
 

Mathematical Modelling and Applications 
2020; 5(1): 16-38 

http://www.sciencepublishinggroup.com/j/mma 

doi: 10.11648/j.mma.20200501.13 

ISSN: 2575-1786 (Print); ISSN: 2575-1794 (Online)  

 

A Mathematical Model and Analysis of an SVEIR Model for 
Streptococcus Pneumonia with Saturated Incidence Force 
of Infection 

Opara Chiekezi Zephaniah, Uche-Iwe Ruth Nwaugonma, Inyama Simeon Chioma, Omame Adrew 

Department of Mathematics, Federal University of Technology, Owerri, Nigeria 

Email address: 

 

To cite this article: 
Opara Chiekezi Zephaniah, Uche-Iwe Ruth Nwaugonma, Inyama Simeon Chioma, Omame Adrew. A Mathematical Model and Analysis of 

an SVEIR Model for Streptococcus Pneumonia with Saturated Incidence Force of Infection. Mathematical Modelling and Applications.  

Vol. 5, No. 1, 2020, pp. 16-38. doi: 10.11648/j.mma.20200501.13 

Received: October 16, 2019; Accepted: November 28, 2019; Published: February 19, 2020 

 

Abstract: In this paper, the dynamics of SVEIR model with saturated incidence force of infection and saturated 

vaccination function for Streptococcus pneumonia (that is, model that monitors the temporal transmission dynamics of 

the disease in the presence of preventive vaccine) was formulated and analyzed. The basic reproduction number that 

determines disease extinction and disease survival was revealed. The existing threshold conditions of all kinds of the 

equilibrium points are obtained and proved to be locally asymptotic stable for disease-free equilibrium using 

linearization method and Lyapunov functional method for Endemic equilibrium. Qualitative Analysis of the model was 

obtained and the positive of solution obtained. It was revealed that the model is positively –invariant and attracting. Thus 

the region is positively invariant. Hence, it is sufficient to consider the dynamics of the model (1) in the given region. In 

this region, the model can be considered as been epidemiologically and mathematically well-posed. The governing model 

was normalized and also Adomian Decomposition method was used to compute an approximate solution of the non-

linear system of differential equations governing the model. Maple was used in carrying out the simulations (numerical 

solutions) of the model. Graphical results were presented and discussed to illustrate the solution of the problem. The 

achieved results reveal that the disease will die out within the community if the vaccination coverage is above the critical 

vaccination proportion. The study indicates that we should improve the efficiency and enlarge the capacity of the 

treatment to control the spread of disease. 
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1. Introduction 

Streptococcus pneumonia is a facultative anaerobic 

bacterium, gram-positive which have the shape of a lancet. 

It exists in more than 90 serotypes. Most of these 

serotypes can originate from different diseases, with little 

of serotypes being the major factor of pneumococcal 

infections [6]. Research showed that this gram-positive 

bacterium “Pneumococcus “inhabits the respiratory tract 

and perhaps can be secluded from the nasal part of the 

pharynx, lying behind the nose of about 5–90% among 

individuals who are healthy, relatively on the population 

and setting. Adults forms about 5-10% carriers while 20–

60% of school-aged children are probably carriers. 

Investigations also revealed that about 50–60% of service 

personnel may be carriers. The time frame of carriage 

differs among different age group as it tends to be longer 

in children than adults. Furthermore, it is still unclear for 

researchers on how carriage and individuals’ ability to 

develop natural immunity are related. 

Most of the serious infections that are community-

acquired (like; meningitis and bacteremia) has been traced 

to Streptococcus pneumonia being one of the primary 

cause among children who are below the age of 5 years, 

[20, 36]. Among patients who are HIV positive, Sphas 

also be linked to be the major cause of sepsis and 

bacteremia, [22]. The infections instigated by S. 

pneumonia are one of the principal causes of death among 
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children in Nigeria today, [13]. This is recorded due to the 

poor access to adequate healthcare and can also be 

attributed to high endemicity of HIV infect, [4]. Studies 

have associated children who are colonized with S. 

pneumonia to have higher chance of being hospitalized 

compared those who are not colonized, [12]. 

A large number (especially young children) of people are 

still battling with infections caused by these bacteria, the 

elderly or patients with low immunity irrespective of the 

efforts to ensure that rate of mortality and morbidity among 

children in developing countries is reduced, [5]. Research 

have revealed that S. pneumonia is the most popular bacteria 

isolated from blood and sputum samples of children with 

severe S. pneumonia, [33]. Pneumococcal disease is 

generally preceded by asymptomatic colonization, which is 

mainly high in children, [5, 22]. Depending on the considered 

case, invasive pneumococcal diseases occurs immediately 

after colonization, and it has been revealed that the 

streptococcal nasopharyngeal carriage prevalence in 

unvaccinated children is similarly high in Africa ranging 

from 7–90%, [3, 4, 9, 21, 22]. 

The threat of Sp infection has been increasing despite 

interventions by widely available antibiotics, due to the 

increasing presence of multiple antibiotic-resistant Sp strains, 

[35, 31]. 

There is an urgent call for a better informed intervention 

targeted in mitigating the early occurrence of Sp-mediated 

pathology through vaccination and treatment with little 

antibiotics [37, 38]. Formerly, proposed mathematical 

models considered Sp infections in the lung which is a 

normally sterile site of the airway epithelium. There have 

been numerous epidemic models designed and explored, also 

many vaccination campaigns to prevent eradicate or mitigate 

the speed transmission of the infectious childhood diseases 

(for example measles, tuberculosis, and flu). Bilinear 

incidence rate SIβ  has been frequently applied in many 

epidemic models according to [1, 2, 30, 39, 40, 41]. The 

saturated incidence rate SIβ (1+αI) was introduced by [11]. 

This reveals that if βI (which estimates the infection force at 

time of disease total invasion in the susceptible population) is 

large together with 1/(1+αI) (which estimates the reacting 

effect out of the behavioral change of the susceptible 

population at the time we have a crowding effect of the 

infected population), then the model is certainly to be 

saturated. It comes up with the concept of continuous 

treatment in an SIR model as follows: 

, 1
( )

0, 1

>
=  <

r I
h I

I
                                      (1) 

, 1
( )

0, 1

>
=  <

r I
h I

I
                                      (2) 

That takes care of some fraction of individuals who are 

successfully treated and the rest unsuccessful, [43]. Further, 

Wang considered the following piecewise linear treatment 

function 

0 0

, 0 1
( )

,

≤ ≤
=  >

rI I
h I

yI I I
                            (3) 

We agree this to be more reasonable than the usual linear 

function. This revealed that if treatment is delayed for 

infected individuals, the efficiency will be drastically 

affected. Furthermore, the continuous and differentiable 

saturated treatment function was introduced and used given 

as h (I) = rI/(1 +kI), where r>0, k>0, r implies rate of cure, 

and k estimates the treatment delay level of the infected 

individuals. This reveals that if Iis small, then the treatment 

function tends to rI, while it tends to r/k if I is large, [10, 45]. 

In the maximum amount because the dynamics of SIR or 

SIS epidemic models with the saturated incidence rate are 

recurrently utilized in several literatures. We have a tendency 

to still have very little researches regarding the saturated 

treatment operate even within the SEIR epidemic models. 

Other works which we looked at in this work are: [8, 15, 18, 

28, 34, 25, 29, 45, 46, 47]. 

2. Model Formulation 

2.1. Assumptions of the Model 

The assumptions of the model are stated below: 

1. We assume that the saturated incidence force of 

infection rate is 
1

I

I

β
α+

 

2. People in the Vaccinated compartment can be infected. 

3. People can be infected only through contacts with 

infectious people except those who are immune. 

4. Recovered individuals may go back to the susceptible 

class. 

5. The population is homogeneously mixed (A population 

that interacts with one another to the same degree 

andfixed). 

2.2. Symbols and Parameter of the Model 

Below are the symbols and parameters of the proposed 

model. 

Table 1. Symboles and parameters. 

Symbols and Parameters Description 

S Susceptible Individuals at time t 

V Vaccinated Individuals at time t 
E Exposed individuals at time t 

I Infectious individuals at time t 

R Recovered individuals at time t 

µ  (Mu) Per capita natural mortality rate (Natural death rate) 

β  (Beta) Contact rate 
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Symbols and Parameters Description 

0ℜ  Basic reproduction number 

ξ  (Xi) Effectiveness of vaccine 

(1 )ξ−
 

Rate at which vaccines get waned 

N Total population 

P Fraction of recruited individuals into the vaccinated population 

σ (Sigma) infectious rate of exposed individuals 

γ  Gama Recovery rate of infected individuals 

ω (Omega) Susceptible rate of vaccinated individuals 

Λ  (Capital Lambda) Recruitment rate into the susceptible compartment 

1

I

I

βλ
α

=
+

 Saturated incidence force of infection 

ρ  (Rho) Per capita rate of recovered individuals going back to the Susceptible class. 

Α Death as a result of the infection 

iF  The rate of appearance of new infection in compartment I 

iν +  The rate of transfer of individuals into the infected compartment 

iν −  The transfer of individual out of the infected compartment 

Now we have 

( ) ( ) ( ) ( ) ( ) ( )N t S t V t E t I t R t= + + + +  

2.3. Flow Diagram of the Model 

 

Figure 1. Schematic Diagram of the Model. 

2.4. The Model Equation 

Applying the symbols and parameters, assumptions and flow diagram, we now formulate the model equations as follows: 

(1 )
1

(1 )
( )

1

(1 )
( )

1 1

( )

( )

βω ρ µ
α

β ξ µ ω
α

β β ξ µ σ
α α

σ µ ε γ

γ σ ρ

= − Λ + Λ + − − +


− = Λ − − +
+
− = + − + + + 
= − + + 

= − +


dS I
p R S S

dt I

dV VI
p V

dt I

dE I VI
S E

dt I I

dI
E I

dt

dR
I R

dt

                                                                      (4) 
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Where 
1

I

I

βλ
α

=
+

 is the saturated incidence force of infection. 

3. Qualitative Analysis 

3.1. Positivity of Solutions 

We prove the positivity of the solution by stating and proving the Theorem 3.1 below. 

Theorem 3.1: 

Suppose we have the initial solution of our model to be { }(0), (0), (0), (0), (0) 0S V E I R ϕ≥ ∈ . Then for all 0t ≥  the solution 

set { }( ), ( ), ( ), ( ), ( )S t V t E t I t R t  the system (3) remains positive 

Proof: 

From the first equation of (3) we have 

dS dS
S dt

dt S
µ µ≥ − ⇒ ≥ −  

0 0ln 0
t c t c

S t c S e S e where S e
µ µµ − + −⇒ ≥ − + ⇒ ≥ = ≥ =  

From the second equation of (3) we have  

( )
dV

V
dt

µ ω≥ − +  

( ) ( )
0 0( ) ln ( ) t c t cdV

dt V t c V e V e where V e
V

µ ω µ ωµ ω µ ω + + +⇒ ≥ + ⇒ ≥ + + ⇒ ≥ = =  

From the third equation of (3) we have  

( ) ( )
dE dE

E dt
dt E

µ σ µ σ≥ − + ⇒ ≥ − +
 

( ) ( )
0 0ln ( )

t c c
E t c E e E e where E e

µ σ µ σµ σ − + + − +⇒ ≥ − + + ⇒ ≥ = =  

From the fourth equation of (3) we have  

( ) ( )
dI dI

I dt
dt I

µ ε γ µ ε γ≥ − + + ⇒ ≥ − + +
 

( ) ( )
0 0ln ( ) t c t cI t c I e I e where I eµ ε γ µ ε γµ ε γ − + + + − + +⇒ ≥ − + + + ⇒ ≥ = =

 

From the fifth equation of (3) we have  

( ) ( )
dR dR

R dt
dt R

µ ρ µ ρ≥ − + ⇒ ≥ − +  

( ) ( )
0 0ln ( )

t c c
R t c R e R e where R e

µ ρ µ ρµ ρ − + + − +≥ − + + ⇒ ≥ = =  

Hence the solution set { }( ), ( ), ( ), ( ), ( )S t V t E t I t R t  of the system (3) is positive for all 0t ≥ . 

Remark 1: �� > 0	for all real values of k. 

Theorem 3.2 (Invariant Region) 

The following feasible region of the model (3) 

5( , , , , ) R :S V E I R S V E I R
µ+

 ΛΩ = ∈ + + + + ≤ 
 
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is a positive invariant region and attracting. 

Proof: From model (3), 

 
dN dS dV dE dI dR

S V E I R N
dt dt dt dt dt dt

+ + + + = ⇒ = + + + +  

( )
dN

S V E I R S V E I R N
dt

µ µ µ µ µ µ µ= Λ − − − − − = Λ − + + + + = Λ −  

dN
N

dt
µ∴ = Λ −  

( ) 0
dN dN d ce

N N N ce N N
dt dt dt

µ
µµ µ µ

µ µ µ

−
− Λ Λ

⇒ = Λ − ⇒ + = Λ ⇒ = Λ + ⇒ = + ⇒ ≤ ≥
 

5( , , , , ) :S V E I R S V E I R
µ+

 Λ∴ Ω = ∈ ℜ + + + + ≤ 
 

 

is positive invariant and attracting. 

Thus Ω  is positive invariant. Therefore, it is very significant to study the behavior of our model (4) in region Ω , because in 

this region, the model is epidemiologically and mathematically meaningful, [14]. 

3.2. Existence of Steady States 

The existence of steady state of the model occurs at 

0
dS dV dE dI dR

dt dt dt dt dt
= = = = =  

(1 ) 0
1

I
p R S S

I

βω ρ µ
α

− Λ + Λ + − − =
+

                                                               (5) 

(1 )
( ) 0

1

VI
p V

I

β ξ µ ω
α

−Λ − − + =
+

                                                                    (6) 

(1 )
( ) 0

1 1

I VI
S E

I I

β β ξ µ σ
α α

−+ − + =
+ +

                                                                 (7) 

( ) 0E Iσ µ ε γ− + + =                                                                             (8) 

 

( ) 0I Rγ σ ρ− + =                                                                                 (9) 

Solving (7)—(11) we have 

From (7), 

* *
*

*

(1 )
(1 )

1 ( )

I p V R
p R S S S

I I

β ω ρω ρ µ
α λβ µ

− Λ + +− Λ + Λ + − − ⇒ =
+ +

                                                (10) 

From (8) 

(1 )
( ) 0 (1 ) (1 ) ( )(1 )

1

VI
p V p I VI I V

I

β ξ µ ω α β ξ µ ω α
α

−Λ − − + = ⇒ Λ + = − − + +
+  

*

*(1 ) ( )

p
V

Iλβ ξ µ ω
Λ

⇒ =
− − +

                                                                   (11) 

From (9) 
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* * *
*(1 ) [ (1 ) ]

( ) 0
1 1 ( )

I VI I S V
S E E

I I

β β ξ λβ ξµ σ
α α µ σ

− + −+ − + = ⇒ =
+ + +

                                     (12) 

From (10) 

*
*( ) 0

( )

E
E I I

σσ µ ε γ
µ ε γ

− + + = ⇒ =
+ +

                                                           (13) 

From (11) 

*
*( ) 0

( )

I
I R R

γγ σ ρ
µ ρ

− + = ⇒ =
+

                                                              (14) 

Summarizing we have that the disease-free steady state is 

( )0 *,0,0,0,0Sξ =                                                                           (15) 

and the endemic steady states is 

( )* * * * *, , , ,E S V E I Rξ =                                                                         (16) 

where * * * * *
, , , ,S V E I R are as defined below. 

* *
*

*

*

*

* * *
*

*
*

*
*

(1 )

( )

(1 ) ( )

[ (1 ) ]

( )

( )

( )

p V R
S

I

p
V

I

I S V
E

E
I

I
R

ω ρ
λβ µ

λβ ξ µ ω

λβ ξ
µ σ

σ
µ ε γ

γ
µ ρ

− Λ + += 
+ 




Λ = − − + 





+ − = + 


= + +



=
+ 

                                                                         (17) 

3.3. Disease Free Equilibrium (DFE) of the Model 

The model system (1) has a steady state at a given period 

where there is no S. Pneumonia in the population under 

consideration. That is; when
0 0 0E I= = . Hence, the 

disease-free equilibrium (DFE) denoted as 0ξ , of the model 

system (1) is obtained by Substituting 
0 0 0E I= =  into (18) 

Hence the disease free equilibrium of system (1) of the 

model equation is given by 

( )0 0 0 0 0 0 (1 )
, , , , , , 0, 0, 0

( )

p p
S V E I R

ω µξ
µ µ ω µ ω

 Λ + Λ − Λ= =  + + 
 

3.4. The Model Basic Reproduction Number 

The local stability is established by using the next 

generation operator method on the system. 

The basic reproduction number 0R  is defined as the 

effective number of secondary infections caused by an infected 

individual during his/her entire period of infectiousness, [42]. 

When 0 0R < , it implies that each individual produces on 

average less than one new infected individual and hence the 

disease dies out with time. On the other hand, when 0 0R > , 

it means each individual produces more than one new 

infected individual and hence the disease is able to invade the 

susceptible population. However, 0 0R =  is the threshold 

below which the generation of secondary cases is insufficient 

to maintain the infection within human community? The 

basic reproduction number cannot be determined from the 

structure of the mathematical model alone, but depends on 

the definition of infected and uninfected compartments. 

This definition is given for the models that represent 
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spread of infection in a population. It is obtained by taking 

the largest (dominant) eigenvalue or spectral radius of 

( )1
iFVρ −

 

where 

0( )i
i

j

f
F

X

ξ ∂
=  

∂  
and 

0( )i
i

j

v
V

X

ξ ∂
=  

∂  
 

if is the rate of appearance of new infection in 

compartment i  and i i iv v v
− += −  

iv
− is the transfer of individuals out of the compartment i , 

iv
+ is the rate of transfer into compartment i by any other 

means, 
0ξ is the disease free equilibrium 

Then by linearizing if and iv , and evaluating at the 

disease free equilibrium point we obtain the associated 

matrices iF and iV  respectively. 

The infected compartments are, E and I  hence a 

straightforward calculation gives 

( ) ( (1 ) )

0

λ ξ 
  
 

+ −=f
S V

x  

and 

( )
( )

( )

σ µ
µ ε γ σ

 
 
 
 

+=
+ + −

E
v x

I E
 

Then F and V  which are the Jacobian of f andv evaluated 

at the DFE 0ξ  respectively becomes 

0 0
0 0 ( (1 ) )

)
0 0

(
S V

F
β ξξ

 + −
  
 

=  

0 0
)(V

σ µ
ξ

σ µ ε γ
+ 

 − + + 
=  

Hence we compute 1V −  and obtain 

1 0 01
)

( )( )
(V

µ ε γ
ξ

σ σ µσ µ µ ε γ
− + + 

 ++ + +  
=  

0 0 0 0
0 0

1

( (1 ) ) ( (1 ) )
01 0 ( (1 ) )

( )( )
( )( ) 0 0

0 0

σβ ξ β ξµ ε γβ ξ
σ µ µ ε γ µ ε γσ σ µσ µ µ ε γ

−
 + − + −

  + + + −  + + + + +      ++ + +     
 

= =
S V S V

S V
FV  

The basic reproduction number is given by 1
0 ( )R FVρ −= , that is, the highest eigenvalue of 1FV − is 

Hence  

0
[ (1 ) ]

( )( )( )

p
R

σβ µ ξ ω
µ µ ω σ µ µ ε γ

Λ − +
+ + + +

=                                                                   (18) 

3.5. Local Stability of the Disease-free Steady State 

Theorem 3.3: The disease free equilibrium 0
( )ξ  is locally asymptotically stable if 0 1R <  and unstable if 0 1R >  

Proof: 

We prove the locally asymptotically stability of the disease free equilibrium 0
( )E of model (1) using linearization approach. 

We linearize the model equation to obtain the Jacobian matrix: 

( ) 0

0 (1 ) ( ) 0 (1 ) 0

(1 ) ( ) (1 ) 0

0 0 ( ) 0

0 0 0 ( )

S

I V

J I I S V

λβ µ ω λβ ρ
λβ ξ µ ω λβ ξ

λβ λβ ξ µ σ λβ λβ ξ
σ µ ε γ

γ µ ρ

+ − 
 − − + − 
 = − − + + −
 

− + + 
 − + 

 

At the DFE J becomes; 
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(1 ) 0

0 (1 ) ( ) 0 (1 ) 0

(1 ) ( ) (1 ) 0

0 0 ( ) 0

0 0 0 ( )

S

I V

J I I S V

ρ ω λβ ρ
λβ ξ µ ω λβ ξ

λβ λβ ξ µ σ λβ λβ ξ
σ µ ε γ

γ µ ρ

− − 
 − − + − 
 = − − + + −
 

− + + 
 − + 

 

Hence the characteristics equation of the above Jacobian is 

1 1

1

1 1

0

0 ( ) 0 0

0
0 0 ( ) ( ) 0

0 0 ( ) 0

0 0 0 ( )

k k

k

J I
k k

βλ ω ρ
µ

µ ω λ β
λ βµ σ λ µ

µ
σ λ µ ε γ

γ µ ρ λ

− + − 
 

− + − 
 − = =− − + − +
 
 + + + 
 − + − 

 

where I  is 5 5×  identity matrix 

That implies that  

1 2

2
1 1 2

(1 ) (1 )
,

( ) ( )

( )[( ) ][( ) ][ (2 ) ( )( ) ( )] 0

p
k k

where k k k

ω µ ρ ξ
µ ω µ ω

αβλ µ ω λ µ ρ λ λ µ σ ξ γ λ µ σ µ ξ γ µ
µ

Λ + Λ − − Λ= =
+ +

− + − + − + + + + + + + + − + =

 

Obviously, 

2
1 1 2 3 1 2, ( ), ( ) (2 ) [( )( ) ( ) 0]k and k k

αβλ λ µ ω λ µ ρ λ µ σ ξ γ λ µ σ µ ξ γ µ
µ

= = − + = − + + + + + + + + + − + =  

2 1 0 1 2

2
2 1 0

1, 2 ( )( ) ( ),

0

Letting A A and A k k we obtain the equation

A A A

αβµ σ ξ γ µ σ µ ξ γ µ
µ

λ λ

= = + + + = + + + − +

+ + =

                     (19) 

Using the Routh-Hurwitz stability criterion according to [32]which state that all the roots of the characteristics equation (19) 

above have negative real parts if and only if the co-efficient iA  are positive and matrices 0iH >  for 0,1, 2i =  

Hence from (18) we see that 

2 11 0; 2 0A A µ σ ξ γ= > = + + + >  

And 

[ ]
0

(1 )
( )( )

( )
A

σβ ω λµ ξρ
µ σ µ ξ γ

µ µ ω
∧ + −

= + + + −
+

 

[ ]

0 ( )( )( )

( )( )( ) ( )

( ) ( )( ) 0

A µ µ ω µ σ µ ξ γ σβ ω σβ µ σβρξ
µ µ ω µ σ µ ξ γ σβρξ σβ ω µ
µ ω µ µ σ µ ξ γ σβρξ

⇒ = + + + + − ∧ − ∧ +
= + + + + + − ∧ +
= + + + + + >

 

Again, the Hurwitz Matrix 

1

0 2

0A
H

A A

 
=  
 
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With  

1 1 1

1
2 1 2

0 2

0

0
0

H A A

A
H A A

A A

= = >

 
= = > 
 

 

This therefore shows that all the eigenvalues of the Jacobian of the system have negative real parts. Hence, the DFE is 

locally asymptotically stable. 

3.6. Global Stability of Disease-free Steady State 

Theorem 3.4: If 0 1R ≤  for the model (4) then the infection-free equilibrium state 0
( )ξ  is the only non-negative equilibrium 

state of the model (4) and it is globally asymptotically stable. 

Proof: 

Let 1 2L c E c I= +  be the Lyapunov function, where 1c  and 2c  are constants 

[ ] [ ]

[ ]

1 2 (*)

1

( )( )

1
(1 ) ( ) ( )

( )( ) ( )

(1 )
( )( ) ( ) ( )

dL dE dI
c c

dt dt dt

dL dE dI

dt dt dt

SI VI E E I

E E
SI VI I

σ
µ σ µ ξ γ µ ξ γ
σ λβ λβ ξ µ σ σ µ ξ γ

µ σ µ ξ γ µ ξ γ
σ σ σλβ λβ ξ

µ σ µ ξ γ µ ξ γ µ ξ γ

= +

⇒ = +
+ + + + +

= + − − + + − + +
+ + + + +

= + − − + −
+ + + + + + +

 

At the D. F. E 1λ =  

[ ]

(1 ) (1 )

( )( ) ( ) ( )

(1 )

( )( )( )

dL
I I

dt

IdL
I

dt

σβ ω µ ρ ξ ρ
µ σ µ ξ γ µ µ ω µ ω

σβ ω µ ρξ
µ µ σ µ ω µ ξ γ

 ∧ + ∧ − − ∧
⇒ = + − + + + + + 

∧ + −
= −

+ + + +  

But  

[ ]
0

(1 )

( )( )( )

σβ ω µ ρξ
µ µ σ µ ω µ ξ γ

∧ + −
=

+ + + +
R  

0

0

0

( 1)

( 1)

dL
R I I

dt

dL
I R

dt

dL
I R

dt

⇒ = −

= −

≤ −

 

Hence by Lyapunev-Lasalle asymptotic stability theorem in 

[24], when 0 1R ≤  it implies that the disease-free equilibrium 

state *
( )E  is globally asymptotically stable in 5

R+ . 

Because *
( )E  is the only point in 5R where 0

dL dN

dt dt
= =  

that is the derivatives of both N and L  are equal to zero, 

then is *
( )E unique. 

This completes the proof. 

Remarks: 0 1R ≤  implies that 0
dL

dt
<  holds everywhere in 

5
R+ except the points where 0

dL

dt
=  

By Lyapunov-Lasalle asymptotic stability theorem, this 

implies that the largest invariant set of the system is globally 

asymptotically stable. 

The global stability of the D. F. E. state means that; any 

initial level of S. pneumonia infection, the infection will 

gradually die out from the population when 0 1R ≤ . 

0 1R > means that one infected individual living in an 

entirely Susceptible population will cause an average more 

than one infected individual in the next generation; in this 

case, S. pneumonia invades such a population and persists. 

Basic reproduction rate 0R  is greater than 1  implies that 

the D. F. E. is unstable. 

3.7. Global Stability of Endemic Steady State 

Theorem 3.4: The unique endemic equilibrium of mode (1) 

given by **E  is globally asymptotically stable in Ω  if 

0 1.R >  

Proof: 

Consider the following non-linear Lyaponuv function 
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** ** ** ** ** ** ** **
1 2 3** ** ** **

ln ln ln ln
S E V I

L c S S S E E E c V V V c I I I
S E V I

            = − − + − − + − − + − −            
            

 

With the Lyaponuv 

( )( ) ( ) ( )( )

** ** ** *** * * *

1 2 3

** **

1

**

2

1 1 1 1

1 1 1 1

1

dL S E V I
c S E c V c I

dt S E V I

dL S E
c V R SI S SI VI E

dt S E

V
c

V

ρ ω ρ λβ µ λβ λβ ξ µ ω

ρ

            
= − + − + − + −                                    

    
= − − ∧ + + − − + − + − − +            

 
+ − ∧  

 
( ) ( )( )

( )( )
**

3

1

1

VI V

I
c E I

I

λβ ξ µ ω

σ µ ξ γ

 
− − − + 

  

  
+ − − + +      

 

At the steady state; 

( )
( ) ( )

** ** ** ** **

** ** **

1

1

S I V R S

V I V

ρ λβ ω ρ µ

ρ λβ ξ µ ω

− ∧ = − − +

∧ = − + +
 

That implies that; 

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( )( )

** **
** ** ** ** **

1

**
** ** **

2

**

3

1 2 1 1

1 1 1

1

dL S E
c S I V R S V R SI S SI VI E

dt S E

V
c V I V VI V

V

I
c E I

I

λβ ω ρ µ ω ρ β µ λβ λβ ξ µ ω

λβ ξ µ ω λβ ξ µ ω

σ µ ξ γ

    
= − − − + + + − − + − + − − +            

  
+ − − + + − − − +      

  
+ − − + +      

 

Collecting all the terms without ** in the infected classes and equating them to zero ( )0  

Letting 

( ) ( )
( ) ( ) ( )

( ) ( )
( )

( )( )
( )

** **
1 1 1 2 2 3

** **
1 2

**
2

1 **

**
2

1 **

1 1 (1 ) 0

1 1 1

1 1

1

1

1

c SI c S I c VI c VI c V I c E

c V S c V V I

V V c
c

V S

V V c
c

V S

λβ λβ λβ ξ λβ ξ λβ ξ σ

λβ ξ λβ λβ ξ λβ ξ

λβ ξ λβ ξ

λβ ξ

ξ

ξ

− − + − − − + − + =

    − + + − − −    

 − − − =
 − + 

− −
=

− +

 

( ) ( )( )** **
2 11 1c V S c V Vξ ξ= − + ⇒ = − −  

Also 
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( ) ( ) ( )

( )( ) ( )

3 3

** ** ** ** ** ** ** **

** ** **

** ** ** *** * * * * * * *
** **

0; 0 0

1 ln ln 1 ln

1 1

1

c E c

S E V
L V V S S S E E E V S V V V

S E V

dL S E V V
V V S S E E V V V S V V

dt S E V V

σ σ

ξ ξ

ξ ξ

= ≠ ⇒ =

         = − − − − + − − + − + − −                 

     
= − − − + − + − − + −     

          

= −( ) ( )
*

** ** ** ** ** *** * * * * * * * * * *
** **1

S E V S E V
V S S E E V V V S S E E S V V

S E V S E V
ξ ξ

 
    − + − + − − − − + − + −    
        

 

( )

( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( )
( ) ( )( )

( )

**

**

**

**

**

1 1

1 1 1

1 1

1 1

1

1

S
V R SI S V R SI S

S

E
V SI VI E SI VI E

E

V
VI V VI V

V

S
V R SI S V R SI S

S
V

SI

ρ ω ρ λβ µ ρ ω ρ λβ µ

ξ λβ λβ ξ µ σ λβ λβ ξ µ σ

ρ λβ ξ µ ω ρ λβ ξ µ ω

ρ ω ρ λβ µ ρ ω ρ λβ µ
ξ

λβ λβ ξ

 
− ∧ + + − − − − ∧ + + − − 

 
 

= − + + − − + − − − − + 
 
 
+ ∧ − − − + − ∧ − − + 
  

− ∧ + + − − − − ∧ + + − −
− −

+ + − ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

**

**
**

1

1 1

E
VI E SI VI E

E

V
S VI V VI V

V

µ σ λβ λβ ξ µ σ

ρ λβ ξ µ ω ρ λβ ξ µ ω

 
 
 
 

− + − + − − + 
 

 
+ ∧ − − − + − ∧ − − − + 

  

 

( )
( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

** ** ** ** **

**
** ** ** ** **

**
** ** **

**
** ** **

1

1
1 1 1

1 1

S I V R S V R SI S

S
S I V R S V R SI S SI VI E

S

E
SI VI E V I V VI V

E

V
V I V VI V

V

λβ ω ρ µ ω ρ λβ µ

λβ ω ρ µ ω ρ λβ µ λβ λβ ξ µ σ

ξ
λβ λβ ξ µ σ λβ ξ µ ω λβ ξ µ ω

λβ ξ µ ω λβ ξ µ ω

 − − + + + − −

− − − + + + − − + + − − +
= − 
− + − − + + − + + − − − +


− − + + − − − +


( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

** ** ** ** **

**
** ** ** ** ** **

**

** ** **

**
**

1

1 1

1 1

1

S I V R S V R SI S

S
V S I V R S V R SI S

S

E
SI VI E SI VI E

E

V I V VI V

S
V

V

λβ ω ρ µ ω ρ λβ µ

ξ λβ ω ρ µ ω ρ λβ µ

λβ λβ ξ µ σ λβ λβ ξ µ σ

λβ ξ µ ω λβ ξ µ ω

λβ










 
 



 
 − − + + + − −
 
 − − − − − + + + − − 
 
 + + − − + − + − − +  

− + + − − − +
+

− ( ) ( ) ( ) ( )( )** ** **
1V I V VI Vξ µ ω λβ ξ µ ω

 
 
 

− + + − − − + 
 

 

Collecting all the terms with ** in the infected classes including all the 
( ) ( ) ( )** **, , ,S E E Vµ µ σ µ σ µ ω+ + +

 and 

( ) **Vµ ω+
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( )
( ) ( )

( ) ( ) ( )

( )

2 2 2

2

2

** ** ** ** **
** ** ** ** **

** ** ** **

** ** ** **
** ** 2

** **
** ** ** **

1

1 1

1 1 1

1 2 2

VS V S V S
VS I I I I

S S V

VV I V I

E E E E
SV I SIV VV I V I

E E E E

V S V
V S V S V S V S

S

λβ λβ λβ λβ
ξ

λβ ξ λβ ξ

ξ λβ λβ λβ ξ λβ ξ

µ µξ µ µ µ µ

 
 − + −

= −  
 + − − − 

 
+ − − + − − − 

  

 
 + − − − − − −
 
 

( ) ( )( ) ( ) ( )
( ) ( )( ) ( )

2

2

2

**

** ** **

** **
** 2 ** ** ** **

1

1 2 2

S

S

V E E V E E

V S
VV V V S V VS

V

ξ µ σ µ σ

ξ µ ω µ ω

  
  

    

 + − + − + + −
 

 
   + − + − − + + − −
     

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

** ** ** **
** ** **

** ** ** **

** ** **

**
** ** ** **

** ** **

** **

**

1 1 1

1 1 1 1

1 2 1 2 1 1

1 2

V V S S V V V
S V I

S S VV V S S

V V V E
SVI

V S S E

S S S E
VS V S VE

SS S E

V V
V E

V

λβ ξ ξ

λβ ξ ξ ξ

µ ξ µ ξ ξ µ σ

ξ µ σ

 
= − ξ − + − + − − − 

  

 
+ − − + − − − 

  

    + − − − − − − + − + −    
     

+ − + − − ( )
** **

** **

**
2

V V
V S

V VV
µ ω

   
+ + − −   

      

 

It can be shown that 

( ) ( ) **

** **

1
1 0

VV

S S

ξ
ξ

−
− − =  

And 

( ) ( )
**

1 1 0
V V

S S
ξ ξ− − − =  

Hence we have 

( ) ( )

( )( ) ( )( )

( )( ) ( )

** **
** ** **

** **

** ** **

** **

** **
** ** **

** **

1 2 1 2

1 1 1 1

1 2 2

dL S S S S
VS V S

dt S SS S

E E
VE V E

E E

V V V V
VV V S

V VV V

µ ξ µ ξ

ξ µ σ ξ µ σ

ξ µ ω µ ω

   
≤ − − − − − − −   

      

   + − + − + − + −   
   

   
+ − + − − + + −        

 

Finally, since the arithmetic mean exceeds the geometric mean, then 

**

**

**

2 0

2 0

S S

S S

V
V

V

 
− − ≤  

 

 − − ≤ 
 

 

Furthermore, since all the model parameters are non-negative, it follows that 
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0
dL

dt
≤ for 0 1.R >  Thus L  is aLyapunov function of system (4) on Ω . 

Therefore, it follows from Lasalle’s Invariance Principle that 

( )
( )
( )
( )
( )

**

**

**

**

**

lim

lim

lim

lim

lim

t

t

t

t

t

S t S

V t V

E t E

I t I

R t R

→∞

→∞

→∞

→∞

→∞

=

=

=

=

=

 

3.8. Basic Concept of Variational Iteration Method 

We consider the general nonlinear system 

[ ( )] [ ( )] ( )L u x N u x xψ+ =  

Where L is linear operator, N is nonlinear operator and ( )xψ  is a given continuous function. 

According to the variational iteration method He (1999) and He et al. (2006), we can construct a correction functional in the 

form; 

1
0

( ) ( ) ( ) [ ( )] [ ( )] ( )
t

k k k ku x u x s L u s N u s x dsλ ψ+ = + + −  ∫ ɶ                                                        (20) 

Where 0 ( )u x  is an initial approximation with possible unknowns, λ  is the Lagrange multiplier which can be determined 

optimally via variational theory, the subscript k denotes the 
thk  approximation and kuɶ  is considered as a restricted variation 

such that 0kuδ =ɶ . It is shown that this method is very effective and easy for a linear problem, its exact solution can be obtained 

by only the first iteration because λ  can be exactly identified. 

Hence to solve the above equation, we proceed by considering the stationary condition of the correction functional, then the 

Lagrange multiplier λ  becomes, 

1( 1)
( ) ( )

( 1)!

m
ms s x

m
λ −−= −

−
                                                                           (21) 

where m is the highest order of the differential equation. 

As a result, we have the iteration formula as; 

1
1

0

( 1)
( ) ( ) ( ) [ ( )] [ ( )] ( )

( 1)!

mt
m

k k k ku x u x s x L u s N u s x ds
m

ψ−
+

−= + − + −  −∫ ɶ                                        (22) 

3.9. Implementation of Variational Iteration Method on SVEIR Model 

First we consider the SVEIR model (4), we then apply Variational Iteration Method (VIM) by constructing the correction 

functional of each of the equations of the system, and we obtained the following; 

1 1
0

( ) (1 )
1

t
n n n

n n n n n

dS S I
S S t p V R S dt

dt I

βλ ω ρ µ
α+

 
= + − − Λ − − + + +  

∫
ɶ ɶ

                                       (23) 

1 2
0

(1 )
( ) ( )

1

t
n n n

n n n

dV I V
V V t p V dt

dt I

β ξλ ω µ
α+

− = + − Λ + + + + ∫                                            (24) 

1 3
0

(1 )
( ) ( )

1 1

t
n n n n n

n n n

dE I S I V
E E t E dt

dt I I

β β ξλ σ µ
α α+

− = + − − + + + + ∫                                        (25) 



 Mathematical Modelling and Applications 2020; 5(1): 16-38 29 

 

1 4
0

( ) ( )
t

n
n n n n

dI
I I t E I dt

dt
λ σ µ ε γ+

 = + − + + + 
 ∫                                                           (26) 

1 5
0

( ) ( )
t

n
n n n n

dR
R R t I R dt

dt
λ γ ρ µ+

 = + − + + 
 ∫                                                            (27) 

Where , 1, 2, ...5i iλ =  are the Lagrangemultiplier which can be identified optimally via variational Theory. 

we now obtain the optimal values of iλ  

1( 1)
( ) ( ) , 1, 2,3, 4,5

( 1)!

m
m

i t t x i
m

λ −−= − =
−

                                                                (28) 

m is the highest order of the differential equations. 

x is the compartments 

Hence we have  

1
1 1 0

1

( 1) 1
( ) ( ) ( ) 1

(1 1)! 0!
t t S t Sλ −− −= − = − = −

−
 

1
1 1 0

2

( 1) 1
( ) ( ) ( ) 1

(1 1)! 0!
t t V t Vλ −− −= − = − = −

−
 

1
1 1 0

3

( 1) 1
( ) ( ) ( ) 1

(1 1)! 0!
t t E t Eλ −− −= − = − = −

−
 

1
1 1 0

4

( 1) 1
( ) ( ) ( ) 1

(1 1)! 0!
t t I t Iλ −− −= − = − = −

−
 

1
1 1 0

5

( 1) 1
( ) ( ) ( ) 1

(1 1)! 0!
t t R t Rλ −− −= − = − = −

−
 

Therefore, our iteration formulae become; 

1
0

(1 )
1

t
n n n

n n n n n

dS S I
S S p V R S dt

dt I

βω ρ µ
α+

 
= − − − Λ − − + + +  

∫
ɶ ɶ

                                       (29) 

1
0

(1 )
( )

1

t
n n n

n n n

dV I V
V V p V dt

dt I

β ξ ω µ
α+

− = − − Λ + + + + ∫                                              (30) 

1
0

(1 )
( )

1 1

t
n n n n n

n n n

dE I S I V
E E E dt

dt I I

β β ξ σ µ
α α+

− = − − − + + + + ∫                                        (31) 

1 4
0

( ) ( )
t

n
n n n n

dI
I I t E I dt

dt
λ σ µ ε γ+

 = − − + + + 
 ∫                                                  (32) 

1 5
0

( ) ( )
t

n
n n n n

dR
R R t I R dt

dt
λ γ ρ µ+

 = − − + + 
 ∫                                                   (33) 

With the initial approximation 0 ( ) 25S t = , 0 ( ) 20V t = , 0 ( ) 15E t = , 0 ( ) 10I t = , 0 ( ) 0R t =  which satisfy the initial conditions, 

to give; 
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( )
( )
( )
( )
( )

1

1

1

1

1

  25  7.57218

   20  1.8944104

   15  0.4470096 

   10  3.8516 

    0.714 

S t t

V t t

E t t

I t t

R t t

= +
= +
= +
= −
=

 

( )
( )
( )
( )
( )

2 3
2

2 3

2 3
2

2

2
2

2

  25  7.57218 3.428031601 0.0133925719

   20  1.8944104 0.01980016004 0.003283546738

   15  0.4470096 0.05587241364 0.01667611864

   10  3.8516 0.7758508925

    0

S t t t t

V t t t t

E t t t t

I t t t

R t

= + + +

= + − +

= + − −

= − +

= 2.714 3.89337352t t−

 

( )

( )

2 3 4
3

5 6

3
2 3 4

5

  25  7.57218 3.428031601 10.95779782 0.02528127049

0.0007185722909 0.000002385690683

   20  1.8944104 0.01980016004 0.003199072356 0.0005840314321

0.0000075626666608 5.732

S t t t t t

t t

V t t t t t

t

= + + − +

− −

= + − − −

−

( )

( )
( )

7 6

2 3 4
3

5 6

2 3 4

3

3

14805 10

   15  0.4470096 0.05587241364 0.01507381852 0.001898403052

0.0007110096243 0.000002958908163

   10  3.8516 0.7758508925 0.104064693 0.0004569256508

    0.714

t

E t t t t t

t t

I t t t t t

R t

−×

= + − + −

+ +

= − + − −

= 2 3
 3.89337352 10.9640184t t t− +

 

3.10. Basic Concept and Implementation of ADM on SVEIR Model 

In this section, we determine the solution of model (4) using Adomain Decomposition Method (ADM). 

Let us consider system (4) in an operator form; 

(1 )

(1 ) ( )

(1 ) ( )

( )

( )

LS SI S

LV VI V

LE SI VI E

LI E I

LR I R

d
where L

dt

ρ ω ρ λβ µ

ρ λβ ξ µ ω

λβ λβ ξ µ σ

σ µ ε γ

γ µ ρ


= − Λ + Λ + Λ − −


= Λ − − − +


= + − − + 

= − + +


= − + 


=


                                                          (34) 

By applying the inverse operator ( )1

0

.

t

L dt
− = ∫  on both sides of (**), we have 
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0 0 0 0

0 0

0 0 0

0 0

0 0

( ) (0) (1 )

( ) (0) (1 ) ( )

( ) (0) (1 ) ( )

( ) (0) ( )

( ) (0) ( )

t t t t

t t

t t t

t t

t t

S t S p t Vdt Rdt SIdt Sdt

V t V pVt VIdt Vdt

E t E SIdt VIdt Edt

I t I Edt Idt

R t R Idt Rdt

ω ρ λβ µ

λβ ξ µ ω

λβ λβ ξ µ σ

σ µ ε γ

γ µ ρ


 = + − Λ + + − −

= + − − − +

= + + − − +

= + − + +

= + − +

∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫




 
 
 
 
 
 
 
 
 
  


 
 
 
 
 
 
 
 
 
 
 
  

                                         (35) 

Applying Adomain Decomposition Method, the solution of the equation (35) above becomes sum of the following series; 

The linear terms 

0 0 0 0 0

; ; ; ;n n n n n

n n n n n

S S V V E E I I R E

∞ ∞ ∞ ∞ ∞

= = = = =

= = = = =∑ ∑ ∑ ∑ ∑  

And we approximate the non-linear terms as follows 

00 ;

0

0 0

0

( ,..., ,..., )

( ,..., ; ,..., )

n n I n

n

n n n

n

SI A S S I

VI B V V I I

∞

=

∞

=

=

=

∑

∑

 

Where 

0 0
0

1

!

n k k
k k

n n
n n

d S I

A
n d

λ

λ λ

λ

∞ ∞

= =
=

   
   

     =  
 
 
  

∑ ∑
                                                              (36) 

and 

0 0

0

1

!

n k k
n n

n n
n k

d S I

B
n d

λ

λ λ

λ

∞ ∞

= =

=

   
   

     =  
 
 
  

∑ ∑
                                                             (37) 

Are the Adomain polynomials 

Now, substituting nA , nB  and the linear terms in (20), we have  

Hence from the above equation (21) we define the following initial conditions and recursive formula 
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0 0 0 0 0(0) (1 ) , (0) , (0), (0), (0)S S p t V V p t E E I I R R= + − ∧ = + ∧ = = =  

1

0 0 0 0

1

0 0

1

0 0 0

1

0 0

1

0 0

(1 ) ( )

(1 ) ( )

( )

( )

t t t t

n n n n n

t t

n n n

t t t

n n n n

t t

n n n

t t

n n n

S V dt R dt A dt S dt

S B dt V dt

E A dt B dt E dt

I E dt r I dt

R r I dt R dt

ω ρ λβ µ

λβ ξ µ ω

λβ λβ ξ µ σ

σ µ ξ

µ ρ

+

+

+

+

+

= + − −

= − − +

= + − − +

= − + +

= − +

∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫

                                                       (38) 

We compute the Adomain polynomial with help of Maple; and obtained 

0 0 0

1 0 1 1 0

2 0 2 1 1 2 0

3 0 3 1 2 2 1 3 0

4 0 4 1 3 2 2 3 1 4 0

5 0 5 1 4 2 3 3 2 4 1 5 0

0 0 0

1 0 1 1 0

2 0 2 1 1 2 0

3 0 3 1 3 2 2 3 1 4 0

4 0 5 1 4 2 3

,

A S I

A S I S I

A S I S I S I

A S I S I S I S I

A S I S I S I S I S I

A S I S I S I S I S I S I

B V I

B V I V I

B V I V I V I

B V I V I V I V I V I

B V I V I V I V

=
= +
= + +
= + + +
= + + + +
= + + + + +

=
= +
= + +
= + + + +
= + + + 3 2 4 1 5 0I V I V I+ +

 

2
1

2
1

2
1

1

1

0.8926 0.059216635

1.5160096 0.1.1292557365

0.4470098 0.06903010054

3.85160

0.7140

S t t

V t t

E t t

I t

R t

= +

= − +

= +
= −
=

 

2 3
2

2 3
2

2 3
2

2 3
2

2
2

3.368814965 0.008862406378

0.1094555764 0.009177100611

0.1249025142 0.01829162969

0.7758508926 0.0002521899673

3.493373520

S t t

V t t

E t t

I t t

R t

= +

= +

= − −

= +

= −
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3 4 7 4
3

3 4 7 5
3

3 4 7 5
3

3 4
3

10.96666022 0.001596915911 4.641197940 10

0.01237617297 0.001236686070 2.322281588 10

0.03336544822 0.002883733653 6.963479520 10

0.1043168833 0.00007543893886

S t t t

V t t t

E t t t

I t t

R

−

−

−

= − − − ×

= − − − ×

= + + ×

= − −
3 4

3 11.04999716 0.00002531987271t t= +
 

4. Simulation (Numerical Solution) and 

Results 

Here in this section, we present, the numerical simulation 

using some estimated parameters from the literature and 

others from noted secondary sources to showcase the 

analytical results. The simulation of the S. Pneumonia was 

done using MATLAB with the sole aim of investigating the 

effect or the contribution of the different parameters to the 

spread of the S. Pneumonia infection and their mitigation. 

Table 2. Parameter estimates for S. pneumonia model under interventions. 

Symbols & Parameters Description Value Source 

S Susceptible Individuals 25 Estimated 

V Vaccinated Individuals 20 Estimated 

E Exposed individuals 15 Estimated 

I Infectious individuals 10 Estimated 

R Recovered individuals 0 Estimated 

µ  Per capita natural mortality rate 0.2 Estimated 

β  Contact rate 0.0287 Mohammed and Tumwiine (2018) 

ξ  Effectiveness of vaccine 0.3 Estimated 

p Fraction of recruited individuals 0.32 Mohammed and Tumwiine (2018) 

σ  Infectious rate of exposed individuals 0.01096 Mohammed and Tumwiine (2018) 

γ  recovery rate of infected individuals 0.0714 Mohammed and Tumwiine (2018) 

ω  The rate at which vaccines wane 0.0621 Mohammed and Tumwiine (2018) 

Λ  Recruitment rate into the susceptible compartment 10.09 Mohammed and Tumwiine (2018) 

α
 

Proportion of antibody produced by individual in response to the incidence 

of infection 
2 Liu and Yang (2012) 

ρ
 

Per capita rate of recovered individuals going back to the Susceptible class 9.4 Mohammed and Tumwiine (2018) 

 

 

Figure 2. Plot of Population against time. 

The graph below shows the trend of all the population 

against time when the basic reproduction number is less than 

one. The result show that; as can be seen from that the 

infected class I (t) is drastically reduces to zero (0) in the 

long run when the basic reproduction number is less than 

unity (that is 0 0.1154 1ℜ = <  ). While the vaccinated V (t) 

and susceptible S (t) remains in the population. 

 

Figure 3. Susceptible Population againsttme. 

 

Figure 4. Vaccinated Pop. against time. 
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Figure 5. Plot of Exposed Pop against time. 

 

Figure 6. Plot of InfectedPop. against time. 

The graphs above explicitly describe the trend of each of 

the classes against time when the basic reproduction number 

is less than unity. It is clear from the above trend that both the 

exposed population and the infected population are reduced 

to zero. This shows that our system is stable when the basic 

reproduction number is less than one (1). 

While the vaccinated population decrease but remain 

constant at a particular time. The explanation to this is as a 

result of fear and lack of awareness of the vaccination 

campaign against S. pneumonia. But after sometimes people 

are aware of the vaccination which maintains the population 

at that static level. 

 

Figure 7. Plot of Population against time. 

Here in this graph we have the five classes and their trend 

over time when 0 1.1864 1ℜ = > , it was revealed from the 

simulation that the infected population decreases but did not 

get to zero, which means that there are individuals who are 

still living with S. Pneumonia in the population. Our 

simulation further shows that within the period of 10days, the 

number of infected individual reduces drastically and then 

increases within 45 to 50 day slowly. 

 

Figure 8. Susceptible Popu. Againsttime. 

 

Figure 9. Vaccinated Pop. Againsttime. 

 

Figure 10. Exposed Pop. Against time. 

 

Figure 11. Infected Popu. Against time. 

In the above simulation, we describe the trend of each of 

the classes to understand exactly what happened in Figure 9 

and it reveals that, if the basic reproduction is greater than 

one, S. pneumonia becomes endemic in the population and 

persist since the exposed and infected classes were not 

reduced to zero, see Figure 10 and Figure 9. 

Here we simulate the effect of proportion of antibody 

induced by the vaccine. Our simulation reveals that increase 

in α which is proportion of antibody produced by individual 

in response to the incidence of Infection, reduces the infected 

population. 
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Figure 12. Plot of Infected population against time for different values α. 

 

Figure 13. Plot of Infected population aginst time for different values of ω. 

 

Figure 14. Plot of Infected population against time for different values of Λ. 

 

Figure 15. Plot of Infected pop againsttime for different values of γ. 
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Our simulation in the two graphs above, we observed that 

ω and Λ little or no variation in the infected population. The 

implication of this is that as more individuals with high 

proportion of antibody against S. pneumonia is recruited into 

the population, there is no need vaccinating them again, since 

their immune system is already in fighting against S. 

pneumonia. That is to say that an individual needs 

vaccination before he/she will be introduced into the 

population. Also, we see from the simulation above that 

increase in recovery rate γ reduces the number of infected 

individual over time. 

 

Figure 16. Plot of Population against time for VIM. 

 

Figure 17. Plot of Population against time for ADM. 

Figure 16 and Figure 17 shows the simulation for the 

Variational iteration Method (VIM) and Adomian 

Decomposition method (ADM) respectively. It was seen that 

in Figure 15, within the first 3 days the infection is still in the 

population until, the 4
th

 day when the number of infected 

individual is reduced to zero. While Figure 17 shows that 

from the 1
st
 day the infection is completely out of the 

population. Hence, it shows that the ADM converges faster 

than the VIM. 

5. Summaries, Conclusion and 

Recommendation 

5.1. Summary 

In this paper, the dynamics of SVEIR model with saturated 

incidence force of infection and saturated vaccination 

function for Streptococcus pneumonia (that is, model that 

monitors the temporal transmission dynamics of the disease 

in the presence of preventive vaccine) was formulated and 

analyzed. The basic reproduction number that determines 

disease extinction and disease survival was revealed. The 

existing threshold conditions of all kinds of the equilibrium 

points are obtained and proved to be locally asymptotic 

stable for disease-free equilibrium using linearization method 

and Lypanov functional method for Endemic equilibrium. 

Qualitative Analysis of the model was obtained and the 

positive of solution obtained. It was revealed that the model 

is positively –invariant and attracting. Thus Ω  is positively 

invariant. Hence, it is sufficient to consider the dynamics of 

the model (1) in Ω . In this region, the model can be 

considered as been epidemiologically and mathematically 

well-posed, Hethcote (2000). The governing model was 

normalized and also Adomain Decomposition method was 

used to compute an approximate solution of the non-linear 

system of differential equations governing the model. Maple 

was used in carrying out the simulations (numerical solutions) 

of the model. Graphical results were presented and discussed 

to illustrate the solution of the problem. The achieved results 

reveal that the disease will die out within the community if 

the vaccination coverage is above the critical vaccination 

proportion. The study indicates that we should improve the 

efficiency and enlarge the capacity of the treatment to control 

the spread of disease. 

5.2. Conclusion 

It is revealed that the DFE is globally asymptotically stable 

while the endemic equilibrium is not feasible which implies 

that the disease will be eradicated out of the population If

0 1,ℜ < . Furthermore, we can also see that if 0 1ℜ > and

0H > , then endemic equilibrium is globally asymptotically 

stable. In order to regulator the disease, it will be strategical 

to decrease the BRN to barest minimum. From the 

manifestation of BRN 0ℜ , it is obvious that the rate ξ  

representing vaccine efficiency, the rate/transfer of individual 

out of the infected compartment iν −  and (1 )ξ−  revealing the 

rate at which the vaccine get waned directly or indirectly 

impact the value of 0ℜ . Obviously, if ξ , iν − or (1 )ξ−  

increase, implies 0ℜ  decreases. Therefore, the need for 

public health interventions to control the epidemic by 

ensuring these parameters ξ , iν −  or (1 )ξ− are increased to 

reduce 0ℜ  can never be over emphasis. 

5.3. Recommendation 

Research has shown that Invasive disease attributable to Sp is 

a major public health problem for under aged children 
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irrespective of high use of the 7-valent pneumococcal conjugate 

vaccine (PCV7) in Nigeria and other African countries. 

The epidemiology of human population especially those 

concerning under age children requires urgent and serious 

investigation so as to understand the diseases and proffer 

solutions that will completely eradicate it from our 

population. This could be achieved through 

1. International partnership and research collaboration. 

2. Improve funding of epidemiological research programs. 

3. Advocacy and awareness creation among rural and 

urban communities. 

4. Efficient and effective specialist vaccination centers in 

rural and urban communities. 

5. Free and effective vaccination of under age children. 

Thus the need for a greater understanding of Streptococcus 

Pneumonia and for more effective vaccination, treatment and 

control program is paramount to eradication of the infection. 

Therefore, we consent the effort of the US Food and Drug 

Administration (February 24, 2010) that licensed a new 13-

valent pneumococcal polysaccharide-protein conjugate 

vaccine (PCV13) for under age children. 

Hence we would also recommend from the above knowledge: 

1. Healthy children and their counterparts (both those who 

have completed the previous vaccine PCV7) with other 

health challenging issues exposing them to high risk of 

IPD should be routinely immunize with PCV13. 

2. “Catch-up” immunization should be conducted for 

children behind schedule; and, 

3. There should be timely treatment and vaccination for 

infected individuals and those with compromised 

immunity including newborn babies respectively. 
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