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Abstract: Among the various inventory systems our method is used to find the optimal supply size. To find the optimal 

supply size taking in to consideration the aspects like inventory holding cost per unit, cost of shortage per unit etc., In many 

situation the demand taken to be a random variable. The total demand is in turn a sum of three random variables namely (i) 

demand due to consumers (ii) demand due to the supply of the product to sister concerns or companies. (iii) Demand due to 

replacement of defective items that are not accepted and hence exchanged for new units Under these assumptions the optimal 

supply size is derived.
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1. Introduction 

In inventory control theory, determination of the optimal 

order size is an important aspect. Similarly there are many 

situations where the optimal size of the reserve inventory and 

optimal supply size are to be determined. The optimal supply 

size is found out taking in to consideration the aspects like 

inventory holding cost perunit, cost of shortage perunit etc., 

There are many situations where the demand is taken to be a 

random variable and hence it has the corresponding 

probability distribution. Using the different costs involved 

and the demand size, the optimal quantity of supply is 

determined. 

A detailed account of such models is found in Hansmann 

(1961). The so called Newsboy problem is one in which the 

demand is taken to be a random variable and the optimal 

supply size is determined taking in to consideration the cost 

of excess stock and the cost of shortages. This basic model 

has been discussed in Hansmann (1961) Sheik Udumaneet 

al., (2007) have discussed this model under the assumption 

that the random variable denoting the demand satisfies the so 

called Setting the Clock Back to Zero (SCBZ) property due 

to Raja Rao and Talwalker (1990) 

The demand for any product or commodity is usually due 

to the individual consumers and the quantity they consume or 

use. But there are some cases or situations where the demand 

may be due to other factors also and they may influence the 

quantity demanded. So the total demand may be may be 

represented as the sum of the demands due to other factors or 

causes. 

In this Chapter two models are discussed. In the case of the 

first model it is assumed that the demand for the product is 

the sum of two components namely, (i) The demand due to 

the purchase by the consumers. (ii) The demand due to the 

transfer of the product to the sister companies whenever the 

shortage occurs in those companies. Hence the demand may 

be represented on the sum of two independent random 

variables. 

An extension of this model to the case of the total demand 

as the sum of three components is discussed. The total 

demand is the sum of three variables of random nature. In 

this Chapter it is assumed that the total demand which is a 

random variable is the sum of three components of individual 

demands which are of random character. The total demand is 

in turn a sum of three random variables namely (i) demand 

due to consumers (ii) demand due to the supply of the 

product to sister concerns or companies. (iii) demand due to 

replacement of defective items that are not accepted and 

hence exchanged for new units Under these assumptions the 

optimal supply size is derived. 
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1.1. Assumptions 

(i) The demand for a given product is the sum of two types 

of demands. (a) consumer demand. (b) demand due to the 

transfer of goods to the sister companies. 

(ii) The supply is instantaneous. 

(iii) There are only two costs involved namely the cost of 

storage and cost of shortages. 

1.2. Notations 

h = Inventory holding cost 

d = Cost of shortage. 

S = Supply size  

X = The demand for the product which is a random 

variable, with pdf 

f (x) and cdf F (x). 

Results 

2. Model I 

It is a well known result that the expected cost of overages 

and shortages is given by 

0

( ) ( ) ( ) ( ) ( )

s

s

E C h S X f x dx d X S f x dx

∞

= − + −∫ ∫  

Now since the random variable X which denotes the total 

demand is the sum of three types of demands, we have to 

find the distribution of X which is the sum of two random 

variables X1, X2.. For that purpose the convolution principle 

is used. 

[ ] [ ]
0

( ) ( ) ( )

s

s

E C h S X f x dx d X S f x dx

∞

= − + −∫ ∫   (1) 

Now we consider the case where 2 1 2w x x= +
 

1x = demand due to consumer purchase, 

2x = demand due to transfer to sister companies. 

2 1 2

0

( ) ( ) ( )

x

wf x fx y fx x y dy= −∫  

where 2 1 2w x x= +  [by convolution theorem] 

Let 1 1~ exp( )x θ , 1
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                           (2) 

substituting (2) in (1), we get 
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(A)⇒  [ ] 2

0

s

x
S X e dx

θ−−∫  
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By Leibnitz rule  

[ ] [ ]
( ) ( )

1 1

( ) ( )
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θ
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By Leibenitz rule  

= 1

1
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θ
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By Leibnitz rule  

2
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e

ds

θ

θ
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s

X S e dx
θ
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By Leibenitz rule  

= 1

1

1
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substituting (4), (5), (6) and (7) values in (3)., we get  
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The optimal S value is determined by assuming specific 

values for θ1, θ2, h and d. 
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1 21.2, 1.5, 10, 50h dθ θ= = = =
 

LHS= 
10

10 50+
 

=
10

60
 

LHS=0.1667 

By giving different values for S, the optimal value can be 

determined. 

S =2.4 RHS = 0.1714 

S=2.5 RHS = 0.1547 

Hence 
^

S  lies between 2.4 and 2.5. 

S=2.43 RHS = 0.1663 
^

2.43S =  

3. Model II 

In this model it is assumed that 3 1 2 3w x x x= + + ,  

where 1x = consumer demand,  

2x = demand due to the sister companies, 

3x = demand due to replacement of defective units. 

32 1

3

( )1 2
3

1 20

( )
( )

x

x yx x
wf x e e e dy

θθ θθ θ θ
θ θ

− −− − = −
 −∫  

32 1 ( )1 2 3

1 2 0
( )

x

x yx x
e e e dy

θθ θθ θ θ
θ θ

− −− − = −
 − ∫  

3 2 3 3 2 3 1 3 3 1( ) ( ) ( ) ( )1 2 3

1 2( )

x x x x x x
e e e e e e

θ θ θ θ θ θ θ θ θ θθ θ θ
θ θ

− + − + − + − + = − − + −
 

3 2 3 12 1( ) ( )1 2 3

1 2( )

x xx x
e e e e

θ θ θ θθ θθ θ θ
θ θ

− + − +− − = − − + −
 

[ ]

[ ]

3 2 3 12 1

3 2 3 12 1

( ) ( )1 2 3

1 20

( ) ( )1 2 3

1 2

( )
( )

( )

s

x xx x

x xx x

s

E C h S X e e e e dx

d X S e e e e dx

θ θ θ θθ θ

θ θ θ θθ θ

θ θ θ
θ θ

θ θ θ
θ θ

− + − +− −

∞
− + − +− −


  = − − − +
 − 




 + − − − +  − 

∫

∫
 

[ ]

[ ]

3 2 3 12 1

3 2 3 12 1

( ) ( )1 2 3

1 2 0

( ) ( )1 2 3

1 2

( )

( )

s

x xx x

x xx x

s

h
S X e e e e dx

d
X S e e e e dx

θ θ θ θθ θ

θ θ θ θθ θ

θ θ θ
θ θ

θ θ θ
θ θ

− + − +− −

∞
− + − +− −

 
  = − − − +
 −  

 

 
  + − − − + −   

∫

∫

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ]

3 22

3 11

3 22

( )

0 01 2 3

1 2
( )

0 0

( )

1 2 3

1 2

( )

( )

( )

A Bs s

xx

C Ds s

xx

E F

xx

s s

G

s

S X e dx S X e dx

hdE C

ds

S X e dx S X e dx

X S e dx X S e dx

d

X S e

θ θθ

θ θθ

θ θθ

θ θ θ
θ θ

θ θ θ
θ θ

− +−

− +−

∞ ∞
− +−

∞

 
 − − −
 
 =
 −
 − − + −
 
 

− − −

+
−

− −

∫ ∫

∫ ∫

∫ ∫

∫

����� �����

����� �����

����� �����

�����

[ ] 3 11 ( )

0

H

xx

s

dx X S e dxθ θθ
∞

− +−








 =

  
  
  
  
  
  + −
  
  

∫
�����

                                   (8) 



72 Vijayakumar Raman et al.:  Determination of Optimal Supply When Demand Is a Sum of Components  

 

 
 
 
 
 
 

A= [ ] 2

0

s

x
S X e dx

θ−−∫  

By Leibenitz rule 
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on simplification we get 
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Any value of S which satisfies equation (17) for specific values  

θ1, θ2, h and d given the optimal value of S.

 

1 2 31.75, 1.5, 1.25, 20, 120h dθ θ θ= = = = =  

1.5 3 2.775 1.7520 14.4375 7.21875 7.875 12.375

140 1.40625

s s s se e e e− − − −+ − −=  

1.5 3 2.775 1.7520
1.40625 14.4375 7.21875 7.875 12.375

140

s s s se e e e− − − −× = + − −

LHS = 0.2008 

S = 4 R. H. S = 0.2530 LHS = 0.21 (convert to two 

decimal places) 

S =4.1 R. H. S = 0.2297 LHS = 0.21 (convert to two 

decimal places) 

S = 4.2→0.2084 

S = 4.24→0.20054 

RHS = 0.2005 
^

S = 4.24 

Since L. H. S and R. H. S are equal. 

4. Conclusion 

On the basis of the model for finding the optimal supply 

when demand is a sum of two components as discussed. The 

conclusions drawn are (1) If the demand due to consumer 

purchase and demand due to transfer produce to sister 

companies are both random variables following exponential 

distributions then as h increases a higher level of 
^

S is 

suggested. (2) As d the shortage cost increases then a larger 

size of inventory is suggested. Similarly the results are found 

to be identical when the demand can be portrayed as the sum 

of three random variables or segments. 

The validity of these models for practical use depends upon 

the determination of the distribution of the random vbariables 

involved in the model. The models will be of practical use 

when the distribution are formulated based on the data 

collected from practical situations. Also the test for goodness 

of fit for the distributions will improve the accuracy of the 

model and the optimal solutions will be with greater precision. 

 

References 

[1] Amanda J. Schmitt, Lawrence V. Snyder, Zuo- Jun Max Shen 
(2008). Inventory Systems with Stochastic Demand and 
supply: Properties and Aproximations, http://ssrn.com, pp. 1-
31. 

[2] Barber. J. H. (1925). Economic control Inventory, New York 
Codes Book C0. 

[3] Bellman. R. (1956a). On the theory of Dynamic programming 
– A ware housing problem, Management science, Volume 2, 
(No. 3): pp. 272–27. 

[4] Bellman. R. (1956b). Dynamic programming and the 
smoothing problems, Management science, Volume 3, (No. 1): 
pp. 111-113. 

[5] Beyer. D and Sethi. S. P. (1997). Average cost optimality in 
inventory Models with Markovian demands, Journal of 
Optimization theory and Applications, Vol. 92, No. 3, pp. 
497–526. 

[6] Bishop. G. R. (1957). On a Problems of production scheduling 
Operations Research, Vol. 5, (No. 1): pp. 97-103. 

[7] Bowman, E. H., Richard D Irwin and Fetter, R. B. (1957). 
Analysis for production management. Home wood – Illinois. 

[8] Brill Percy. H. And Ben A Chaouch (1995). An EOQ model 
with Random variables in demand- Management science, 41, 
5 pp. 927–936. 

[9] T. Venkatesan C. Muthu And R. Sathiyamoorthy (2010). 
Determination of Optimal Reserves between Two Machines in 
Series. Journal of Ultra Scientist of Physical Sciences, Vol. 22 
(3) M, (2010), pp 853-861. 



74 Vijayakumar Raman et al.:  Determination of Optimal Supply When Demand Is a Sum of Components  

 

[10] T. Venkatesan C. Muthu And R. Sathiyamoorthy (2012). 
Determination of Optimal Reserve of Semi Finished products 
between three machines in series. Journal of Indian Academy 
of Mathematics, V0l. 34, No. 1 (2012), pp: 175-184. 

[11] T. Venkatesan C. Muthu And R. Sathiyamoorthy (2016). 
Determination of Optimal Reserves between Three Machines 
in Series. International Journal of Advanced Research in 

Mathematics and Applications, Volume: 1 Issue: 1 May, 2016, 
ISSN_NO: 2350-028X. 

[12] T. Venkatesan1, G. Arivazhagan And C. Muthu (2017). Some 
Applications of Order Statistics in Inventory Control. IOSR 
Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-
ISSN: 2319-765X. Volume 13, Issue 1 Ver. IV (Jan. - Feb. 
2017). 

 


