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Abstract: Explicit equations are obtained to convert Cartesian coordinates to elliptic coordinates, based on which a function in 

elliptic coordinates can be readily mapped in physical space. Application to Kirchhoff vortex shows that its elliptical core 

induces two counter-rotating irrotational eddies. 
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1. Introduction 

 

Figure 1. Coordinate lines for an elliptic coordinate system with 1, 0.5a b= = . 

The elliptical coordinate system ( , )ξ η  as a 

two-dimensional orthogonal coordinate system has many 

dynamical and engineering applications, such as Kirchhoff 

vortex [1], insect aerodynamics [2], hydrodynamic wave 

diffraction [3], and theoretical physics [4]. Its coordinate lines 

are confocal ellipses and hyperbolae and the transformation 

from elliptic to Cartesian coordinates is given by 
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where a and b denote the semi-major and semi-minor axes of 

the ellipse and c is the elliptical eccentricity (Figure 1). 

In the meantime, explicit equations to transform from 

Cartesian to elliptic coordinates have not been found in the 

existing literature [5, 6, 7]. Such a conversion relation would 

be useful in mapping an elliptic-coordinate solution, for 

example the flow field of Kirchhoff vortex, in physical space. 

2. Cartesian to Elliptic Coordinates 

In order to invert the functional relation (1), we first 

eliminate ξ  and have 
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which means curves of constant η  are hyperbolae. The focus 

distance is c and the eccentricity is sec( )e η= . 

Let 2sin ( )p η= , we have 
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which becomes 

2 2 2 2 2 2( ) 0c p x y c p y+ + − − =          (2) 

Then eliminating η  from (1) we have 
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It shows that curves of constant ξ  are ellipses. The focus 

distance is c and the eccentricity is 1cosh ( )e ξ−= . 

Let 2sinh ( )q ξ= − , we have 
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which leads to 

2 2 2 2 2 2( ) 0c q x y c q y+ + − − =          (3) 

It is essentially the same as (2). Therefore ( , )p q  

constitute the two roots of a quadratic equation. Since 

0 1, 0p q≤ ≤ ≤ , we have p q≥ , and the two roots are 
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in which 2 2 2B x y c= + − . 

From the definition of p we obtain 

0 arcsin( )pη =               (5) 

It has four cases depending on which quadrant the Cartesian 

point ( , )x y  is located, i.e., 
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Based on the definition of q, we can solve ξ  from 

quadratic equation 

4 2(4 2) 1 0e q eξ ξ+ − + = , 

which has two roots 

2 21 2 2e q q qξ = − ± −  

Since 0q ≤ , both roots are real and denoted as 
1 2( , )ξ ξ . 

They clearly satisfy 1 22 2
1e e

ξ ξ⋅ = , which leads to 

2 1 0ξ ξ= − < . Because in elliptical coordinates only 

non-negative ξ  value is considered, we obtain 
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Eqs. (4-7) are explicit equations to derive elliptic 

coordinates from Cartesian grid. They can easily be realized 

via computation software such as Matlab. 

3. Application to Kirchhoff Vortex 

Kirchhoff vortex is a rotating elliptical region of uniform 

vorticity ω  embedded in an irrotational ideal fluid [8]. It is 

the simplest example of non-smooth weak solutions to the 

Euler equations and has wide application in vortex dynamics 

[9-11]. It has a discontinuity of vorticity across its elliptical 

boundary 
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where a and b are semi-major and semi-minor axes, 

respectively. The boundary corresponds to contour 

arcsinh( )b cξ = , and the vortex rotates with constant 

angular velocity 
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around the origin. From Act. 159 of Lamb [1], the 

streamfunction outside the core is 

2 21 1
( ) cos(2 )

4 2
a b e abξψ η ω ξ−= Ω + +      (8) 

The instantaneous streamlines in a unsteady flow are given 

by the curves .constψ =  In a rotating frame with angular 

velocity Ω , Kirchhoff vortex looks steady and its 

streamfunction outside the elliptic core is related to the 

inertial-frame streamfunction (8) by 
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From (9) it is straightforward to make a conformal mapping 

of steady streamfunction on a uniform mesh of elliptic 

coordinates (Figure 2). 
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Figure 2. Mapping of streamfunction (9) on a uniform mesh of ( , )ξ η , with 1, 0.5, 10a b ω= = = . 

In order to view the flow field in physical space, we use the 

conversion equations (4-7) to plot streamfunction (9) on a 

uniform Cartesian mesh in Figure 3, which shows the elliptical 

core of Kirchhoff vortex induces two irrotational eddies that 

rotate in opposite directions. 

 

Figure 3. Mapping of streamfunction (9) on a uniform mesh of xy-plane, with         

1, 0.5, 10a b ω= = = . The boundary of vortex core corresponds to 0.55ξ = . 

4. Conclusion 

This study obtains explicit equations that convert Cartesian 

coordinates to elliptic coordinates. The conversion relation 

can be easily realized with computer software and used to map 

a known function of elliptic-coordinates, such as the 

streamfunction of Kirchhoff vortex, on a uniform Cartesian 

mesh. 
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