week-34. 

[16] Nigeria Centre for Disease Control (2019). Weekly 
Epidemiological Situation Report: An update of Lassafever 
outbreak in Nigeria. URL 
https://ncdc.gov.ng/reports/207/2019-agust-week-34. 

[17] Obabiyi, O. S. and Onifade, A. A. (2017). Mathematical 
Model for Lassa Fever Transmission Dynamics withVariable 
Human and Reservoir Population, International Journal of 
Differential Equations andApplications, 16 (1): 67-91. 

[18] Ogabi, C. O., Olusa, T. V., & Madufor, M. A. (2012). 

Controlling Lassa Fever in Northern Part of Edo State, Nigeria 
using SIR Model. New Science Journal. 5 (12): 115-121. 

[19] Okuonghae, D. & Okuonghae, R. (2006). A Mathematical 
Model for Lassa Fever, Journal of the Nigerian Association of 
Mathematical Physics, 10: 457-464. 

[20] Oloniniyi, O. K., Unigwe, U.S., Okada, S., Kimura, M., 
Koyano, S., Miyazaki, Y., Iroezindu, M. O., Ajayi, N. A., 
Chukwubike, C. M., Chika-Igwenyi, N. M., et al. (2018). 
Genetic characterization of Lassa virusstrains isolated from 
2012 to 2016 in southeastern Nigeria. PLoS Negl. Trop. Dis. 
12, e0006971.https://doi.org/10.1371/journal.pntd.0006971. 

[21] Onuorah, M. O, Akinwande N. I, Nasir M. O, Ojo M. S. 
(2016) Sensitivity Analysis OfLassa Fever Model, 
International Journal of Mathematics and Statistics Studies 
Vol. 4, No. 1, pp. 30-49. 

[22] Pemba CM, Kurosaki Y, Yoshikawa R, Oloniniyi OK, Urata 
S, Sueyoshi M, Zadeh VR, Nwafor I, Iroezindu MO, Ajayi 
NA, Chukwubike CM, Chika-Igwenyi NM, Ndu AC, Nwidi 
DU, Maehira Y, Unigwe US, Ojide CK, Onwe EO, Yasuda J, 
(2019), Development of an RT-LAMP Assay for the Detection 
of Lassa Viruses in Southeast and South-Central Nigeria, 
Journal of Virological Methods. 
https://doi.org/10.1016/j.jviromet.2019.04.010. 

[23] Raabe, V., Koehler, J., 2017. Laboratory Diagnosis of Lassa 
Fever. J. Clin. Microbiol. 55, 1629–
1637.https://doi.org/10.1128/JCM.00170-17. 

[24] Richmond, J. K., Baglole, D. J. (2003) Lassa fever: 
Epidemiology, Clinical Features, and Social Consequences. 
British Mathematical Journal.327: 127 1–5. 

[25] Tolulope, O. J., Akinyemi, S. T. and Bamidele, O. (2015) 
Stability Analysis of Lassa fever with Quarantineand 
Permanent Immunity. International Journal of Applied 
Science and Mathematical Theory, 1 (8): 71-81. 

[26] Usman, S and Adamu, I. I. (2018). Modelling the 
Transmission Dynamics of the Lassa Fever Infection. 
Mathematical Theory and Modeling, 8 (5): 42-63. 

[27] WHO. Lassa fever. Available from. 2018. 
http://www.who.int/en/news-room/fact-sheets/detail/lassa-
fever. 

[28] Wong, Y. P., Othman, S., Lau, Y. L., Radu, S., Chee, H. Y. 
(2018). Loop-Mediated Isothermal Amplification (Lamp): A 
Versatile Technique for Detection of Micro-Organisms. J. 
Appl. Microbiol. 124: 626–643. 
https://doi.org/10.1111/jam.13647. 

 


